# Dimension-Dependent Phenomenological Model of Excitonic Electric Dipole in InGaAs Quantum Dots

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Modeling of Electric Dipole

## 3. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Kastner, M.A. Artificial Atoms. Phys. Today
**1993**, 46, 24–31. [Google Scholar] [CrossRef] - Mittelstädt, A.; Schliwa, A.; Klenovský, P. Modeling electronic and optical properties of III–V quantum dots—Selected recent developments. Light. Sci. Appl.
**2022**, 11, 1–14. [Google Scholar] [CrossRef] [PubMed] - Heinrichsdorff, F.; Mao, M.H.; Kirstaedter, N.; Krost, A.; Bimberg, D.; Kosogov, A.O.; Werner, P. Room-temperature continuous-wave lasing from stacked InAs/GaAs quantum dots grown by metalorganic chemical vapor deposition. Appl. Phys. Lett.
**1997**, 71, 22–24. [Google Scholar] [CrossRef] - Klenovský, P.; Brehm, M.; Křápek, V.; Lausecker, E.; Munzar, D.; Hackl, F.; Steiner, H.; Fromherz, T.; Bauer, G.; Humlíček, J. Excitation intensity dependence of photoluminescence spectra of SiGe quantum dots grown on prepatterned Si substrates: Evidence for biexcitonic transition. Phys. Rev. B
**2012**, 86. [Google Scholar] [CrossRef] [Green Version] - Sala, E.M. Growth and Characterization of Antimony-Based Quantum Dots in GaP Matrix For Nanomemories. Ph.D. Thesis, Technische Universität Berlin, Berlin, Germany, 2018. [Google Scholar] [CrossRef]
- Sala, E.M.; Arikan, I.F.; Bonato, L.; Bertram, F.; Veit, P.; Christen, J.; Strittmatter, A.; Bimberg, D. MOVPE-Growth of InGaSb/AlP/GaP(001) Quantum Dots for Nanoscale Memory Applications. Phys. Status Solidi B
**2018**, 1800182. [Google Scholar] [CrossRef] - Ding, X.; He, Y.; Duan, Z.C.; Gregersen, N.; Chen, M.C.; Unsleber, S.; Maier, S.; Schneider, C.; Kamp, M.; Höfling, S.; et al. On-Demand Single Photons with High Extraction Efficiency and Near-Unity Indistinguishability from a Resonantly Driven Quantum Dot in a Micropillar. Phys. Rev. Lett.
**2016**, 116, 6. [Google Scholar] [CrossRef] [Green Version] - Snijders, H.; Frey, J.A.; Norman, J.; Post, V.P.; Gossard, A.C.; Bowers, J.E.; Van Exter, M.P.; Löffler, W.; Bouwmeester, D. Fiber-Coupled Cavity-QED Source of Identical Single Photons. Phys. Rev. Appl.
**2018**, 9, 31002. [Google Scholar] [CrossRef] [Green Version] - Snijders, H.J.; Frey, J.A.; Norman, J.; Flayac, H.; Savona, V.; Gossard, A.C.; Bowers, J.E.; Van Exter, M.P.; Bouwmeester, D.; Löffler, W. Observation of the Unconventional Photon Blockade. Phys. Rev. Lett.
**2018**, 121, 43601. [Google Scholar] [CrossRef] [Green Version] - Kok, P.; Munro, W.J.; Nemoto, K.; Ralph, T.C.; Dowling, J.P.; Milburn, G.J. Linear optical quantum computing with photonic qubits. Rev. Mod. Phys.
**2007**, 79, 135–174. [Google Scholar] [CrossRef] [Green Version] - Klenovský, P.; Hemzal, D.; Steindl, P.; Zíková, M.; Křápek, V.; Humlíček, J. Polarization anisotropy of the emission from type-II quantum dots. Phys. Rev. B
**2015**, 92, 241302. [Google Scholar] [CrossRef] [Green Version] - Murphy-Armando, F.; Brehm, M.; Steindl, P.; Lusk, M.T.; Fromherz, T.; Schwarz, K.; Blaha, P. Light emission from direct band gap germanium containing split-interstitial defects. Phys. Rev. B
**2021**, 103, 85310. [Google Scholar] [CrossRef] - Bennett, A.J.; Patel, R.B.; Skiba-Szymanska, J.; Nicoll, C.A.; Farrer, I.; Ritchie, D.A.; Shields, A.J. Giant Stark effect in the emission of single semiconductor quantum dots. Appl. Phys. Lett.
**2010**, 97, 1–4. [Google Scholar] [CrossRef] [Green Version] - Huang, H.; Csontosová, D.; Manna, S.; Huo, Y.; Trotta, R.; Rastelli, A.; Klenovský, P. Electric field induced tuning of electronic correlation in weakly confining quantum dots. Phys. Rev. B
**2021**, 104, 165401. [Google Scholar] [CrossRef] - Steindl, P.; Snijders, H.; Westra, G.; Hissink, E.; Iakovlev, K.; Polla, S.; Frey, J.A.; Norman, J.; Gossard, A.C.; Bowers, J.E.; et al. Artificial Coherent States of Light by Multiphoton Interference in a Single-Photon Stream. Phys. Rev. Lett.
**2021**, 126, 143601. [Google Scholar] [CrossRef] [PubMed] - Reindl, M.; Jöns, K.D.; Huber, D.; Schimpf, C.; Huo, Y.; Zwiller, V.; Rastelli, A.; Trotta, R. Phonon-Assisted Two-Photon Interference from Remote Quantum Emitters. Nano Lett.
**2017**, 17, 4090–4095. [Google Scholar] [CrossRef] - Weber, J.H.; Kambs, B.; Kettler, J.; Kern, S.; Maisch, J.; Vural, H.; Jetter, M.; Portalupi, S.L.; Becher, C.; Michler, P. Two-photon interference in the telecom C-band after frequency conversion of photons from remote quantum emitters. Nat. Nanotechnol.
**2019**, 14, 23–26. [Google Scholar] [CrossRef] [Green Version] - Williamson, A.J.; Wang, L.W.; Zunger, A. Theoretical interpretation of the experimental electronic structure of lens-shaped self-assembled InAs/GaAs quantum dots. Phys. Rev. B
**2000**, 62, 12963–12977. [Google Scholar] [CrossRef] [Green Version] - Bester, G.; Zunger, A. Cylindrically shaped zinc-blende semiconductor quantum dots do not have cylindrical symmetry: Atomistic symmetry, atomic relaxation, and piezoelectric effects. Phys. Rev. B
**2005**, 71, 045318. [Google Scholar] [CrossRef] [Green Version] - Slater, J.C.; Koster, G.F. Simplified LCAO Method for the Periodic Potential Problem. Phys. Rev.
**1954**, 94, 1498. [Google Scholar] [CrossRef] - Schliwa, A.; Winkelnkemper, M.; Bimberg, D. Impact of size, shape, and composition on piezoelectric effects and electronic properties of In(Ga)AsGaAs quantum dots. Phys. Rev. B
**2007**, 76, 205324. [Google Scholar] [CrossRef] [Green Version] - Schliwa, A.; Winkelnkemper, M.; Bimberg, D. Few-particle energies versus geometry and composition of In
_{x}Ga_{1-x}As/GaAs self-organized quantum dots. Phys. Rev. B**2009**, 79, 075443. [Google Scholar] [CrossRef] - Birner, S.; Zibold, T.; Andlauer, T.; Kubis, T.; Sabathil, M.; Trellakis, A.; Vogl, P. Nextnano: General purpose 3-D simulations. IEEE Trans. El. Dev.
**2007**, 54, 2137. [Google Scholar] [CrossRef] - Klenovský, P.; Steindl, P.; Aberl, J.; Zallo, E.; Trotta, R.; Rastelli, A.; Fromherz, T. Effect of second-order piezoelectricity on the excitonic structure of stress-tuned In(Ga)As/GaAs quantum dots. Phys. Rev. B
**2018**, 97, 1–6. [Google Scholar] [CrossRef] [Green Version] - Silver, M.; Greene, P.D.; Adams, A.R. Tailoring the heavy-hole and light-hole quantum-confined Stark effect using multistrain-stepped quantum wells. Appl. Phys. Lett.
**1995**, 67, 2904. [Google Scholar] [CrossRef] - Barker, J.A.; O’Reilly, E.P. Theoretical analysis of electron-hole alignment in InAs-GaAs quantum dots. Phys. Rev. B
**2000**, 61, 13840–13851. [Google Scholar] [CrossRef] [Green Version] - Aberl, J.; Klenovský, P.; Wildmann, J.S.; Martín-Sánchez, J.; Fromherz, T.; Zallo, E.; Humlíček, J.; Rastelli, A.; Trotta, R. Inversion of the exciton built-in dipole moment in In(Ga)As quantum dots via nonlinear piezoelectric effect. Phys. Rev. B
**2017**, 96, 045414. [Google Scholar] [CrossRef] [Green Version] - Beya-Wakata, A.; Prodhomme, P.Y.; Bester, G. First- and second-order piezoelectricity in III-V semiconductors. Phys. Rev. B
**2011**, 84, 195207. [Google Scholar] [CrossRef] - Burenkov, Y.A.; Davydov, S.Y.; Nikanorov, S.P. Elastic properties of Indium-Arsenide. Sov. Phys. Solid State
**1975**, 17, 2183–2186. [Google Scholar] - Burenkov, Y.A.; Burdukov, Y.M.; Davydov, S.Y.; Nikanorov, S.P. Temperature-dependence of Gallium-Arsenide elastic-constants. Sov. Phys. Solid State
**1973**, 156, 1757–1761. [Google Scholar] - Klenovský, P.; Steindl, P.; Geffroy, D. Excitonic structure and pumping power dependent emission blue-shift of type-II quantum dots. Sci. Rep.
**2017**, 7, 1–10. [Google Scholar] [CrossRef] [Green Version] - Klenovský, P.; Schliwa, A.; Bimberg, D. Electronic states of (InGa)(AsSb)/GaAs/GaP quantum dots. Phys. Rev. B
**2019**, 100, 115424. [Google Scholar] [CrossRef] [Green Version] - Csontosová, D.; Klenovský, P. Theory of magneto-optical properties of neutral and charged excitons in GaAs/AlGaAs quantum dots. Phys. Rev. B
**2020**, 102, 125412. [Google Scholar] [CrossRef] - Steindl, P.; Sala, E.M.; Alén, B.; Marrón, D.F.; Bimberg, D.; Klenovský, P. Optical response of (InGa)(AsSb)/GaAs quantum dots embedded in a GaP matrix. Phys. Rev. B
**2019**, 195407. [Google Scholar] [CrossRef] - Steindl, P.; Sala, E.M.; Alén, B.; Bimberg, D.; Klenovský, P. On the importance of antimony for temporal evolution of emission from self-assembled (InGa)(AsSb)/GaAs quantum dots on GaP(001). New J. Phys.
**2021**, 23, 103029. [Google Scholar] [CrossRef] - Rautert, J.; Shamirzaev, T.S.; Nekrasov, S.V.; Yakovlev, D.R.; Klenovský, P.; Kusrayev, Y.G.; Bayer, M. Optical orientation and alignment of excitons in direct and indirect band gap (In,Al)As/AlAs quantum dots with type-I band alignment. Phys. Rev. B
**2019**, 99, 195411. [Google Scholar] [CrossRef] [Green Version] - Sala, E.M.; Godsland, M.; Trapalis, A.; Heffernan, J. Effect of Cap Thickness on InAs/InP Quantum Dots Grown by Droplet Epitaxy in Metal–Organic Vapor Phase Epitaxy. Phys. Status Solidi Rapid Res. Lett.
**2021**, 15, 2100283. [Google Scholar] [CrossRef] - Gajjela, R.S.R.; Hendriks, A.L.; Douglas, J.O.; Sala, E.M.; Steindl, P.; Bagot, P.A.J.; Moody, M.P.; Bimberg, D.; Koenraad, P.M.; Klenovský, P. Structural and compositional analysis of (InGa) (AsSb)/GaAs/ GaP Stranski—Krastanov quantum dots. Light Sci. Appl.
**2021**, 10, 125. [Google Scholar] [CrossRef]

**Figure 1.**Comparison of ${c}^{\mathrm{QD}}$ (multiplied by factor ${10}^{4}$) extracted from $\mathbf{k}\xb7\mathbf{p}$ simulations (symbols) with the model Equation (4) (curves) for QD with fixed $b=40$ nm and varying t and h [panels (

**a**) and (

**c**)], and QD with fixed $t=20$ nm and varying b and h [in (

**b**,

**d**)], respectively.

**Figure 2.**Fitting parameters A [panel (

**a**)], B [panel (

**b**)], and D [panel (

**c**)] from analysis of ${c}^{\mathrm{QD}}$ given in Figure 1 by Equation (4). Parameters A and D are multiplied by factors ${10}^{6}$ and ${10}^{4}$, respectively, for the sake of better visibility. Parameters extracted from fits of the data dependency of ${c}^{\mathrm{QD}}$ on base (top) are plotted here as a function of height with black (yellow) triangles. Similarly, parameters extracted from height dependency are plotted as a function of base (top) diameter in blue (red).

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Steindl, P.; Klenovský, P.
Dimension-Dependent Phenomenological Model of Excitonic Electric Dipole in InGaAs Quantum Dots. *Nanomaterials* **2022**, *12*, 719.
https://doi.org/10.3390/nano12040719

**AMA Style**

Steindl P, Klenovský P.
Dimension-Dependent Phenomenological Model of Excitonic Electric Dipole in InGaAs Quantum Dots. *Nanomaterials*. 2022; 12(4):719.
https://doi.org/10.3390/nano12040719

**Chicago/Turabian Style**

Steindl, Petr, and Petr Klenovský.
2022. "Dimension-Dependent Phenomenological Model of Excitonic Electric Dipole in InGaAs Quantum Dots" *Nanomaterials* 12, no. 4: 719.
https://doi.org/10.3390/nano12040719