Linear and Nonlinear Photon-Induced Cross Bridge/Space Charge Transfer in STC Molecular Crystals
Abstract
:1. Introduction
2. Methods
3. Results and Discussion
3.1. Molecular Structure
3.2. OPA and TPA Spectrum
3.3. Transition Characteristics of OPA
3.4. Transition Characteristics of TPA
3.5. Cross Bridge/Space Charge Transfer Analysis
3.6. Analysis of the Molecular Dipole Moment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Prasad, P.N.; Williams, D.J. Introduction to Nonlinear Optical Effects in Molecules and Polymers; Wiley: New York, NY, USA, 1991; Volume 1. [Google Scholar]
- Nalwa, H.S. Organic materials for third-order nonlinear optics. Adv. Mater. 1993, 5, 341–358. [Google Scholar] [CrossRef]
- Stegeman, G.; Wright, E.M.; Finlayson, N.; Zanoni, R.; Seaton, C. Third order nonlinear integrated optics. J. Lightwave Technol. 1988, 6, 953–970. [Google Scholar] [CrossRef]
- Rumi, M.; Barlow, S.; Wang, J.; Perry, J.W.; Marder, S.R. Two-photon absorbing materials and two-photon-induced chemistry. In Photoresponsive Polymers I; Springer: Berlin/Heidelberg, Germany, 2008; pp. 1–95. [Google Scholar]
- Pawlicki, M.; Collins, H.A.; Denning, R.G.; Anderson, H.L. Two-photon absorption and the design of two-photon dyes. Angew. Chem. Int. Ed. 2009, 48, 3244–3266. [Google Scholar] [CrossRef] [PubMed]
- Bestvater, F.; Spiess, E.; Stobrawa, G.; Hacker, M.; Feurer, T.; Porwol, T.; Berchner-Pfannschmidt, U.; Wotzlaw, C.; Acker, H. Two-photon fluorescence absorption and emission Spectra of dyes relevant for cell imaging. J. Microsc-Oxford. 2002, 208, 108–115. [Google Scholar] [CrossRef]
- Shen, X.; Li, L.; Min Chan, A.C.; Gao, N.; Yao, S.Q.; Xu, Q.H. Water-soluble conjugated polymers for simultaneous two-photon cell imaging and two-photon photodynamic therapy. Adv. Opt. Mater. 2013, 1, 92–99. [Google Scholar] [CrossRef]
- Li, H.; Yang, Y.; He, C.; Zeng, L.; Duan, C. Mixed-ligand metal–organic framework for two-photon responsive photocatalytic C–N and C–C coupling reactions. ACS Catal. 2018, 9, 422–430. [Google Scholar] [CrossRef]
- Glaser, F.; Kerzig, C.; Wenger, O.S. Multi-Photon Excitation in Photoredox Catalysis: Concepts, Applications, Methods. Angew. Chem. Int. Ed. 2020, 59, 10266–10284. [Google Scholar] [CrossRef]
- Kerzig, C.; Guo, X.; Wenger, O.S. Unexpected hydrated electron source for preparative visible-light driven photoredox catalysis. J. Am. Chem. Soc. 2019, 141, 2122–2127. [Google Scholar] [CrossRef]
- Mertz, J.; Xu, C.; Webb, W. Single-molecule detection by two-photon-excited fluorescence. Opt. Lett. 1995, 20, 2532–2534. [Google Scholar] [CrossRef]
- Zoumi, A.; Yeh, A.; Tromberg, B.J. Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence. Proc. Natl. Acad. Sci. USA 2002, 99, 11014–11019. [Google Scholar] [CrossRef] [Green Version]
- Yeh, A.T.; Nassif, N.; Zoumi, A.; Tromberg, B.J. Selective corneal imaging using combined second-harmonic generation and two-photon excited fluorescence. Opt. Lett. 2002, 27, 2082–2084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mu, X.; Zong, H.; Zhu, L.; Sun, M. External electric field-dependent photoinduced charge transfer in a donor–acceptor system in two-photon absorption. J. Phys. Chem. C 2020, 124, 2319–2332. [Google Scholar] [CrossRef]
- Mu, X.; Wang, J.; Sun, M. Visualization of Photoinduced Charge Transfer and Electron–Hole Coherence in Two-Photon Absorption. J. Phys. Chem. C 2019, 123, 14132–14143. [Google Scholar] [CrossRef]
- Mu, X.; Chen, X.; Wang, J.; Sun, M. Visualizations of Electric and Magnetic Interactions in Electronic Circular Dichroism and Raman Optical Activity. J. Phys. Chem. A 2019, 123, 8071–8081. [Google Scholar] [CrossRef] [PubMed]
- Dalgarno, A.; Ford, A.L.; Browne, J. Direct Sum-of-States Calculations of the Frequency-Dependent Polarizability of H2. Phys. Rev. Lett. 1971, 27, 1033. [Google Scholar] [CrossRef]
- Mu, X.; Wang, X.; Quan, J.; Sun, M. Photoinduced Charge Transfer in Donor-Bridge-Acceptor in One-and Two-photon Absorption: Sequential and Superexchange Mechanisms. J. Phys. Chem. C 2020, 124, 4968–4981. [Google Scholar] [CrossRef]
- Cao, J.; Wu, B.; Peng, J.; Feng, X.; Li, C.; Tang, Y. Copper-copper iodide hybrid nanostructure as hole transport material for efficient and stable inverted perovskite solar cells. Sci. China Chem. 2019, 62, 363–369. [Google Scholar] [CrossRef]
- Li, C.; Yin, J.; Chen, R.; Lv, X.; Feng, X.; Wu, Y.; Cao, J. Monoammonium porphyrin for blade-coating stable large-area perovskite solar cells with> 18% efficiency. J. Am. Chem. Soc. 2019, 141, 6345–6351. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, H.; Wang, Y.; Sun, L.; Li, S.; Ren, Y.; Sun, Y.; Yang, F.; Zhang, X.; Hu, W. Cocrystal engineering for constructing two-photon absorption materials by controllable intermolecular interactions. J. Mater. Chem. C 2021. [Google Scholar] [CrossRef]
- Frisch, M.; Trucks, G.; Schlegel, H.; Scuseria, G.; Robb, M.; Cheeseman, J.; Scalmani, G.; Barone, V.; Petersson, G.; Nakatsuji, H. Gaussian 16 Revision A. 03. 2016; Gaussian Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Kohn, W.; Sham, L.J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965, 140, A1133–A1138. [Google Scholar] [CrossRef] [Green Version]
- Becke, A.D. Density-functional thermochemistry. IV. A new dynamical correlation functional and implications for exact-exchange mixing. J. Chem. Phys. 1996, 104, 1040–1046. [Google Scholar] [CrossRef]
- McLean, A.; Chandler, G. Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z= 11–18. J. Chem. Phys. 1980, 72, 5639–5648. [Google Scholar] [CrossRef]
- Hu, W.; Sun, L.S.; Zhu, W.Z. Cocrystal engineering creating two-photon absorption property by intermolecular charge transfer interactions. Angew. Chem. 2017. [Google Scholar] [CrossRef]
- Yanai, T.; Tew, D.P.; Handy, N.C. A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 2004, 393, 51–57. [Google Scholar] [CrossRef] [Green Version]
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J Comput Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef]
- Pervov, V.S.; Mikheikin, I.D.; Makhonina, E.V. Supramolecular ensembles in eutectic alloys. Russ. Chem. Rev. 2003, 72, 759. [Google Scholar] [CrossRef]
- Solntsev, P.V.; Spurgin, K.L.; Sabin, J.R. Photoinduced Charge Transfer in Short-Distance Ferrocenylsubphthalocyanine Dyads. Inorg. Chem. 2012, 51, 6537–6547. [Google Scholar] [CrossRef]
- Le Bahers, T.; Adamo, C.; Ciofini, I. A qualitative index of spatial extent in charge-transfer excitations. J. Chem. Theory Comput. 2011, 7, 2498–2506. [Google Scholar] [CrossRef]
Intermolecular Interaction | Molecular Distance[Å] | Hydrogen Bond Length[Å] | |
---|---|---|---|
| Spe···Spe | 3.55 | -- |
| Spe···TCNB | 3.24 | -- |
| C–H···N | -- | 2.04 |
Excited States | H(Å) | D (Å) | t (Å) | Sm | E (eV) | HDI | EDI |
---|---|---|---|---|---|---|---|
S0→S2 | 2.971 | 3.204 | 0.260 | 0.05116 | 3.431 | 7.36 | 8.47 |
S0→S7 | 3.883 | 2.545 | 0.260 | 0.06812 | 3.393 | 6.85 | 6.40 |
S0→S10 | 6.881 | 3.846 | −3.535 | 0.56443 | 2.701 | 5.47 | 4.23 |
S0→S14 | 9.937 | 3.846 | −5.391 | 0.30617 | 2.000 | 4.86 | 3.73 |
S0→S34 | 4.732 | 10.150 | 6.503 | 0.09034 | 1.566 | 6.52 | 7.06 |
Analytical Method | IFCT | Transition Density | Hole-Electron Overlap |
---|---|---|---|
Through Space CT | 0.96738 | 0.29008 | 0.16522 |
99.98% | 98.50% | 99.27% | |
Through Bond CT | 0.00016 | 0.00440 | 0.00121 |
0.02% | 1.49% | 0.72% | |
Tot Charge Trans | 0.96754 | 0.29448 | 0.16643 |
TPA States | Process | Integral Value |
---|---|---|
S2 | 0.23→0.00022 | |
S7 | 0.21→3.47 | |
S8 | 1.08→14.25 | |
S15 | 8.53→63.11 | |
1.31→0.63 | ||
S25 | 16.04→3.81 | |
4.79→2.56 | ||
S34 | 4.91→3.29 | |
4.79→0.50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, C.; Yu, J.; Sheng, H.; Jiang, Y.; Zhao, F.; Wang, J. Linear and Nonlinear Photon-Induced Cross Bridge/Space Charge Transfer in STC Molecular Crystals. Nanomaterials 2022, 12, 535. https://doi.org/10.3390/nano12030535
Lu C, Yu J, Sheng H, Jiang Y, Zhao F, Wang J. Linear and Nonlinear Photon-Induced Cross Bridge/Space Charge Transfer in STC Molecular Crystals. Nanomaterials. 2022; 12(3):535. https://doi.org/10.3390/nano12030535
Chicago/Turabian StyleLu, Chen, Jing Yu, Hao Sheng, Yongjian Jiang, Fengyang Zhao, and Jingang Wang. 2022. "Linear and Nonlinear Photon-Induced Cross Bridge/Space Charge Transfer in STC Molecular Crystals" Nanomaterials 12, no. 3: 535. https://doi.org/10.3390/nano12030535
APA StyleLu, C., Yu, J., Sheng, H., Jiang, Y., Zhao, F., & Wang, J. (2022). Linear and Nonlinear Photon-Induced Cross Bridge/Space Charge Transfer in STC Molecular Crystals. Nanomaterials, 12(3), 535. https://doi.org/10.3390/nano12030535