Controlled Deposition of Nanostructured Hierarchical TiO2 Thin Films by Low Pressure Supersonic Plasma Jets
Abstract
:1. Introduction
- (1)
- The process occurs at a low pressure that it is still higher than pressures used in PLD, and deposition at a room temperature promotes a higher level of scalability. All low-pressure systems have inherent challenges regarding integration and scale-up, but they also features definitive advantages. To overcome the scalability problem, several approaches are currently being explored, including designing a plasma source of larger volume to increase the surface area of films, using deposition systems that employ supersonic multi-jet systems, using systems with moving stages, and using other systems that could be adapted to the industrial scale.
- (2)
- The stoichiometric control of film composition with a high degree of reliability independently on the deposition process by injecting a metallic organic precursor into a mixture with inert gases and oxygen is also an advantage. Compared to sputtering or PLD based on the ablation of a material, ‘direct’ plasmochemistry enables variance in a wider spectrum the composition of the metallic oxide film and the deposition of layers of different chemical compositions, thus realizing, for instance, the additive manufacturing of multi-metal-based materials.
- (3)
- The direct control of the morphology of the deposited structures, by means of the compression ratio R acting on the pressure in the deposition chamber without therefore acting on the density of the precursor, allows researchers to create films with variable porosity and morphology, without the need to vary the nanoparticle size, in a well-controlled way (a fine morphology tuning).
2. Experimental Setup
2.1. Plasma-Assisted Supersonic Jet Equipment
2.2. Thin Films Characterization
3. Results and Discussion
3.1. Plasma-Assisted Supersonic Jet Characterization
3.2. TiO2 Thin Film Characterization
3.3. TiO2 Films on Wider Areas
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Levchenko, I.; Bazaka, K.; Keidar, M.; Xu, S.; Fang, J. Hierarchical Multicomponent Inorganic Metamaterials: Intrinsically Driven Self-Assembly at the Nanoscale. Adv. Mater. 2018, 30, 1702226. [Google Scholar] [CrossRef] [PubMed]
- Baranov, O.; Levchenko, I.; Bell, J.M.; Lim, J.W.M.; Huang, S.; Xu, L.; Wang, B.; Aussems, D.U.B.; Xu, S.; Bazaka, K. From Nanometre to Millimetre: A Range of Capabilities for Plasma-Enabled Surface Functionalization and Nanostructuring. Mater. Horiz. 2018, 5, 765–798. [Google Scholar] [CrossRef]
- Alancherry, S.; Jacob, M.V.; Prasad, K.; Joseph, J.; Bazaka, O.; Neupane, R.; Varghese, O.K.; Baranov, O.; Xu, S.; Levchenko, I.; et al. Tuning and Fine Morphology Control of Natural Resource-Derived Vertical Graphene. Carbon 2020, 159, 668–685. [Google Scholar] [CrossRef]
- Alancherry, S.; Bazaka, K.; Levchenko, I.; Al-jumaili, A.; Kandel, B.; Alex, A.; Robles Hernandez, F.C.; Varghese, O.K.; Jacob, M.V. Fabrication of Nano-Onion-Structured Graphene Films from Citrus Sinensis Extract and Their Wetting and Sensing Characteristics. ACS Appl. Mater. Interfaces 2020, 12, 29594–29604. [Google Scholar] [CrossRef] [PubMed]
- Fusco, Z.; Rahmani, M.; Tran-Phu, T.; Ricci, C.; Kiy, A.; Kluth, P.; Della Gaspera, E.; Motta, N.; Neshev, D.; Tricoli, A. Photonic Fractal Metamaterials: A Metal–Semiconductor Platform with Enhanced Volatile-Compound Sensing Performance. Adv. Mater. 2020, 32, 2002471. [Google Scholar] [CrossRef] [PubMed]
- Abela, S.; Farrugia, C.; Xuereb, R.; Lia, F.; Zammit, E.; Rizzo, A.; Refalo, P.; Grech, M. Photocatalytic Activity of Titanium Dioxide Nanotubes Following Long-Term Aging. Nanomaterials 2021, 11, 2823. [Google Scholar] [CrossRef]
- Ajibade, P.A.; Oluwalana, A.E. Enhanced Photocatalytic Degradation of Ternary Dyes by Copper Sulfide Nanoparticles. Nanomaterials 2021, 11, 2000. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Liu, H.; Sun, M.; Huang, Y.; Xu, L. 3D Interfacing between Soft Electronic Tools and Complex Biological Tissues. Adv. Mater. 2021, 33, 2004425. [Google Scholar] [CrossRef] [PubMed]
- Mavridi-Printezi, A.; Guernelli, M.; Menichetti, A.; Montalti, M. Bio-Applications of Multifunctional Melanin Nanoparticles: From Nanomedicine to Nanocosmetics. Nanomaterials 2020, 10, 2276. [Google Scholar] [CrossRef]
- Konar, M.; Roy, B.; Govindaraju, T. Molecular Architectonics-Guided Fabrication of Superhydrophobic and Self-Cleaning Materials. Adv. Mater. Interfaces 2020, 7, 2000246. [Google Scholar] [CrossRef]
- Piferi, C.; Bazaka, K.; D’Aversa, D.L.; Girolamo, R.D.; Rosa, C.D.; Roman, H.E.; Riccardi, C.; Levchenko, I. Hydrophilicity and Hydrophobicity Control of Plasma-Treated Surfaces via Fractal Parameters. Adv. Mater. Interfaces 2021, 8, 2100724. [Google Scholar] [CrossRef]
- Shahzad, F.; Iqbal, A.; Kim, H.; Koo, C.M. 2D Transition Metal Carbides (MXenes): Applications as an Electrically Conducting Material. Adv. Mater. 2020, 32, 2002159. [Google Scholar] [CrossRef]
- Chen, Z.; Narita, A.; Müllen, K. Graphene Nanoribbons: On-Surface Synthesis and Integration into Electronic Devices. Adv. Mater. 2020, 32, 2001893. [Google Scholar] [CrossRef] [PubMed]
- Levchenko, I.; Bazaka, K.; Mazouffre, S.; Xu, S. Prospects and Physical Mechanisms for Photonic Space Propulsion. Nat. Photonics 2018, 12, 649–657. [Google Scholar] [CrossRef]
- Levchenko, I.; Bazaka, K. Iodine Powers Low-Cost Engines for Satellites. Nature 2021, 599, 373–374. [Google Scholar] [CrossRef]
- Levchenko, I.; Bazaka, K.; Belmonte, T.; Keidar, M.; Xu, S. Advanced Materials for Next-Generation Spacecraft. Adv. Mater. 2018, 30, 1802201. [Google Scholar] [CrossRef]
- Levchenko, I.; Keidar, M.; Cantrell, J.; Wu, Y.-L.; Kuninaka, H.; Bazaka, K.; Xu, S. Explore Space Using Swarms of Tiny Satellites. Nature 2018, 562, 185–187. [Google Scholar] [CrossRef] [Green Version]
- Adamovich, I.; Baalrud, S.D.; Bogaerts, A.; Bruggeman, P.J.; Cappelli, M.; Colombo, V.; Czarnetzki, U.; Ebert, U.; Eden, J.G.; Favia, P.; et al. The 2017 Plasma Roadmap: Low Temperature Plasma Science and Technology. J. Phys. Appl. Phys. 2017, 50, 323001. [Google Scholar] [CrossRef]
- Grätzel, M. Sol-Gel Processed TiO2 Films for Photovoltaic Applications. J. Sol-Gel Sci. Technol. 2001, 22, 7–13. [Google Scholar] [CrossRef]
- Kandasamy, A.; Ramasamy, T.; Samrin, A.; Narayanasamy, P.; Mohan, R.; Bazaka, O.; Levchenko, I.; Bazaka, K.; Mohandas, M. Hierarchical Doped Gelatin-Derived Carbon Aerogels: Three Levels of Porosity for Advanced Supercapacitors. Nanomaterials 2020, 10, 1178. [Google Scholar] [CrossRef]
- van den Bergh, W.; Williams, E.R.; Vest, N.A.; Chiang, P.-H.; Stefik, M. Mesoporous TiO2 Microparticles with Tailored Surfaces, Pores, Walls, and Particle Dimensions Using Persistent Micelle Templates. Langmuir 2021, 37, 12874–12886. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Liu, T.; Jiang, L.; Asif, M.; Qiu, X.; Yu, Y.; Xiao, F.; Liu, H. Assembling Metal–Organic Frameworks into the Fractal Scale for Sweat Sensing. ACS Appl. Mater. Interfaces 2019, 11, 32310–32319. [Google Scholar] [CrossRef] [PubMed]
- De Rancourt de Mimérand, Y.; Li, K.; Zhou, C.; Jin, X.; Hu, X.; Chen, Y.; Guo, J. Functional Supported ZnO/Bi2MoO6 Heterojunction Photocatalysts with 3D-Printed Fractal Polymer Substrates and Produced by Innovative Plasma-Based Immobilization Methods. ACS Appl. Mater. Interfaces 2020, 12, 43138–43151. [Google Scholar] [CrossRef] [PubMed]
- Zanini, S.; Grimoldi, E.; Riccardi, C. Development of Controlled Releasing Surfaces by Plasma Deposited Multilayers. Mater. Chem. Phys. 2013, 138, 850–855. [Google Scholar] [CrossRef]
- Susanto, I.; Tsai, C.-Y.; Ho, Y.-T.; Tsai, P.-Y.; Yu, I.-S. Temperature Effect of van Der Waals Epitaxial GaN Films on Pulse-Laser-Deposited 2D MoS2 Layer. Nanomaterials 2021, 11, 1406. [Google Scholar] [CrossRef]
- Romanov, R.; Fominski, V.; Demin, M.; Fominski, D.; Rubinkovskaya, O.; Novikov, S.; Volkov, V.; Doroshina, N. Application of Pulsed Laser Deposition in the Preparation of a Promising MoSx/WSe2/C(B) Photocathode for Photo-Assisted Electrochemical Hydrogen Evolution. Nanomaterials 2021, 11, 1461. [Google Scholar] [CrossRef]
- Kavre Piltaver, I.; Peter, R.; Šarić, I.; Salamon, K.; Jelovica Badovinac, I.; Koshmak, K.; Nannarone, S.; Delač Marion, I.; Petravić, M. Controlling the Grain Size of Polycrystalline TiO2 Films Grown by Atomic Layer Deposition. Appl. Surf. Sci. 2017, 419, 564–572. [Google Scholar] [CrossRef]
- Jelovica Badovinac, I.; Peter, R.; Omerzu, A.; Salamon, K.; Šarić, I.; Samaržija, A.; Perčić, M.; Kavre Piltaver, I.; Ambrožić, G.; Petravić, M. Grain Size Effect on Photocatalytic Activity of TiO2 Thin Films Grown by Atomic Layer Deposition. Thin Solid Films 2020, 709, 138215. [Google Scholar] [CrossRef]
- Schmitt, I.I.I.; Halpern, B.L. Method for Microwave Plasma Assisted Supersonic Gas Jet Deposition of Thin Films. 1994. Available online: https://www.freepatentsonline.com/5356672.html (accessed on 21 October 2021).
- Dell’Orto, E.C.; Caldirola, S.; Sassella, A.; Morandi, V.; Riccardi, C. Growth and Properties of Nanostructured Titanium Dioxide Deposited by Supersonic Plasma Jet Deposition. Appl. Surf. Sci. 2017, 425, 407–415. [Google Scholar] [CrossRef]
- Bottani, E.; Di, F.F.; Fumagalli, F.S.; Piselli, M.; Riccardi, C. Method and Apparatus for Deposition of Thin Nanostructured Layers with Controlled Morphology and Nanostructure 2009. Available online: https://patents.google.com/patent/ITMI20092107A1/en (accessed on 21 May 2021).
- Dell’Orto, E.C.; Caldirola, S.; Roman, H.E.; Riccardi, C. Nanostructured TiO2 Film Deposition by Supersonic Plasma Jet Source for Energetic Application. In Proceedings of the 2nd International Congress on Energy Efficiency and Energy Related Materials (ENEFM2014), Fethiye, Turkey, 16–19 October 2014; Oral, A.Y., Bahsi Oral, Z.B., Ozer, M., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 349–355. [Google Scholar]
- Carra, C.; Dell’Orto, E.; Morandi, V.; Riccardi, C. ZnO Nanostructured Thin Films via Supersonic Plasma Jet Deposition. Coatings 2020, 10, 788. [Google Scholar] [CrossRef]
- Huang, C.; Nichols, W.T.; O’Brien, D.T.; Becker, M.F.; Kovar, D.; Keto, J.W. Supersonic Jet Deposition of Silver Nanoparticle Aerosols: Correlations of Impact Conditions and Film Morphologies. J. Appl. Phys. 2007, 101, 064902. [Google Scholar] [CrossRef]
- Maffini, A.; Pazzaglia, A.; Dellasega, D.; Russo, V.; Passoni, M. Growth Dynamics of Pulsed Laser Deposited Nanofoams. Phys. Rev. Mater. 2019, 3, 083404. [Google Scholar] [CrossRef]
- Trifiletti, V.; Ruffo, R.; Turrini, C.; Tassetti, D.; Brescia, R.; Fonzo, F.D.; Riccardi, C.; Abbotto, A. Dye-Sensitized Solar Cells Containing Plasma Jet Deposited Hierarchically Nanostructured TiO2 Thin Photoanodes. J. Mater. Chem. A 2013, 1, 11665–11673. [Google Scholar] [CrossRef]
- Stock, F.; Diebold, L.; Antoni, F.; Chowde Gowda, C.; Muller, D.; Haffner, T.; Pfeiffer, P.; Roques, S.; Mathiot, D. Silicon and Silicon-Germanium Nanoparticles Obtained by Pulsed Laser Deposition. Appl. Surf. Sci. 2019, 466, 375–380. [Google Scholar] [CrossRef]
- Fehse, M.; Trócoli, R.; Hernández, E.; Ventosa, E.; Sepúlveda, A.; Morata, A.; Tarancón, A. An Innovative Multi-Layer Pulsed Laser Deposition Approach for LiMn2O4 Thin Film Cathodes. Thin Solid Films 2018, 648, 108–112. [Google Scholar] [CrossRef]
- Novotný, M.; Vondráček, M.; Marešová, E.; Fitl, P.; Bulíř, J.; Pokorný, P.; Havlová, Š.; Abdellaoui, N.; Pereira, A.; Hubík, P.; et al. Optical and Structural Properties of ZnO:Eu Thin Films Grown by Pulsed Laser Deposition. Appl. Surf. Sci. 2019, 476, 271–275. [Google Scholar] [CrossRef]
- Hashimoto, Y.; Ueda, M.; Kohiga, Y.; Imura, K.; Hontsu, S. Application of Fluoridated Hydroxyapatite Thin Film Coatings Using KrF Pulsed Laser Deposition. Dent. Mater. J. 2018, 37, 408–413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caldirola, S.; Barni, R.; Roman, H.E.; Riccardi, C. Mass Spectrometry Measurements of a Low Pressure Expanding Plasma Jet. J. Vac. Sci. Technol. A 2015, 33, 061306. [Google Scholar] [CrossRef]
- Biganzoli, I.; Fumagalli, F.; Fonzo, F.D.; Barni, R.; Riccardi, C. A Supersonic Plasma Jet Source for Controlled and Efficient Thin Film Deposition. J. Mod. Phys. 2012, 3, 1626–1638. [Google Scholar] [CrossRef] [Green Version]
- Caldirola, S.; Roman, H.E.; Riccardi, C. Ion Dynamics in a Supersonic Jet: Experiments and Simulations. Phys. Rev. E 2016, 93, 033202. [Google Scholar] [CrossRef]
- Barni, R.; Zanini, S.; Riccardi, C. Diagnostics of Reactive RF Plasmas. Vacuum 2007, 82, 217–219. [Google Scholar] [CrossRef]
- Zanini, S.; Riccardi, C.; Orlandi, M.; Grimoldi, E. Characterisation of SiOxCyHz Thin Films Deposited by Low-Temperature PECVD. Vacuum 2007, 82, 290–293. [Google Scholar] [CrossRef]
- Abouali, O.; Saadabadi, S.; Emdad, H. Numerical Investigation of the Flow Field and Cut-off Characteristics of Supersonic/Hypersonic Impactors. J. Aerosol Sci. 2011, 42, 65–77. [Google Scholar] [CrossRef]
- Grimoldi, E.; Zanini, S.; Siliprandi, R.A.; Riccardi, C. AFM and Contact Angle Investigation of Growth and Structure of Pp-HMDSO Thin Films. Eur. Phys. J. D 2009, 54, 165–172. [Google Scholar] [CrossRef]
- Caldirola, S.; Barni, R.; Riccardi, C. Characterization of a Low Pressure Supersonic Plasma Jet. J. Phys. Conf. Ser. 2014, 550, 012042. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.J.; Lee, M.H.; Kim, H.J.; Lim, G.; Choi, Y.S.; Park, N.-G.; Kim, K.; Lee, W.I. Formation of Highly Efficient Dye-Sensitized Solar Cells by Hierarchical Pore Generation with Nanoporous TiO2 Spheres. Adv. Mater. 2009, 21, 3668–3673. [Google Scholar] [CrossRef]
- MINCRYST-Crystallographic Database for Minerals. Available online: http://database.iem.ac.ru/mincryst/ (accessed on 21 October 2021).
- Lin, J.; Lin, Y.; Liu, P.; Meziani, M.J.; Allard, L.F.; Sun, Y.-P. Hot-Fluid Annealing for Crystalline Titanium Dioxide Nanoparticles in Stable Suspension. J. Am. Chem. Soc. 2002, 124, 11514–11518. [Google Scholar] [CrossRef]
- Garvey, T.R.; Farnum, B.H.; Lopez, R. Pulsed Laser Deposited Porous Nano-Carpets of Indium Tin Oxide and Their Use as Charge Collectors in Core–Shell Structures for Dye Sensitized Solar Cells. Nanoscale 2015, 7, 2400–2408. [Google Scholar] [CrossRef]
M | Species | M | Species |
---|---|---|---|
15 | CH3 | 139 | TiO2(OCH(CH3)2) |
43 | CH(CH3)2 | 167 | Ti(OCH(CH3)2)2H |
59 | OCH(CH3)2 | 181 | TiO(OCH(CH3)2)2–H |
64 | TiO | 211 | Ti(OCH(CH3)2)3H–CH3 |
81 | TiO2H | 225 | Ti(OCH(CH3)2)3 |
99 | TiO3H3 | 243 | Ti(OCH(CH3)2)4–CH(CH3)2 |
125 | TiO(OCH(CH3)2) | 269 | Ti(OCH(CH3)2)4–CH3 |
Precursor T (°C) | Thickness as-Deposited (nm) | Thickness after Annealing (nm) | Deposition Time (min) | |
---|---|---|---|---|
at 500 °C | at 1000 °C | |||
40.5 | 350 | 330 | - | 15 |
46.5 | 1200 | 1100 | 700 | |
51.5 | 3000 | 2900 | 1500 | |
56.1 | 20,000 | 19,500 | 15,000 | |
51 | 5800 | 5700 | 1800 | 30 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piferi, C.; Carra, C.; Bazaka, K.; Roman, H.E.; Dell’Orto, E.C.; Morandi, V.; Levchenko, I.; Riccardi, C. Controlled Deposition of Nanostructured Hierarchical TiO2 Thin Films by Low Pressure Supersonic Plasma Jets. Nanomaterials 2022, 12, 533. https://doi.org/10.3390/nano12030533
Piferi C, Carra C, Bazaka K, Roman HE, Dell’Orto EC, Morandi V, Levchenko I, Riccardi C. Controlled Deposition of Nanostructured Hierarchical TiO2 Thin Films by Low Pressure Supersonic Plasma Jets. Nanomaterials. 2022; 12(3):533. https://doi.org/10.3390/nano12030533
Chicago/Turabian StylePiferi, Cecilia, Chiara Carra, Kateryna Bazaka, Hector Eduardo Roman, Elisa Camilla Dell’Orto, Vittorio Morandi, Igor Levchenko, and Claudia Riccardi. 2022. "Controlled Deposition of Nanostructured Hierarchical TiO2 Thin Films by Low Pressure Supersonic Plasma Jets" Nanomaterials 12, no. 3: 533. https://doi.org/10.3390/nano12030533