A Bioinspired Ag Nanoparticle/PPy Nanobowl/TiO2 Micropyramid SERS Substrate
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Fabrication of PDMS Template
2.3. Fabrication of Pyramid TiO2
2.4. Assembly of PPy Nanobowls and Ag Nanoparticles on p-TiO2
2.5. Characterization
3. Results and Discussion
3.1. Fabrication of Ag/b-PPy/p-TiO2 SERS Substrate
3.2. Raman Performance of the Ag/b-PPy/p-TiO2 SERS Substrate
3.3. Photocatalysis and Recyclability of the Ag/b-PPy/p-TiO2 SERS Substrate
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wang, J.; Yang, H.; Yang, P. Photoelectric properties of 2D ZnO, graphene, silicene materials, and their heterostructures. Compos. Part B-Eng. 2022, 233, 109645. [Google Scholar] [CrossRef]
- Wang, Z.; Maruyama, K.; Narita, F. A novel manufacturing method and structural design of functionally graded piezoelectric composites for energy-harvesting. Mater. Design 2022, 214, 110371. [Google Scholar] [CrossRef]
- Khan, M.; Hayat, A.; Mane, S.K.B.; Li, T.; Shaishta, N.; Alei, D.; Zhao, T.K.; Ullah, A.; Zada, A.; Rehman, A.; et al. Functionalized nano diamond composites for photocatalytic hydrogen evolution and effective pollutant degradation. Int. J. Hydrogen Energ. 2020, 45, 29070–29081. [Google Scholar] [CrossRef]
- Ouhibi, A.; Raouafi, A.; Lorrain, N.; Guendouz, M.; Raouafi, N.; Moadhen, A. Functionalized SERS substrate based on silicon nanowires for rapid detection of prostate specific antigen. Sensor. Actuat. B- Chem. 2021, 330, 129352. [Google Scholar] [CrossRef]
- Lai, X.; Ren, Q.; Vogelbacher, F.; Sha, W.E.I.; Hou, X.; Yao, X.; Song, Y.; Li, M. Bioinspired quasi-3D multiplexed anti-counterfeit imaging via self-assembled and nanoimprinted photonic architectures. Adv. Mater. 2022, 34, e2107243. [Google Scholar] [CrossRef]
- Li, T.; Lou, S.; Ding, J.; Fan, T.X. Antireflective amorphous carbon nanocone arrays inspired from compound eyes. Bioinspir. Biomim. Nan. 2014, 3, 29–37. [Google Scholar] [CrossRef]
- Wu, L.; He, J.; Shang, W.; Deng, T.; Gu, J.; Su, H.; Liu, Q.; Zhang, W.; Zhang, D. Optical functional materials inspired by biology. Adv. Opt. Mater. 2016, 4, 195–224. [Google Scholar] [CrossRef]
- Brunner, R.; Sandfuchs, O.; Pacholski, C. Lessons from nature: Biomimetic subwavelength structures for high-performance optics. Laser. Photonics Rev. 2012, 6, 641–659. [Google Scholar] [CrossRef]
- Hedayati, M.K.; Elbahri, M. Antireflective coatings: Conventional stacking layers and ultrathin plasmonic metasurfaces, a mini-review. Materials 2016, 9, 497. [Google Scholar] [CrossRef]
- Zhang, S.; Zhao, H.; Li, X.; Li, Y.; Jin, Y.; Liu, X.; Shi, G.; Wong, P.K. A hierarchical SiPN/CN/MoSx photocathode with low internal resistance and strong light-absorption for solar hydrogen production. Appl. Catal. B-Environ. 2022, 300, 120758. [Google Scholar] [CrossRef]
- Li, Y.; Feng, L.; Li, J.; Li, X.; Chen, J.; Wang, L.; Qi, D.; Liu, X.; Shi, G. Fabrication of an insect-like compound-eye SERS substrate with 3D Ag nano-bowls and its application in optical sensor. Sensor. Actuat. B-Chem. 2021, 330, 129357. [Google Scholar] [CrossRef]
- Huang, K.; Wu, J.; Chen, Z.; Xu, H.; Wu, Z.; Tao, K.; Yang, T.; Wu, Q.; Zhou, H.; Huang, B.; et al. Nanostructured high-performance thin-film transistors and phototransistors fabricated by a high-yield and versatile near-field nanolithography strategy. ACS Nano 2019, 13, 6618–6630. [Google Scholar] [CrossRef] [PubMed]
- Chern, W.; Hsu, K.; Chun, I.S.; Azeredo, B.P.; Ahmed, N.; Kim, K.H.; Zuo, J.; Fang, N.; Ferreira, P.; Li, X. Nonlithographic patterning and metal-assisted chemical etching for manufacturing of tunable light-emitting silicon nanowire arrays. Nano Lett. 2010, 10, 1582–1588. [Google Scholar] [CrossRef] [PubMed]
- Parisa, F.; Nima, N.; Morteza, T.; Mohammad, B.A. Porous pyramidal silicon structures for improved light sensing performance. Optik 2020, 222, 165433. [Google Scholar]
- Wang, Y.; Liu, Y.; Yang, L.; Chen, W.; Du, X.; Kuznetsov, A. Micro-structured inverted pyramid texturization of Si inspired by self-assembled Cu nanoparticles. Nanoscale 2017, 9, 907–914. [Google Scholar] [CrossRef]
- Sutter, J.; Eisenhauer, D.; Wagner, P.; Vilches, A.B.M.; Rech, B.; Stannowski, B.; Becker, C. Tailored nanostructures for light management in silicon heterojunction solar cells. Solar RRL 2020, 4, 2000484. [Google Scholar] [CrossRef]
- Hao, J.; Lu, N.; Xu, H.; Wang, W.; Gao, L.; Chi, L. Langmuir-blodgett monolayer masked chemical etching: An approach to broadband antireflective surfaces. Chem. Mater. 2009, 21, 1802–1805. [Google Scholar] [CrossRef]
- Gong, J.; Lipomi, D.J.; Deng, J.; Nie, Z.; Chen, X.; Randall, N.X.; Nair, R.; Whitesides, G.M. Micro- and nanopatterning of inorganic and polymeric substrates by indentation lithography. Nano lett. 2010, 10, 2702–2708. [Google Scholar] [CrossRef]
- Yang, J.; Petrescu, F.I.T.; Li, Y.; Song, D.; Shi, G. A novel bio-inspired Ag/3D-TiO2/Si SERS substrate with ordered moth-like structure. Nanomaterials 2022, 12, 3127. [Google Scholar] [CrossRef]
- Jin, X.; Zhu, Q.; Feng, L.; Li, X.; Zhu, H.; Miao, H.; Zeng, Z.; Wang, Y.; Li, Y.; Wang, L.; et al. Light-trapping SERS substrate with regular bioinspired arrays for detecting trace dyes. ACS Appl. Mater. Inter. 2021, 13, 11535–11542. [Google Scholar] [CrossRef]
- Shi, G.; Zhang, X.; Li, J.; Zhu, H.; Li, Y.; Zhang, L.; Ni, C.; Chi, L. Fabrication of 3D biomimetic composite coating with broadband antireflection, superhydrophilicity, and double p-n heterojunctions. Nano Res. 2017, 10, 2377–2385. [Google Scholar] [CrossRef]
- Wang, Y.; Feng, L.; Zhu, H.; Miao, H.; Li, Y.; Liu, X.; Shi, G. Noncontact Metal−Spiropyran−Metal Nanostructured Substrates with Ag and Au@SiO2 Nanoparticles Deposited in Nanohole Arrays for Surface-Enhanced Fluorescence and Trace Detection of Metal Ions. ACS Appl. Nano Mater. 2021, 4, 3780–3789. [Google Scholar] [CrossRef]
- Li, X.; Li, Y.; Wang, H.; Miao, H.; Zhu, H.; Liu, X.; Lin, H.; Shi, G. Fabrication of a Three-Dimensional Bionic Si/TiO2/MoS2 Photoelectrode for Efficient Solar Water Splitting. ACS Appl. Energ. Mater. 2021, 4, 730–736. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, J.; Zheng, J.; Chen, X.; Xu, H.; Petrescu, F.I.T.; Ungureanu, L.M.; Li, Y.; Shi, G. A Simple Polypyrrole/Polyvinylidene Fluoride Membrane with Hydrophobic and Self-Floating Ability for Solar Water Evaporation. NaNaomaterials-Basel 2022, 12, 12050859. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Li, X.; Chen, J.; Zhu, H.; Miao, H.; Li, Y.; Liu, X.; Shi, G. A novel photothermal, self-healing and anti-reflection water evaporation membrane. Soft Matter 2021, 17, 4730–4737. [Google Scholar] [CrossRef]
- Jin, X.; Shi, G.; Zhu, H.; Ni, C.; Li, Y. Fabricating biomimetic antireflective coating based on TiO2 pyramids by soft lithography. ChemistrySelect 2019, 4, 13392–13395. [Google Scholar] [CrossRef]
- Li, X.; Wu, F.; Jin, Y.; Zhai, D.; Li, Y.; Ni, C.; Shi, G. Efficient gatherer of sunlight based on two-sided bio-inspired antireflective micro-pyramids with PPy/TiO2. Inorg. Chem. Commun. 2019, 110, 107604. [Google Scholar] [CrossRef]
- Liu, Y.; Pedireddy, S.; Lee, Y.H.; Hegde, R.S.; Tjiu, W.W.; Cui, Y.; Ling, X.Y. Precision Synthesis: Designing Hot Spots over Hot Spots via Selective Gold Deposition on Silver Octahedra Edges. Small 2014, 10, 4940–4950. [Google Scholar] [CrossRef]
- Mengesha, Z.T.; Yang, J. Silver Nanoparticle-Decorated Shape-Memory Polystyrene Sheets as Highly Sensitive Surface-Enhanced Raman Scattering Substrates with a Thermally Inducible Hot Spot Effect. Anal. Chem. 2016, 88, 10908–10915. [Google Scholar] [CrossRef]
- Ye, S.; Fang, L.; Qing, X.; Lu, Y. Surface-Enhanced Raman Scattering Study of Ag@PPy Nanoparticles. J. Raman Spectrosc. 2010, 41, 1119–1123. [Google Scholar] [CrossRef]
- Holloway, C.L.; Kuester, E.F.; Gordon, J.A.; O’Hara, J.; Booth, J.; Smith, D.R. An Overview of the Theory and Applications of Metasurfaces: The Two-Dimensional Equivalents of Metamaterials. IEEE Antenn. Propag. Mag. 2012, 54, 10–35. [Google Scholar] [CrossRef]
- Grann, E.B.; Moharam, M.G.; Pommet, D.A. Optimal Design for Antireflective Tapered Two-Dimensional Subwavelength Grating Structures. J. Opt. Soc. Am. A. 1995, 12, 333. [Google Scholar] [CrossRef]
- Ye, C.; Zhu, Z.; Li, X.; Zhou, H.; Zhang, M.; Yan, L.; Chen, Z.; Huang, Y.; Wu, Y. ZIF-8 Derived TiO2/ZnO Heterostructure Decorated with AgNPs as SERS Sensor for Sensitive Identification of Trace Pesticides. J. Alloys Compd. 2022, 901, 163675. [Google Scholar] [CrossRef]
- Xue, X.; Chen, L.; Zhao, C.; Qiao, Y.; Wang, J.; Shi, J.; Lin, Y.; Chang, L. Tailored FTO/Ag/ZIF-8 Structure as SERS Substrate for Ultrasensitive Detection. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 2022, 282, 121693. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Li, S.; Wang, J.; Shao, Y.; Mei, L. A Recyclable Graphene/Ag/TiO2 SERS Substrate with High Stability and Reproducibility for Detection of Dye Molecules. New J. Chem. 2022, 18787–18795. [Google Scholar] [CrossRef]
- Wang, W.; Lu, L.; Cai, W.; Chen, Z.R. Synthesis and Characterization of Coaxial Silver/Silica/Polypyrrole Nanocables. J. Appl. Polym. Sci. 2013, 129, 2377–2382. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, T.; Liu, Y.; Zhang, J.; Sun, H.; Yang, J.; Zhu, J.; Liu, J.; Wu, Y. Plasmonic 3D Semiconductor-Metal Nanopore Arrays for Reliable Surface-Enhanced Raman Scattering Detection and In-Site Catalytic Reaction Monitoring. ACS Sensors 2018, 3, 2446–2454. [Google Scholar] [CrossRef]
- Yuan, X.; Wang, C.; Dragoe, D.; Beaunier, P.; Colbeau-Justin, C.; Remita, H. Highly Promoted Photocatalytic Hydrogen Generation by Multiple Electron Transfer Pathways. Appl. Catal. B 2021, 281, 119457. [Google Scholar] [CrossRef]
- Yang, Y.; Wen, J.; Wei, J.; Xiong, R.; Shi, J.; Pan, C. Polypyrrole-Decorated Ag-TiO2 Nanofibers Exhibiting Enhanced Photocatalytic Activity under Visible-Light Illumination. ACS Appl. Mater. Inter. 2013, 5, 6201–6207. [Google Scholar] [CrossRef]
- Hao, D.; Yang, Y.; Xu, B.; Cai, Z. Bifunctional Fabric with Photothermal Effect and Photocatalysis for Highly Efficient Clean Water Generation. ACS Sustainable Chem. Eng. 2018, 6, 10789–10797. [Google Scholar] [CrossRef]
SERS Substrate | Conditions | Signal Molecule | LOD | Reference |
---|---|---|---|---|
TiO2/ZnO/Ag | Immersion | 4-mercaptobenzoic acid | 10−9 mol/L | [33] |
FTO/Ag/ZIF-8 | Immersion | 4-mercaptobenzoic acid | 10−9 mol/L | [34] |
graphene/Ag/TiO2 | Dropping | Rhodamine 6G | 10−11 mol/L | [35] |
Ag/air/PPy | - | Rhodamine B | 10−7 mol/L | [36] |
3D TiO2-Ag-GO | Dropping | Crystal violet | 10−8 mol/L | [37] |
Ag/b-PPy/p-TiO2 | Dropping | Rhodamine 6G | 10−9 mol/L | this work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Petrescu, F.I.T.; Danzeng, Q.; Zhu, H.; Li, Y.; Shi, G. A Bioinspired Ag Nanoparticle/PPy Nanobowl/TiO2 Micropyramid SERS Substrate. Nanomaterials 2022, 12, 4104. https://doi.org/10.3390/nano12224104
Li X, Petrescu FIT, Danzeng Q, Zhu H, Li Y, Shi G. A Bioinspired Ag Nanoparticle/PPy Nanobowl/TiO2 Micropyramid SERS Substrate. Nanomaterials. 2022; 12(22):4104. https://doi.org/10.3390/nano12224104
Chicago/Turabian StyleLi, Xin, Florian Ion Tiberiu Petrescu, Qupei Danzeng, Haiyan Zhu, Ying Li, and Gang Shi. 2022. "A Bioinspired Ag Nanoparticle/PPy Nanobowl/TiO2 Micropyramid SERS Substrate" Nanomaterials 12, no. 22: 4104. https://doi.org/10.3390/nano12224104
APA StyleLi, X., Petrescu, F. I. T., Danzeng, Q., Zhu, H., Li, Y., & Shi, G. (2022). A Bioinspired Ag Nanoparticle/PPy Nanobowl/TiO2 Micropyramid SERS Substrate. Nanomaterials, 12(22), 4104. https://doi.org/10.3390/nano12224104