Size-Dependent Superconducting Properties of In Nanowire Arrays
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Morosh, V.; Linek, J.; Müller, B.; Martínez-Pérez, M.J.; Wolter, S.; Weimann, T.; Beyer, J.; Schurig, T.; Kieler, O.; Zorin, A.B.; et al. Transport and Noise Properties of sub-100-nm Planar Nb Josephson Junctions with Metallic Hf-Ti Barriers for nano-SQUID Applications. Phys. Rev. Appl. 2020, 14, 054072. [Google Scholar] [CrossRef]
- Jabdaraghi, R.N.; Peltonen, J.T.; Saira, O.P.; Pekola, J.P. Low-temperature characterization of Nb-Cu-Nb weak links with Ar ion-cleaned interfaces. Appl. Phys. Lett. 2016, 108, 042604. [Google Scholar] [CrossRef]
- Collienne, S.; Raes, B.; Keijers, W.; Linek, J.; Koelle, D.; Kleiner, R.; Kramer, B.G.; Van de Vondel, J.; Silhanek, A.V. Nb-Based Nanoscale Superconducting Quantum Interference Devices Tuned by Electroannealing. Phys. Rev. Appl. 2020, 15, 034016. [Google Scholar] [CrossRef]
- Ronzania, A.; Altimiras, C.; Giazotto, F. Balanced double-loop mesoscopic interferometer based on Josephson proximity nanojunctions. Appl. Phys. Lett. 2014, 104, 032601. [Google Scholar] [CrossRef]
- Kang, C.G.; Lim, S.K.; Lee, S.; Lee, S.K.; Cho, C.; Lee, Y.G.; Hwang, H.J.; Kim, Y.; Choi, H.J.; Choe, S.H. Effects of multi-layer graphene capping on Cu interconnects. Nanotechnology 2014, 24, 115707. [Google Scholar] [CrossRef]
- Xu, W.H.; Wang, L.; Guo, Z.; Chen, X.; Liu, J.; Huang, X.J. Copper Nanowires as Nanoscale Interconnects: Their Stability, Electrical Transport, and Mechanical Properties. ACS Nano 2015, 9, 241–250. [Google Scholar] [CrossRef]
- Skryabina, O.V.; Egorov, S.V.; Goncharova, A.S.; Klimenko, A.A.; Kozlov, S.N.; Ryazanov, V.V.; Bakurskiy, S.V.; Kupriyanov, M.Y.; Golubov, A.A.; Napolskii, K.S.; et al. Josephson coupling across a long single-crystalline Cu nanowire. Appl. Phys. Lett. 2017, 110, 222605. [Google Scholar] [CrossRef]
- De Cecco, A.; Calvez, K.L.; Sacépé, B.; Winkelmann, C.B.; Courtois, H. Interplay between electron overheating and ac Josephson effect. Phys. Rev. B 2016, 93, 180505. [Google Scholar] [CrossRef]
- Kompaniiets, M.; Dobrovolskiy, O.V.; Neetzel, C.; Begun, E.; Porrati, F.; Ensinger, W.; Huth, M. Proximity-induced superconductivity in crystalline Cu and Co nanowires and nanogranular Co structures. J. Appl. Phys. 2014, 116, 073906. [Google Scholar] [CrossRef]
- Jung, M.; Noh, H.; Doh, Y.J.; Song, W.; Chong, Y.; Choi, M.S.; Yoo, Y.; Seo, K.; Kim, N.; Woo, B.C.; et al. Superconducting Junction of a Single-Crystalline Au Nanowire for an Ideal Josephson Device. ACS Nano 2011, 5, 2271–2276. [Google Scholar] [CrossRef]
- Skryabina, O.V.; Kozlov, S.N.; Egorov, S.V.; Klimenko, A.A.; Ryazanov, V.V.; Bakurskiy, S.V.; Kupriyanov, M.Y.; Klenov, N.V.; Soloviev, I.I.; Golubov, A.A.; et al. Anomalous magneto-resistance of Ni-nanowire/Nb hybrid system. Sci. Rep. 2019, 9, 14470. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Singh, M.; Tian, M.; Kumar, N.; Liu, B.; Shi, C.; Jain, J.K.; Samarth, N.; Mallouk, T.E.; Chan, M.H.W. Interplay between superconductivity and ferromagnetism in crystalline nanowires. Nat. Phys. 2010, 6, 389–394. [Google Scholar] [CrossRef]
- Thurn-Albrecht, T.; Schotter, J.; Kästle, G.A.; Emley, N.; Shibauchi, T.; Krusin-Elbaum, L.; Guarini, K.; Black, C.T.; Tuominen, M.T.; Russell, T.P. Ultrahigh-density nanowire arrays grown in self-assembled diblock copolymer templates. Science 2000, 290, 2126–2129. [Google Scholar] [CrossRef]
- Chen, Z.; Ye, S.; Stewart, I.E.; Wiley, B.J. Copper Nanowire Networks with Transparent Oxide Shells That Prevent Oxidation without Reducing Transmittance. ACS Nano 2014, 8, 9673–9679. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.; Al-Housseiny, T.T.; Kim, B.S.; Cho, H.H.; Stone, H.A. The Race of Nanowires: Morphological Instabilities and a Control Strategy. Nano Lett. 2014, 14, 4395–4399. [Google Scholar] [CrossRef]
- Tian, M.; Wang, J.; Ning, W.; Mallouk, T.E.; Chan, M.H.W. Surface Superconductivity in Thin Cylindrical Bi Nanowire. Nano Lett. 2015, 15, 1487–1492. [Google Scholar] [CrossRef]
- Leontiev, A.P.; Brylev, O.A.; Napolskii, K.S. Arrays of rhodium nanowires based on anodic alumina: Preparation and electrocatalytic activity for nitrate reduction. Electrochim. Acta 2015, 155, 466–473. [Google Scholar] [CrossRef]
- Napolskii, K.S.; Roslyakov, I.V.; Eliseev, A.A.; Petukhov, D.I.; Lukashin, A.V.; Chen, S.F.; Liu, C.P.; Tsirlina, G.A. Tuning the microstructure and functional properties of metal nanowire arrays via deposition potential. Electrochim. Acta 2011, 56, 2378–2384. [Google Scholar] [CrossRef]
- Malysheva, I.V.; Kolmychek, I.A.; Romashkina, A.M.; Leontiev, A.P.; Napolskii, K.S.; Murzina, T.V. Magneto-optical effects in hyperbolic metamaterials based on ordered arrays of bisegmented gold/nickel nanorods. Nanotechnology 2021, 32, 305710. [Google Scholar] [CrossRef]
- Kompaniiets, M.; Dobrovolskiy, O.V.; Neetzel, C.; Ensinger, W.; Huth, M. Superconducting Proximity Effect in Crystalline Co and Cu Nanowires. J. Supercond. Nov. Magn. 2015, 28, 431–436. [Google Scholar] [CrossRef]
- Riminucci, A.; Schwarzacher, W. Coexistence of superconductivity and superparamagnetism in Pb–Co electrodeposited nanowires. Appl. Phys. A 2017, 123, 161. [Google Scholar] [CrossRef]
- Prakash, O.; Kumar, A.; Thamizhavel, A.; Ramakrishnan, S. Evidence for bulk superconductivity in pure bismuth single crystals at ambient pressure. Science 2016, 355, 52–55. [Google Scholar] [CrossRef] [PubMed]
- Ge, J.Y.; Gutierrez, J.; Lyashchenko, A.; Filipov, V.; Li, J.; Moshchalkov, V.V. Direct visualization of vortex pattern transition in ZrB12 with Ginzburg-Landau parameter close to the dual point. Phys. Rev. B 2014, 90, 184511. [Google Scholar] [CrossRef]
- Córdoba-Camacho, W.Y.; Silva, R.M.; Vagov, A.; Shanenko, A.A.; Albino Aguiar, J.A. Quasi-one-dimensional vortex matter in superconducting nanowires. Phys. Rev. B 2018, 98, 174511. [Google Scholar] [CrossRef]
- Córdoba-Camacho, W.Y.; Silva, R.M.; Shanenko, A.A.; Vagov, A.; Vasenko, A.S.; Lvov, B.G.; Albino Aguiar, J. Spontaneous pattern formation in superconducting films. J. Phys. Condens. Matter 2020, 32, 075403. [Google Scholar] [CrossRef]
- Moura, K.O.; Pirota, K.R.; Béron, F.; Jesus, C.B.R.; Rosa, P.F.S.; Tobia, D.; Pagliuso, P.G.; Lima, O.F. Superconducting Properties in Arrays of Nanostructured β-Gallium. Sci. Rep. 2017, 7, 15306. [Google Scholar] [CrossRef]
- Engbarth, M.A.; Bending, S.J.; Milošević, M.V. Geometry-driven vortex states in type-I superconducting Pb nanowires. Phys. Rev. B 2011, 83, 224504. [Google Scholar] [CrossRef]
- Riminucci, A.; Schwarzacher, W. Magnetic signature of granular superconductivity in electrodeposited Pb nanowires. J. Appl. Phys. 2014, 115, 223910. [Google Scholar] [CrossRef]
- Schoeller, H.; Cho, J. Oxidation and reduction behavior of pure indium. J. Mater. Res. 2009, 24, 386. [Google Scholar] [CrossRef]
- Roberts, B.W. Survey of superconductive materials and critical evaluation of selected properties. J. Phys. Chem. Ref. Data 1976, 5, 581. [Google Scholar] [CrossRef]
- Toxen, A.M. Size Effects in Thin Superconducting Indium Films. Phys. Rev. 1961, 123, 442. [Google Scholar] [CrossRef]
- Mason, P.V.; Gould, R.W. Slow-Wave Structures Utilizing Superconducting Thin-Film Transmission Lines. J. App. Phys. 1969, 40, 2039. [Google Scholar] [CrossRef]
- Thompson, R.S.; Baratoff, A. Magnetic Properties of Superconducting Thin Films in the Nonlocal Regime. Phys. Rev. Lett. 1965, 15, 971. [Google Scholar] [CrossRef]
- Lock, J.M.; Bragg, W.L. Penetration of magnetic fields into superconductors III. Measurements on thin films of tin, lead and indium. Proc. R. Soc. Lond. A 1951, 208, 391. [Google Scholar] [CrossRef]
- Dheer, P.N. The surface impedance of normal and superconducting indium at 3000 Mc/s. Proc. R. Soc. Lond. A 1961, 260, 333. [Google Scholar] [CrossRef]
- Guyon, E.; Meunier, F.; Thompson, R.S. Thickness Dependence of k2 and Related Problems for Superconducting Alloy Films in Strong Fields. Phys. Rev. 1967, 156, 452. [Google Scholar] [CrossRef]
- Fossheim, K. Electromagnetic Shear-Wave Interaction in a Superconductor. Phys. Rev. Lett. 1967, 19, 81. [Google Scholar] [CrossRef]
- Xu, S.H.; Fei, G.T.; Zhang, Y.; Li, X.F.; Jin, Z.; Zhang, L.D. Size-dependent melting behavior of indium nanowires. Phys. Lett. Sect. A Gen. At. Solid State Phys. 2011, 375, 1746–1750. [Google Scholar] [CrossRef]
- Shilyaeva, Y.; Gavrilov, S.; Matyna, L. Melting of indium, tin, and zinc nanowires embedded in the pores of anodic aluminum oxide. J. Therm. Anal. Calorim. 2014, 118, 937–942. [Google Scholar] [CrossRef]
- Kumar, P.; Kiran, M.S.R.N. Nanomechanical characterization of indium nano/microwires. Nanoscale Res. Lett. 2010, 5, 1085–1092. [Google Scholar] [CrossRef]
- Kumar, P. Trench-template fabrication of indium and silicon nanowires prepared by thermal evaporation process. J. Nanopart. Res. 2010, 12, 2473–2480. [Google Scholar] [CrossRef]
- Mondal, A. Synthesis of indium nanowires by oblique angle deposition. J. Nanophotonics 2011, 5, 053522. [Google Scholar] [CrossRef]
- Oh, S.S.; Kim, D.H.; Moon, M.W.; Vaziri, A.; Kim, M.; Yoon, E.; Oh, K.H.; Hutchinson, J.W. Indium nanowires synthesized at an ultrafast rate. Adv. Mater. 2008, 20, 1093–1098. [Google Scholar] [CrossRef]
- Redkin, A.N.; Korepanova, O.S. Spontaneous template free growth of indium nano- and microwires via disproportionation of the InBr aqueous solution. Chem. Phys. Lett. 2019, 734, 136736. [Google Scholar] [CrossRef]
- Talukdar, I.; Ozturk, B.; Flandersa, B.N.; Mishima, T.D. Directed growth of single-crystal indium wires. Appl. Phys. Lett. 2006, 88, 221907. [Google Scholar] [CrossRef]
- Gordon, E.B.; Karabulin, A.V.; Matyushenko, V.I.; Sizov, V.D.; Khodos, I.I. Structure of metallic nanowires and nanoclusters formed in superfluid helium. J. Exp. Theor. Phys. 2011, 112, 1061–1070. [Google Scholar] [CrossRef]
- Li, H.; Liang, C.; Liu, M.; Zhong, K.; Tong, Y.; Liu, P.; Hope, G.A. Synthesis of indium nanowires by galvanic displacement and their optical properties. Nanoscale Res. Lett. 2009, 4, 47–53. [Google Scholar] [CrossRef][Green Version]
- Chen, F.; Kitai, A.H. Application of indium nanowires to donor-acceptor pair luminescence. J. Lumin. 2008, 128, 1856–1862. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, K.; Li, M.; Zhao, C.; Wang, X.; Yuan, Z. Ion emission properties of indium nanowires grown on anodic aluminum oxide template. Vacuum 2016, 131, 209–212. [Google Scholar] [CrossRef]
- Watson, J.H.P. Critical Magnetic Field and Transition Temperature of Synthetic High-Field Superconductors. Phys. Rev. 1966, 148, 223. [Google Scholar] [CrossRef]
- Hindley, N.K.; Watson, J.H.P. Superconducting Metals in Porous Glass as Granular Superconductors. Phys. Rev. 1969, 183, 525. [Google Scholar] [CrossRef]
- Roslyakov, I.V.; Gordeeva, E.O.; Napolskii, K.S. Role of Electrode Reaction Kinetics in Self-Ordering of Porous Anodic Alumina. Electrochim. Acta 2017, 241, 362–369. [Google Scholar] [CrossRef]
- Lillo, M.; Losic, D. Pore opening detection for controlled dissolution of barrier oxide layer and fabrication of nanoporous alumina with through-hole morphology. J. Membr. Sci. 2009, 327, 11–17. [Google Scholar] [CrossRef]
- Noyan, A.A.; Napolskii, K.S. Birefringence in anodic aluminum oxide: An optical method for measuring porosity. Mater. Adv. 2022, 3, 3642–3648. [Google Scholar] [CrossRef]
- Tinkham, M. Introduction to Superconductivity; McGraw-Hill: New York, NY, USA, 1996; p. 20. [Google Scholar]
Sample Name | Type of the Template | Interpore Distance Dint, nm | Pore Diameter Dp, nm | Pore Density, μm−2 | Porosity p, % | Template Thickness, μm | Volume of Pores, 10−4 cm3 |
---|---|---|---|---|---|---|---|
s45 | AAO | 101 ± 6 | 45 | 113 | 18 | 40 | 8.1 |
s200 | AAO | 534 | 200 | 4.05 | 12.7 | 46 | 6.6 |
s550 | track-etched membrane | — | 550 | 0.34 | 8 | 20 | 1.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noyan, A.A.; Ovchenkov, Y.A.; Ryazanov, V.V.; Golovchanskiy, I.A.; Stolyarov, V.S.; Levin, E.E.; Napolskii, K.S. Size-Dependent Superconducting Properties of In Nanowire Arrays. Nanomaterials 2022, 12, 4095. https://doi.org/10.3390/nano12224095
Noyan AA, Ovchenkov YA, Ryazanov VV, Golovchanskiy IA, Stolyarov VS, Levin EE, Napolskii KS. Size-Dependent Superconducting Properties of In Nanowire Arrays. Nanomaterials. 2022; 12(22):4095. https://doi.org/10.3390/nano12224095
Chicago/Turabian StyleNoyan, Alexey A., Yevgeniy A. Ovchenkov, Valery V. Ryazanov, Igor A. Golovchanskiy, Vasily S. Stolyarov, Eduard E. Levin, and Kirill S. Napolskii. 2022. "Size-Dependent Superconducting Properties of In Nanowire Arrays" Nanomaterials 12, no. 22: 4095. https://doi.org/10.3390/nano12224095
APA StyleNoyan, A. A., Ovchenkov, Y. A., Ryazanov, V. V., Golovchanskiy, I. A., Stolyarov, V. S., Levin, E. E., & Napolskii, K. S. (2022). Size-Dependent Superconducting Properties of In Nanowire Arrays. Nanomaterials, 12(22), 4095. https://doi.org/10.3390/nano12224095