Effect of Nano-Sized γ′ Phase on the Ultrasonic and Mechanical Properties of Ni-Based Superalloy
Abstract
1. Introduction
2. Experimental Procedures
3. Results and Discussion
3.1. Microstructural Evolution
3.2. Ultrasonic Properties
3.3. Mechanical Properties
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shaikh, A.S.; Rashidi, M.; Minet-Lallemand, K.; Hryha, E. On as-built microstructure and necessity of solution treatment in additively manufactured Inconel 939. Powder Metall. 2022, 2, 1–9. [Google Scholar] [CrossRef]
- Sadeghian, A.; Arhami, F.; Mirsalehi, S.E. Phase formation during dissimilar transient liquid phase (TLP) bonding of IN939 to IN625 using a Ni-Cr-Fe-Si-B interlayer. J. Manuf. Process. 2019, 44, 72–80. [Google Scholar] [CrossRef]
- Shin, K.Y.; Kim, J.H.; Terner, M.; Kong, B.O.; Hong, H.U. Effects of heat treatment on the microstructure evolution and the high-temperature tensile properties of Haynes 282 superalloy. Mater. Sci. Eng. A 2019, 751, 311–322. [Google Scholar] [CrossRef]
- Sun, Z.Y.; Ren, S.; Hu, T.M.; Li, B. Effect of ultrasonic surface rolling process on the hot compression behavior of Inconel 718 superalloy at 700 °C. Nanomaterials 2019, 9, 658. [Google Scholar] [CrossRef]
- Gai, Y.C.; Zhang, R.; Yang, J.X.; Cui, C.Y.; Qu, J.L. Effects of heat treatment on γ′ precipitates and tensile properties of a Ni-base superalloy. Mater. Sci. Eng. A 2022, 842, 143079. [Google Scholar] [CrossRef]
- Kim, D.; Jiang, R.; Evangelou, A.; Sinclair, I.; Reed, P.A.S. Effects of γ′ size and carbide distribution on fatigue crack growth mechanisms at 650 ° C in an advanced Ni-based superalloy. Int. J. Fatigue 2021, 145, 106086. [Google Scholar] [CrossRef]
- Zhu, L.H.; Pan, H.; Cheng, J.Y.; Xiao, L.; Guo, J.Z.; Ji, H.J. Dendrite evolution and quantitative characterization of γ′ precipitates in a powder metallurgy Ni-based superalloy by different cooling rates. J. Alloys Compd. 2022, 918, 165677. [Google Scholar] [CrossRef]
- Mallikarjuna, H.T.; Caley, W.F.; Richards, N.L. The effect of cooling rate on the γ′ composition, morphology and corrosion behaviour of IN738LC. Corros. Sci. 2019, 149, 37–44. [Google Scholar] [CrossRef]
- Wu, H.Y.; Zhuang, X.L.; Nie, Y.; Li, Y.P.; Jiang, L. Effect of heat treatment on mechanical property and microstructure of a powder metallurgy nickel-based superalloy. Mater. Sci. Eng. A 2019, 754, 29–37. [Google Scholar] [CrossRef]
- Kim, I.S.; Choi, B.G.; Jung, J.E.; Do, J.; Seok, W.Y.; Lee, Y.H.; Jeong, I.Y. Effect of heat treatment on microstructural evolution and creep behaviors of a conventionally cast nickel-based superalloy. Mater. Charact. 2020, 165, 110378. [Google Scholar] [CrossRef]
- Silva, C.C.; De Albuquerque, V.H.C.; Miná, E.M.; Moura, E.P.; Tavares, J.M.R.S. Mechanical properties and microstructural characterization of aged nickel-based alloy 625 weld metal. Metall. Mater. Trans. A 2018, 49, 1653–1673. [Google Scholar] [CrossRef]
- Toozandehjani, M.; Matori, K.A.; Ostovan, F.; Mustapha, F.; Zahari, N.I.; Oskoueianet, A. On the correlation between microstructural evolution and ultrasonic properties: A review. J. Mater. Sci. 2015, 50, 2643–2665. [Google Scholar] [CrossRef]
- Behjati, P.; Dastjerdi, H.V.; Mahdavi, R. Influence of ageing process on sound velocity in C17200 copper-beryllium alloy. J. Alloys Compd. 2010, 505, 739–742. [Google Scholar] [CrossRef]
- Murthy, G.V.S.; Sridhar, G.; Kumar, A.; Jayakumar, T. Characterization of intermetallic precipitates in a Nimonic alloy by ultrasonic velocity measurements. Mater. Charact. 2009, 60, 234–239. [Google Scholar] [CrossRef]
- Jahangiri, M. Different effects of γ′ and η phases on the physical and mechanical properties of superalloys. J. Alloys Compd. 2019, 802, 535–545. [Google Scholar] [CrossRef]
- Palanichamy, P.; Mathew, M.D.; Latha, S.; Jayakumar, T.; Rao, K.B.S.; Mannan, S.L.; Raj, B. Assessing microstructural changes in alloy 625 using ultrasonic waves and correlation with tensile properties. Scr. Mater. 2001, 45, 1025–1030. [Google Scholar] [CrossRef]
- Wang, J.J.; Wen, Z.X.; Pei, H.Q.; Gu, S.N.; Zhang, C.J.; Yue, Z.F. Thermal damage evaluation of nickel-based superalloys based on ultrasonic nondestructive testing. Appl. Acoust. 2021, 183, 108329. [Google Scholar] [CrossRef]
- Chen, X.; Wu, G.H.; Chen, H.; Zhou, Z.G. A multi-parameter ultrasonic evaluation of mean grain size using optimization. NDT E Int. 2019, 106, 10–17. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, X.; Li, M.; Chen, H.; Wu, G.H.; Zhang, C.X. Application of high-dimensional model representation in the ultrasonic evaluation of superalloy grain size. J. Nondestruct. Eval. 2022, 41, 57. [Google Scholar] [CrossRef]
- Murthy, G.V.S.; Ghosh, S.; Das, M.; Das, G.; Ghosh, R.N. Correlation between ultrasonic velocity and indentation-based mechanical properties with microstructure in Nimonic 263. Mater. Sci. Eng. A 2008, 488, 398–405. [Google Scholar] [CrossRef]
- Mukhopadhyay, A.; Chatterjee, D.; Mondal, C.; Punnose, S.; Gopinath, K. Characterization of microstructural changes due to prolonged thermal exposure of directionally solidified Ni-base super alloy CM 247LC using ultrasonic. Ultrasonics 2018, 90, 42–51. [Google Scholar] [CrossRef] [PubMed]
- Sindhura, D.; Sravya, M.V.; Murthy, G.V.S. Comprehensive microstructural evaluation of precipitation in Inconel 718. Metallogr. Microstruct. Anal. 2019, 8, 233–240. [Google Scholar] [CrossRef]
- Aghaie-Khafri, M.; Honarvar, F.; Zangeneh, S. Correlation between ultrasonic velocity and solutionising time in Rene 80 superalloy. Mater. Sci. Technol. 2011, 27, 1433–1435. [Google Scholar] [CrossRef]
- Kumar, A.; Shankar, V.; Jayakumar, T.; Bhanu Sankara Rao, K.; Raj, B. Correlation of microstructure and mechanical properties with ultrasonic velocity in the Ni-based superalloy Inconel 625. Philos. Mag. A 2002, 82, 2529–2545. [Google Scholar] [CrossRef]
- Chen, X.; Wu, G.H.; Zhou, Z.G.; Tai, Q.G. Study of the relationship between ultrasonic properties and microstructure of nickel-based superalloy GH706. Insight Non-Destr. Test. Cond. Monit. 2017, 59, 609–614. [Google Scholar] [CrossRef]
- Albuqueque, V.H.C.; Silva, C.C.; Normando, P.G.; Moura, E.P.; Tavares, J.M.R.S. Thermal aging effects on the microstructure of Nb-bearing nickel based superalloy weld overlays using ultrasound techniques. Mater. Des. 2012, 36, 337–347. [Google Scholar] [CrossRef]
- Pathak, S.; Verma, R.; Kumar, P.; Singh, A.; Singhal, S.; Sharama, P.; Jain, K.; Pant, R.P.; Wang, X. Facile synthesis, static, and dynamic magnetic characteristics of varying size double-surfactant-coated mesoscopic magnetic nanoparticles dispersed stable aqueous magnetic fluids. Nanomaterials 2021, 11, 3009. [Google Scholar] [CrossRef]
- Nitas, M.; Salonikios, V.; Antonopoulos, C.S.; Yioultsis, T.V. Numerical calculation of dispersion diagrams and field distributions of waves in 3-D periodic split-ring resonator media. IEEE Trans. Magn. 2019, 55, 1–4. [Google Scholar] [CrossRef]
- Pathak, S.; Verma, R.; Singhal, S.; Chaturvedi, R.; Kumar, P.; Sharma, P.; Pant, R.P.; Wang, X. Spin dynamics investigations of multifunctional ambient scalable Fe3O4 surface decorated ZnO magnetic nanocomposite using FMR. Sci. Rep. 2021, 11, 3799. [Google Scholar] [CrossRef]
- Wu, R.H.; Sandfeld, S. Insights from a minimal model of dislocation-assisted rafting in single crystal Nickel-based superalloys. Scr. Mater. 2016, 123, 42–45. [Google Scholar] [CrossRef]
- Barjesteh, M.M.; Abbasi, S.M.; Madar, K.Z.; Shirvani, K. The effect of heat treatment on characteristics of the gamma prime phase and hardness of the nickel-based superalloy Rene® 80. Mater. Chem. Phys. 2019, 227, 46–55. [Google Scholar] [CrossRef]
- Chen, Q.; Huang, Z.; Zhao, Z.; Hu, C. First-principles study on the structural, elastic, and thermodynamics properties of Ni3X (X: Al, Mo, Ti, Pt, Si, Nb, V, and Zr) intermetallic compounds. Appl. Phys. A 2014, 116, 1161–1172. [Google Scholar] [CrossRef]
Sample Code | Heat Treatment Process |
---|---|
HT1 | 1160 °C/4 h, FAC 1 + 850 °C/24 h, AC 2 |
HT2 | 1160 °C/4 h, FAC + 1000 °C/6 h, AC |
HT3 | 1160 °C/4 h, FAC + 1000 °C/6 h, AC + 800 °C/4 h, AC |
HT4 | 1160 °C/4 h, FAC + 1000 °C/6 h, FAC + 900 °C/24 h, AC + 700 °C/16 h, AC |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jie, Z.; Yang, Z.; Xu, T.; Sun, C. Effect of Nano-Sized γ′ Phase on the Ultrasonic and Mechanical Properties of Ni-Based Superalloy. Nanomaterials 2022, 12, 4162. https://doi.org/10.3390/nano12234162
Jie Z, Yang Z, Xu T, Sun C. Effect of Nano-Sized γ′ Phase on the Ultrasonic and Mechanical Properties of Ni-Based Superalloy. Nanomaterials. 2022; 12(23):4162. https://doi.org/10.3390/nano12234162
Chicago/Turabian StyleJie, Ziqi, Zhaoning Yang, Tao Xu, and Chongfeng Sun. 2022. "Effect of Nano-Sized γ′ Phase on the Ultrasonic and Mechanical Properties of Ni-Based Superalloy" Nanomaterials 12, no. 23: 4162. https://doi.org/10.3390/nano12234162
APA StyleJie, Z., Yang, Z., Xu, T., & Sun, C. (2022). Effect of Nano-Sized γ′ Phase on the Ultrasonic and Mechanical Properties of Ni-Based Superalloy. Nanomaterials, 12(23), 4162. https://doi.org/10.3390/nano12234162