Safer and Sustainable-by-Design Hydroxyapatite Nanobiomaterials for Biomedical Applications: Assessment of Environmental Hazards
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Organism
2.2. Test Soil
2.3. Test Materials, Synthesis, Characterization, and Spiking
2.4. Test Procedures
2.4.1. Reproduction Tests
2.4.2. Avoidance Tests
2.5. Data Analysis
3. Results
3.1. Materials Characterization
3.2. Ecotoxicological Tests
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nanotechnology Market by Type (Nanosensor and Nanodevice) and Application (Electronics, Energy, Chemical Manufacturing, Aerospace & Defense, Healthcare, and Others): Global Opportunity Analysis and Industry Forecast, 2021–2030. Available online: https://www.alliedmarketresearch.com/nanotechnology-market (accessed on 8 August 2022).
- European Commission. Pathway to a Healthy Planet for All—EU Action Plan: “Towards Zero Pollution for Air, Water and Soil”. 2021. Available online: https://lifeproetv.eu/wp-content/uploads/2022/02/8P_J-DEugenio_EU_policy_framework_Zero_Pollution_Action_Plan_and_ETV.pdf (accessed on 1 August 2022).
- Gottardo, S.; Mech, A.; Drbohlavová, J.; Małyska, A.; Bøwadt, S.; Riego Sintes, J.; Rauscher, H. Towards safe and sustainable innovation in nanotechnology: State-of-play for smart nanomaterials. NanoImpact 2021, 21, 100297. [Google Scholar] [CrossRef] [PubMed]
- Salieri, B.; Barruetabeña, L.; Rodríguez-Llopis, I.; Jacobsen, N.R.; Manier, N.; Trouiller, B.; Chapon, V.; Hadrup, N.; Jiménez, A.S.; Micheletti, C.; et al. Integrative approach in a safe by design context combining risk, life cycle and socio-economic assessment for safer and sustainable nanomaterials. NanoImpact 2021, 23, 100335. [Google Scholar] [CrossRef] [PubMed]
- Hjorth, R.; van Hove, L.; Wickson, F. What can nanosafety learn from drug development? The feasibility of “safety by design”. Nanotoxicology 2017, 11, 305–312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramburrun, P.; Khan, R.A.; Choonara, Y.E. Design, preparation, and functionalization of nanobiomaterials for enhanced efficacy in current and future biomedical applications. Nanotechnol. Rev. 2022, 11, 1802–1826. [Google Scholar] [CrossRef]
- Pepla, E. Nano-hydroxyapatite and its applications in preventive, restorative and regenerative dentistry: A review of literature. Ann. Stomatol. 2014, 5, 108. [Google Scholar] [CrossRef]
- Andronescu, E.; Grumezescu, A.M.; Guşă, M.-I.; Holban, A.M.; Ilie, F.-C.; Irimia, A.; Nicoară, I.-F.; Ţone, M. Nano-hydroxyapatite. In Nanobiomaterials in Hard Tissue Engineering; Elsevier: Amsterdam, The Netherlands, 2016; pp. 189–213. ISBN 9780323428620. [Google Scholar]
- Wang, Y.-C.; Dai, H.-L.; Li, Z.-H.; Meng, Z.-Y.; Xiao, Y.; Zhao, Z. Mesoporous polydopamine-coated hydroxyapatite nano-composites for ROS-triggered nitric oxide-enhanced photothermal therapy of osteosarcoma. J. Mater. Chem. B 2021, 9, 7401–7408. [Google Scholar] [CrossRef]
- Huang, J.; Best, S.M.; Bonfield, W.; Brooks, R.A.; Rushton, N.; Jayasinghe, S.N.; Edirisinghe, M.J. In vitro assessment of the biological response to nano-sized hydroxyapatite. J. Mater. Sci. Mater. Med. 2004, 15, 441–445. [Google Scholar] [CrossRef]
- Zhao, X.; Heng, B.C.; Xiong, S.; Guo, J.; Tan, T.T.-Y.; Boey, F.Y.C.; Ng, K.W.; Loo, J.S.C. In vitro assessment of cellular responses to rod-shaped hydroxyapatite nanoparticles of varying lengths and surface areas. Nanotoxicology 2011, 5, 182–194. [Google Scholar] [CrossRef]
- Albrecht, C.; Scherbart, A.M.; van Berlo, D.; Braunbarth, C.M.; Schins, R.P.F.; Scheel, J. Evaluation of cytotoxic effects and oxidative stress with hydroxyapatite dispersions of different physicochemical properties in rat NR8383 cells and primary macrophages. Toxicol. In Vitr. 2009, 23, 520–530. [Google Scholar] [CrossRef]
- Motskin, M.; Wright, D.M.; Muller, K.; Kyle, N.; Gard, T.G.; Porter, A.E.; Skepper, J.N. Hydroxyapatite nano and microparticles: Correlation of particle properties with cytotoxicity and biostability. Biomaterials 2009, 30, 3307–3317. [Google Scholar] [CrossRef]
- Zhao, X.; Ng, S.; Heng, B.C.; Guo, J.; Ma, L.; Tan, T.T.Y.; Ng, K.W.; Loo, S.C.J. Cytotoxicity of hydroxyapatite nanoparticles is shape and cell dependent. Arch. Toxicol. 2013, 87, 1037–1052. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Liu, C.; Qian, J.; Wang, J.; Zhang, Y. Size-mediated cytotoxicity and apoptosis of hydroxyapatite nanoparticles in human hepatoma HepG2 cells. Biomaterials 2010, 31, 730–740. [Google Scholar] [CrossRef]
- Remya, N.S.; Syama, S.; Sabareeswaran, A.; Mohanan, P.V. Investigation of chronic toxicity of hydroxyapatite nanoparticles administered orally for one year in wistar rats. Mater. Sci. Eng. C 2017, 76, 518–527. [Google Scholar] [CrossRef] [PubMed]
- Dan, P.; Sundararajan, V.; Ganeshkumar, H.; Gnanabarathi, B.; Subramanian, A.K.; Venkatasubu, G.D.; Ichihara, S.; Ichihara, G.; Sheik Mohideen, S. Evaluation of hydroxyapatite nanoparticles—Induced in vivo toxicity in Drosophila melanogaster. Appl. Surf. Sci. 2019, 484, 568–577. [Google Scholar] [CrossRef]
- Pappus, S.A.; Ekka, B.; Sahu, S.; Sabat, D.; Dash, P.; Mishra, M. A toxicity assessment of hydroxyapatite nanoparticles on development and behaviour of Drosophila melanogaster. J. Nanoparticle Res. 2017, 19, 136. [Google Scholar] [CrossRef]
- Zhao, X.; Ong, K.J.; Ede, J.D.; Stafford, J.L.; Ng, K.W.; Goss, G.G.; Loo, S.C.J. Evaluating the Toxicity of Hydroxyapatite Nanoparticles in Catfish Cells and Zebrafish Embryos. Small 2013, 9, 1734–1741. [Google Scholar] [CrossRef]
- Geetha, C.S.; Remya, N.S.; Leji, K.B.; Syama, S.; Reshma, S.C.; Sreekanth, P.J.; Varma, H.K.; Mohanan, P.V. Cells–nano interactions and molecular toxicity after delayed hypersensitivity, in Guinea pigs on exposure to hydroxyapatite nanoparticles. Colloids Surf. B Biointerfaces 2013, 112, 204–212. [Google Scholar] [CrossRef]
- Tampieri, A.; Landi, E.; Sandri, M.; Pressato, D.; Rivas Rey, J.; Bañobre-López, M.; Marcacci, M. Intrinsically Magnetic Hydroxyapatite. (PCT/IB2011/053362). Patent No. CA2806680C, 4 September 2018. [Google Scholar]
- Sandri, M.; Sprio, S.; Tampieri, A. Physical solar filter consisting of substituted hydroxyapatite in an organic matrix. (WO2017/153888-102016000023614). Patent No. US10813856B2, 27 October 2020. [Google Scholar]
- Adamiano, A.; Sangiorgi, N.; Sprio, S.; Ruffini, A.; Sandri, M.; Sanson, A.; Gras, P.; Grossin, D.; Francès, C.; Chatzipanagis, K.; et al. Biomineralization of a titanium-modified hydroxyapatite semiconductor on conductive wool fibers. J. Mater. Chem. B 2017, 5, 7608–7621. [Google Scholar] [CrossRef]
- Tampieri, A.; Sandri, M.; Landi, E.; Pressato, D.; Francioli, S.; Quarto, R.; Martin, I. Design of graded biomimetic osteochondral composite scaffolds. Biomaterials 2008, 29, 3539–3546. [Google Scholar] [CrossRef] [Green Version]
- Tampieri, A.; Iafisco, M.; Sandri, M.; Panseri, S.; Cunha, C.; Sprio, S.; Savini, E.; Uhlarz, M.; Herrmannsdörfer, T. Magnetic Bioinspired Hybrid Nanostructured Collagen–Hydroxyapatite Scaffolds Supporting Cell Proliferation and Tuning Regenerative Process. ACS Appl. Mater. Interfaces 2014, 6, 15697–15707. [Google Scholar] [CrossRef]
- Panseri, S.; Cunha, C.; D’Alessandro, T.; Sandri, M.; Giavaresi, G.; Marcacci, M.; Hung, C.T.; Tampieri, A. Intrinsically superparamagnetic Fe-hydroxyapatite nanoparticles positively influence osteoblast-like cell behaviour. J. Nanobiotechnol. 2012, 10, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- OECD. Test No. 220: Enchytraeid Reproduction Test, OECD Guidelines for the Testing of Chemicals; Organization for Economic Cooperation and Development: Paris, France, 2016. [Google Scholar]
- OECD. Guidance on Sample Preparation and Dosimetry for the Safety Testing of Manufactured Nanomaterials; Series on the Safety of Manufactured Nanomaterials No. 36; Organization for Economic Cooperation and Development: Paris, France, 2012; Available online: https://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=env/jm/mono(2012)40&doclanguage=en (accessed on 10 November 2022).
- Ribeiro, M.J.; Maria, V.L.; Soares, A.M.V.M.; Scott-Fordsmand, J.J.; Amorim, M.J.B. Fate and Effect of Nano Tungsten Carbide Cobalt (WCCo) in the Soil Environment: Observing a Nanoparticle Specific Toxicity in Enchytraeus crypticus. Environ. Sci. Technol. 2018, 52, 11394–11401. [Google Scholar] [CrossRef] [PubMed]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef] [PubMed]
- ISO 17512-1; Soil Quality—Avoidance Test for Testing the Quality of Soils and Effects of Chemicals—Part 1: Test with Earthworms (Eisenia fetida and Eisenia andrei). Guideline No 17512-1; International Organization for Standardization: Geneva, Switzerland, 2008.
- Bicho, R.C.; Gomes, S.I.L.; Soares, A.M.V.M.; Amorim, M.J.B. Non-avoidance behaviour in enchytraeids to boric acid is related to the GABAergic mechanism. Environ. Sci. Pollut. Res. 2015, 22, 6898–6903. [Google Scholar] [CrossRef] [PubMed]
- Bicho, R.C.; Ribeiro, T.; Rodrigues, N.P.; Scott-Fordsmand, J.J.; Amorim, M.J.B. Effects of Ag nanomaterials (NM300K) and Ag salt (AgNO3) can be discriminated in a full life cycle long term test with Enchytraeus crypticus. J. Hazard. Mater. 2016, 318, 608–614. [Google Scholar] [CrossRef] [PubMed]
- Mendes, L.; Maria, V.; Scott-Fordsmand, J.; Amorim, M. Ag Nanoparticles (Ag NM300K) in the Terrestrial Environment: Effects at Population and Cellular Level in Folsomia candida (Collembola). Int. J. Environ. Res. Public Health 2015, 12, 12530–12542. [Google Scholar] [CrossRef] [Green Version]
- Santos, F.C.F.; Gomes, S.I.L.; Scott-Fordsmand, J.J.; Amorim, M.J.B. Hazard assessment of nickel nanoparticles in soil-The use of a full life cycle test with Enchytraeus crypticus. Environ. Toxicol. Chem. 2017, 36, 2934–2941. [Google Scholar] [CrossRef]
- Guimarães, B.; Gomes, S.I.L.; Scott-Fordsmand, J.J.; Amorim, M.J.B. Impacts of Longer-Term Exposure to AuNPs on Two Soil Ecotoxicological Model Species. Toxics 2022, 10, 153. [Google Scholar] [CrossRef]
- Li, S.; Jia, M.; Li, Z.; Ke, X.; Wu, L.; Christie, P. Ecotoxicity of arsenic contamination toward the soil enchytraeid Enchytraeus crypticus at different biological levels: Laboratory studies. Ecotoxicol. Environ. Saf. 2021, 207, 111218. [Google Scholar] [CrossRef]
- Chen, J.; Dong, X.; Xin, Y.; Zhao, M. Effects of titanium dioxide nano-particles on growth and some histological parameters of zebrafish (Danio rerio) after a long-term exposure. Aquat. Toxicol. 2011, 101, 493–499. [Google Scholar] [CrossRef]
- He, X.; Reichl, F.-X.; Milz, S.; Michalke, B.; Wu, X.; Sprecher, C.M.; Yang, Y.; Gahlert, M.; Röhling, S.; Kniha, H.; et al. Titanium and zirconium release from titanium- and zirconia implants in mini pig maxillae and their toxicity in vitro. Dent. Mater. 2020, 36, 402–412. [Google Scholar] [CrossRef] [PubMed]
- Pereira, C.M.S.; Novais, S.C.; Soares, A.M.V.M.; Amorim, M.J.B. Dimethoate affects cholinesterases in Folsomia candida and their locomotion—False negative results of an avoidance behaviour test. Sci. Total Environ. 2013, 443, 821–827. [Google Scholar] [CrossRef] [PubMed]
- Landi, E.; Logroscino, G.; Proietti, L.; Tampieri, A.; Sandri, M.; Sprio, S. Biomimetic Mg-substituted hydroxyapatite: From synthesis to in vivo behaviour. J. Mater. Sci. Mater. Med. 2008, 19, 239–247. [Google Scholar] [CrossRef]
- Tampieri, A.; D’Alessandro, T.; Sandri, M.; Sprio, S.; Landi, E.; Bertinetti, L.; Panseri, S.; Pepponi, G.; Goettlicher, J.; Bañobre-López, M.; et al. Intrinsic magnetism and hyperthermia in bioactive Fe-doped hydroxyapatite. Acta Biomater. 2012, 8, 843–851. [Google Scholar] [CrossRef] [PubMed]
- Krishnakumar, G.S.; Gostynska, N.; Dapporto, M.; Campodoni, E.; Montesi, M.; Panseri, S.; Tampieri, A.; Kon, E.; Marcacci, M.; Sprio, S.; et al. Evaluation of different crosslinking agents on hybrid biomimetic collagen-hydroxyapatite composites for regenerative medicine. Int. J. Biol. Macromol. 2018, 106, 739–748. [Google Scholar] [CrossRef]
Test Material | Test Type | Endpoints: Sampling Days | Concentrations (mg NM/kg Soil) | Visual Aspect |
---|---|---|---|---|
Sigma-HA | ERT ERT extension | Survival: 7, 14, 21, 28; Reproduction: 28, 56 | 0, 100, 320, 1000, 3200 | Powder |
CaP-HA | ERT ERT extension | Survival: 7, 14, 21, 28; Reproduction: 28, 56; Size: 28 | 0, 100, 320, 1000, 3200 | Powder |
Fe-HA | ERT ERT extension | Survival: 7, 14, 21, 28; Reproduction: 28, 56; Size: 28 | 0, 100, 320, 1000, 3200 | Powder |
Ti-HA | ERT ERT extension | Survival: 7, 14, 21, 28; Reproduction: 28, 56; Size: 28 | 0, 100, 320, 1000, 3200 | Powder |
Ti-HA-Alg | ERT ERT extension | Survival: 7, 14, 21, 28; Reproduction: 28, 56; Size: 28 | 0, 100, 320, 1000, 3200 | Flakes |
HA-Coll | Avoidance | Avoidance behaviour: 2, 3, 4 | 0, 100, 1000 | Aggregated Fibbers |
Fe-HA-Coll | Avoidance | Avoidance behaviour: 2, 3, 4 | 0, 100, 1000 | Aggregated Fibbers |
nHA | |||||||
---|---|---|---|---|---|---|---|
Sigma-HA | CaP-HA | Fe-HA | Ti-HA | Ti-HA-Alg | HA-Coll | Fe-HA-Coll | |
Chemical composition | Ca5(OH) (PO4)3 | Ca = 34 wt%; P = 16 wt%; Ca/P = 1.64 mol/mol | Ca = 23 wt%; P = 15 wt%; Fe = 10 wt%; (Ca + Fe)/P = 1.64 mol/mol | Ca = 37.0 wt%; P = 14.6 wt%; Ti = 4.5 wt%; (Ca + P)/(P + Ti) = 1.49 mol/mol | Ca/P = 1.60 mol; Ti/Ca = 15 mol%; Ti/P = 23.2 mol%; (Ca + Ti)/(P + Ti)= 1.49 mol/mol Alg:TiHA = 10:90 | Ca/P = 1.60 mol/mol HA:Coll = 60:40 | Ca/P = 1.43 mol/mol; Fe/Ca = 0.19 mol%; (Ca + Fe)/P = 1.70 mol/mol; Fe = 3.83 wt% HA:Coll = 60:40 |
Hydrodynamic size (DLS, nm) | 2441 | 319.36 | 163.7 | 241.7 | - | - | - |
Surface charge (zeta potential, mV) | 1.35 | −19.66 | −19.3 | −9.11 | - | - | - |
Shape (TEM/SEM) | Round | Round | Needle-like | Rod-like | Hybrid flakes | Hybrid fibres | Hybrid fibres |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gomes, S.I.L.; Guimarães, B.; Campodoni, E.; Sandri, M.; Sprio, S.; Blosi, M.; Costa, A.L.; Scott-Fordsmand, J.J.; Amorim, M.J.B. Safer and Sustainable-by-Design Hydroxyapatite Nanobiomaterials for Biomedical Applications: Assessment of Environmental Hazards. Nanomaterials 2022, 12, 4060. https://doi.org/10.3390/nano12224060
Gomes SIL, Guimarães B, Campodoni E, Sandri M, Sprio S, Blosi M, Costa AL, Scott-Fordsmand JJ, Amorim MJB. Safer and Sustainable-by-Design Hydroxyapatite Nanobiomaterials for Biomedical Applications: Assessment of Environmental Hazards. Nanomaterials. 2022; 12(22):4060. https://doi.org/10.3390/nano12224060
Chicago/Turabian StyleGomes, Susana I. L., Bruno Guimarães, Elisabetta Campodoni, Monica Sandri, Simone Sprio, Magda Blosi, Anna L. Costa, Janeck J. Scott-Fordsmand, and Mónica J. B. Amorim. 2022. "Safer and Sustainable-by-Design Hydroxyapatite Nanobiomaterials for Biomedical Applications: Assessment of Environmental Hazards" Nanomaterials 12, no. 22: 4060. https://doi.org/10.3390/nano12224060
APA StyleGomes, S. I. L., Guimarães, B., Campodoni, E., Sandri, M., Sprio, S., Blosi, M., Costa, A. L., Scott-Fordsmand, J. J., & Amorim, M. J. B. (2022). Safer and Sustainable-by-Design Hydroxyapatite Nanobiomaterials for Biomedical Applications: Assessment of Environmental Hazards. Nanomaterials, 12(22), 4060. https://doi.org/10.3390/nano12224060