Hyperbranched Poly(β-amino ester)s (HPAEs) Structure Optimisation for Enhanced Gene Delivery: Non-Ideal Termination Elimination
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of HPAEs
2.3. Molecular Weight Measurements
2.4. Nuclear Magnetic Resonance (NMR)
2.5. Polyplex Preparation
2.6. DNA binding Assay
2.7. Agarose Gel Electrophoresis
2.8. Polyplex Size and Charge Characterisation and In Vitro Stability Assay
2.9. Cell Culture
2.10. Cell Transfection
2.11. Statistical Analysis
3. Result and Discussion
3.1. Synthesis and Characterisation of HPAEs
3.2. Polyplex Characterisation of HPAEs
3.3. In Vitro Transfection of HPAEs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Naldini, L. Gene therapy returns to centre stage. Nature 2015, 526, 351–360. [Google Scholar] [CrossRef]
- Foldvari, M.; Chen, D.W.; Nafissi, N.; Calderon, D.; Narsineni, L.; Rafiee, A. Non-viral gene therapy: Gains and challenges of non-invasive administration methods. J. Control. Release 2016, 240, 165–190. [Google Scholar] [CrossRef]
- Yin, H.; Kanasty, R.L.; Eltoukhy, A.A.; Vegas, A.J.; Dorkin, J.R.; Anderson, D.G. Non-viral vectors for gene-based therapy. Nat. Rev. Genet. 2014, 15, 541–555. [Google Scholar] [CrossRef]
- Allen, T.M.; Cullis, P.R. Liposomal drug delivery systems: From concept to clinical applications. Adv. Drug Deliv. Rev. 2013, 65, 36–48. [Google Scholar] [CrossRef]
- Kumar, R.; Le, N.; Tan, Z.; Brown, M.E.; Jiang, S.; Reineke, T.M. Efficient Polymer-Mediated Delivery of Ribonucleoprotein Payloads Through Combinatorial Design & Parallelized Experimentation. ACS Nano 2020, 14, 17626–17639. [Google Scholar] [CrossRef]
- Lynn, D.M.; Langer, R. Degradable poly(β-amino esters): Synthesis, characterization, and self-assembly with plasmid DNA. J. Am. Chem. Soc. 2000, 122, 10761–10768. [Google Scholar] [CrossRef]
- Anderson, D.G.; Akinc, A.; Hossain, N.; Langer, R. Structure/property studies of polymeric gene delivery using a library of poly(β-amino esters). Mol. Ther. 2005, 11, 426–434. [Google Scholar] [CrossRef]
- Zugates, G.T.; Tedford, N.C.; Zumbuehl, A.; Jhunjhunwala, S.; Kang, C.S.; Griffith, L.G.; Lauffenburger, D.A.; Langer, R.; Anderson, D.G. Gene delivery properties of end-modified poly(β-amino ester)s. Bioconjug. Chem. 2007, 18, 1887–1896. [Google Scholar] [CrossRef]
- Wang, W.; Zhou, D.; Cutlar, L.; Gao, Y.; Wang, W.; O’Keeffe-Ahern, J.; McMahon, S.; Duarte, B.; Larcher, F.; Rodriguez, B.J.; et al. The transition from linear to highly branched poly(β-amino ester)s: Branching matters for gene delivery. Sci. Adv. 2016, 2, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Gao, Y.; Zhou, D.; Zeng, M.; Alshehri, F.; Newland, B.; Lyu, J.; O’Keeffe-Ahern, J.; Greiser, U.; Guo, T.; et al. Highly branched poly(β-amino ester) delivery of minicircle DNA for transfection of neurodegenerative disease related cells. Nat. Commun. 2019, 10, 3307. [Google Scholar] [CrossRef]
- Huang, X.; Zhou, D.; Sigen, A.; Gao, Y.; Wang, X.; Li, X.; Xu, Q.; Greiser, U.; Yin, G.; Wang, W. Star Polymers from Single-Chain Cyclized/Knotted Nanoparticles as a Core. Macromol. Chem. Phys. 2018, 219, 1700473. [Google Scholar] [CrossRef]
- Wang, C.; Huang, X.; Sun, L.; Li, Q.; Li, Z.; Yong, H.; Che, D.; Yan, C.; Geng, S.; Wang, W.; et al. Cyclic poly(β-amino ester)s with enhanced gene transfection activity synthesized through intra-molecular cyclization. Chem. Commun. 2022, 58, 2136–2139. [Google Scholar] [CrossRef]
- O’Keeffe Ahern, J.; Sigen, A.; Zhou, D.; Gao, Y.; Lyu, J.; Meng, Z.; Cutlar, L.; Pierucci, L.; Wang, W. Brushlike Cationic Polymers with Low Charge Density for Gene Delivery. Biomacromolecules 2018, 19, 1410–1415. [Google Scholar] [CrossRef]
- Newland, B.; Zheng, Y.; Jin, Y.; Abu-Rub, M.; Cao, H.; Wang, W.; Pandit, A. Single cyclized molecule versus single branched molecule: A simple and efficient 3D “knot” polymer structure for nonviral gene delivery. J. Am. Chem. Soc. 2012, 134, 4782–4789. [Google Scholar] [CrossRef] [Green Version]
- Zhou, D.; Gao, Y.; Aied, A.; Cutlar, L.; Igoucheva, O.; Newland, B.; Alexeeve, V.; Greiser, U.; Uitto, J.; Wang, W. Highly branched poly(β-amino ester)s for skin gene therapy. J. Control. Release 2016, 244, 336–346. [Google Scholar] [CrossRef]
- Zeng, M.; Zhou, D.; Ng, S.; Ahern, J.O.K.; Alshehri, F.; Gao, Y.; Pierucci, L.; Greiser, U.; Wang, W. Highly branched poly(5-amino-1-pentanol-co-1, 4butanediol diacrylate) for high performance gene transfection. Polymers 2017, 9, 161. [Google Scholar] [CrossRef] [Green Version]
- Zhou, D.; Gao, Y.; O’Keeffe Ahern, J.; Sigen, A.; Xu, Q.; Huang, X.; Greiser, U.; Wang, W. Development of Branched Poly(5-Amino-1-pentanol-co-1,4-butanediol Diacrylate) with High Gene Transfection Potency Across Diverse Cell Types. ACS Appl. Mater. Interfaces 2016, 8, 34218–34226. [Google Scholar] [CrossRef]
- Zeng, M.; Alshehri, F.; Zhou, D.; Lara-Sáez, I.; Wang, X.; Li, X.; Sigen, A.; Xu, Q.; Zhang, J.; Wang, W. Efficient and Robust Highly Branched Poly(β-amino ester)/Minicircle COL7A1 Polymeric Nanoparticles for Gene Delivery to Recessive Dystrophic Epidermolysis Bullosa Keratinocytes. ACS Appl. Mater. Interfaces 2019, 11, 30661–30672. [Google Scholar] [CrossRef]
- Huang, J.Y.; Gao, Y.; Cutlar, L.; O’Keeffe-Ahern, J.; Zhao, T.; Lin, F.H.; Zhou, D.; McMahon, S.; Greiser, U.; Wang, W.; et al. Tailoring highly branched poly(β-amino ester)s: A synthetic platform for epidermal gene therapy. Chem. Commun. 2015, 51, 8473–8476. [Google Scholar] [CrossRef]
- Gao, Y.; Huang, J.Y.; O’Keeffe Ahern, J.; Cutlar, L.; Zhou, D.; Lin, F.H.; Wang, W. Highly Branched Poly(β-amino esters) for Non-Viral Gene Delivery: High Transfection Efficiency and Low Toxicity Achieved by Increasing Molecular Weight. Biomacromolecules 2016, 17, 3640–3647. [Google Scholar] [CrossRef]
- Cutlar, L.; Zhou, D.; Gao, Y.; Zhao, T.; Greiser, U.; Wang, W.; Wang, W. Highly Branched Poly(β-Amino Esters): Synthesis and Application in Gene Delivery. Biomacromolecules 2015, 16, 2609–2617. [Google Scholar] [CrossRef]
- Schmaljohann, D.; Voit, B. Kinetic Evaluation of Hyperbranched A2 + B3 Polycondensation Reactions. Macromol. Theory Simul. 2003, 12, 679–689. [Google Scholar] [CrossRef]
- Aied, A.; Greiser, U.; Pandit, A.; Wang, W. Polymer gene delivery: Overcoming the obstacles. Drug Discov. Today 2013, 18, 1090–1098. [Google Scholar] [CrossRef]
- Chaudhary, N.; Weissman, D.; Whitehead, K.A. mRNA vaccines for infectious diseases: Principles, delivery and clinical translation. Nat. Rev. Drug Discov. 2021, 20, 817–838. [Google Scholar] [CrossRef]
- Armbruster, N.; Jasny, E.; Petsch, B. Advances in RNA Vaccines for Preventive Indications: A Case Study of a Vaccine against Rabies. Vaccines 2019, 7, 132. [Google Scholar] [CrossRef] [Green Version]
- Segel, M.; Lash, B.; Song, J.; Ladha, A.; Liu, C.C.; Jin, X.; Mekhedov, S.L.; Macrae, R.K.; Koonin, E.V.; Zhang, F. Mammalian retrovirus-like protein PEG10 packages its own mRNA and can be pseudotyped for mRNA delivery. Science 2021, 373, 882–889. [Google Scholar] [CrossRef]
Mn (Da) | Mw (Da) | PDI | TR | |
---|---|---|---|---|
A-E7 | 3.8 k | 7.3 k | 1.9 | 0.11 |
D-E7 | 3.4 k | 6.4 k | 1.9 | 0.06 |
B-E7 | 4.2 k | 10.2 k | 2.4 | 0.13 |
E-E7 | 4.2 k | 9.7 k | 2.3 | 0.05 |
C-E7 | 4.8 k | 14.9 k | 3.1 | 0.09 |
F-E7 | 4.8 k | 14.6 k | 3.0 | 0.04 |
A-DMP | 3.5 k | 7.8 k | 2.2 | |
D-DMP | 3.4 k | 7.1 k | 2.0 | |
B-DMP | 4.1 k | 11.7 k | 2.9 | |
E-DMP | 4.2 k | 10.5 k | 2.5 | |
C-DMP | 4.3 k | 17.0 k | 3.9 | |
F-DMP | 4.7 k | 15.9 k | 3.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; He, Z.; Lyu, J.; Wang, X.; Qiu, B.; Lara-Sáez, I.; Zhang, J.; Zeng, M.; Xu, Q.; A, S.; et al. Hyperbranched Poly(β-amino ester)s (HPAEs) Structure Optimisation for Enhanced Gene Delivery: Non-Ideal Termination Elimination. Nanomaterials 2022, 12, 3892. https://doi.org/10.3390/nano12213892
Li Y, He Z, Lyu J, Wang X, Qiu B, Lara-Sáez I, Zhang J, Zeng M, Xu Q, A S, et al. Hyperbranched Poly(β-amino ester)s (HPAEs) Structure Optimisation for Enhanced Gene Delivery: Non-Ideal Termination Elimination. Nanomaterials. 2022; 12(21):3892. https://doi.org/10.3390/nano12213892
Chicago/Turabian StyleLi, Yinghao, Zhonglei He, Jing Lyu, Xianqing Wang, Bei Qiu, Irene Lara-Sáez, Jing Zhang, Ming Zeng, Qian Xu, Sigen A, and et al. 2022. "Hyperbranched Poly(β-amino ester)s (HPAEs) Structure Optimisation for Enhanced Gene Delivery: Non-Ideal Termination Elimination" Nanomaterials 12, no. 21: 3892. https://doi.org/10.3390/nano12213892