Fabrication of Polyaniline/Graphene Oxide Nanosheet@ Tea Waste Granules Adsorbent for Groundwater Purification
Abstract
:1. Introduction
2. Materials and Methods
2.1. Groundwater Sampling
2.2. Synthesis of Polyaniline/Graphene Oxide@ Granular Tea Waste
2.3. Characterization
2.4. Br− Adsorption Experiments
3. Results and Discussion
3.1. Synthesis and Characterization
3.2. Removal of Br− Adsorption
3.3. Regeneration and Reusability Studies
3.4. Real Groundwater Treatment
3.5. Comparison of the Adsorption Capacities
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schoonen, M.A.; Devoe, V.; Brown, C.J. Bromide in Long Island Groundwaters and Surface Waters; SUNY-Stony Brook: Stony Brook, NY, USA, 1995. [Google Scholar]
- Magazinovic, R.S.; Nicholson, B.C.; Mulcahy, D.E.; Davey, D.E. Bromide levels in natural waters: Its relationship to levels of both chloride and total dissolved solids and the implications for water treatment. Chemosphere 2004, 57, 329–335. [Google Scholar] [CrossRef] [PubMed]
- Weinberg, H.S.; Krasner, S.W.; Richardson, S.D.; Thruston, A., Jr. The Occurrence of Disinfection by-Products (DBPs) of Health Concern in Drinking Water: Results of a Nationwide DBP Occurrence Study; National Exposure Research Laboratory, Office of Research and Development, US Environmental Protection Agency: Athens, GA, USA, 2002.
- Von Gunten, U. Ozonation of drinking water: Part II. Disinfection and by-product formation in presence of bromide, iodide or chlorine. Water Res. 2003, 37, 1469–1487. [Google Scholar] [CrossRef]
- World Health Organization. Bromide in Drinking-Water: Background Document for Development of WHO Guidelines for Drinking-Water Quality; World Health Organization: Geneva, Switzerland, 2009. [Google Scholar]
- Sedlak, D.L.; von Gunten, U. The chlorine dilemma. Science 2011, 331, 42–43. [Google Scholar] [CrossRef] [PubMed]
- Aljundi, I.H. Bromate formation during ozonation of drinking water: A response surface methodology study. Desalination 2011, 277, 24–28. [Google Scholar] [CrossRef]
- Watson, K.; Farré, M.J.; Knight, N. Strategies for the removal of halides from drinking water sources, and their applicability in disinfection by-product minimisation: A critical review. J. Environ. Manag. 2012, 110, 276–298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Majidnia, Z.; Idris, A. Photocatalytic reduction of iodine in radioactive waste water using maghemite and titania nanoparticles in PVA-alginate beads. J. Taiwan Inst. Chem. Eng. 2015, 54, 137–144. [Google Scholar] [CrossRef]
- Ateia, M.; Erdem, C.U.; Ersan, M.S.; Ceccato, M.; Karanfil, T. Selective removal of bromide and iodide from natural waters using a novel AgCl-SPAC composite at environmentally relevant conditions. Water Res. 2019, 156, 168–178. [Google Scholar] [CrossRef]
- Rajaeian, B. Removal of Bromide from Drinking Water Sources using Silver Impregnated Activated Carbon (SIAC): Understanding Br-SIAC Interactions. Ph.D. Thesis, Curtin University, Bentley, WA, USA, 2017. [Google Scholar]
- Zhao, W.; Dong, Q.; Sun, C.; Xia, D.; Huang, H.; Yang, G.; Wang, G.; Leung, D.Y. A novel Au/g-C3N4 nanosheets/CeO2 hollow nanospheres plasmonic heterojunction photocatalysts for the photocatalytic reduction of hexavalent chromium and oxidation of oxytetracycline hydrochloride. Chem. Eng. J. 2021, 409, 128185. [Google Scholar] [CrossRef]
- Mu, F.; Miao, X.; Cao, J.; Zhao, W.; Yang, G.; Zeng, H.; Li, S.; Sun, C. Integration of plasmonic effect and S-scheme heterojunction into gold decorated carbon nitride/cuprous oxide catalyst for photocatalysis. J. Clean. Prod. 2022, 360, 131948. [Google Scholar] [CrossRef]
- Zhao, W.; Ma, S.; Yang, G.; Wang, G.; Zhang, L.; Xia, D.; Huang, H.; Cheng, Z.; Xu, J.; Sun, C. Z-scheme Au decorated carbon nitride/cobalt tetroxide plasmonic heterojunction photocatalyst for catalytic reduction of hexavalent chromium and oxidation of Bisphenol A. J. Hazard. Mater. 2021, 410, 124539. [Google Scholar] [CrossRef]
- Shi, M.; Guo, C.; Li, J.; Li, J.; Zhang, L.; Wang, X.; Ju, Y.; Zheng, J.; Li, X. Removal of bromide from water by adsorption on nanostructured δ-Bi2O3. J. Nanosci. Nanotechnol. 2017, 17, 6951–6956. [Google Scholar] [CrossRef]
- Gong, C.; Zhang, Z.; Qian, Q.; Liu, D.; Cheng, Y.; Yuan, G. Removal of bromide from water by adsorption on silver-loaded porous carbon spheres to prevent bromate formation. Chem. Eng. J. 2013, 218, 333–340. [Google Scholar] [CrossRef]
- Liu, S.; Cheng, G.; Xiong, Y.; Ding, Y.; Luo, X. Adsorption of low concentrations of bromide ions from water by cellulose-based beads modified with TEMPO-mediated oxidation and Fe (III) complexation. J. Hazard. Mater. 2020, 384, 121195. [Google Scholar] [CrossRef] [PubMed]
- Thakur, K.; Kandasubramanian, B. Graphene and graphene oxide-based composites for removal of organic pollutants: A review. J. Chem. Eng. Data 2019, 64, 833–867. [Google Scholar] [CrossRef]
- Ghulam, A.N.; Dos Santos, O.A.; Hazeem, L.; Backx, B.P.; Bououdina, M.; Bellucci, S. Graphene Oxide (GO) Materials—Applications and Toxicity on Living Organisms and Environment. J. Funct. Biomater. 2022, 13, 77. [Google Scholar] [CrossRef]
- Li, B.; Gan, L.; Owens, G.; Chen, Z. New nano-biomaterials for the removal of malachite green from aqueous solution via a response surface methodology. Water Res. 2018, 146, 55–66. [Google Scholar] [CrossRef]
- Yang, A.; Zhu, Y.; Li, P.; Huang, C. Preparation of a magnetic reduced-graphene oxide/tea waste composite for high-efficiency sorption of uranium. Sci. Rep. 2019, 9, 6471. [Google Scholar] [CrossRef] [Green Version]
- Hussain, S.; Anjali, K.; Hassan, S.T.; Dwivedi, P.B. Waste tea as a novel adsorbent: A review. Appl. Water Sci. 2018, 8, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Joshi, S.; Kataria, N.; Garg, V.; Kadirvelu, K. Pb2+ and Cd2+ recovery from water using residual tea waste and SiO2@ TW nanocomposites. Chemosphere 2020, 257, 127277. [Google Scholar] [CrossRef]
- Saleem, F.; Bhatti, H.N.; Khan, A.; Farhat, L.B.; Elqahtani, Z.M.; Alwadai, N.; Iqbal, M. Polypyrrole/Magnetic/Tea Waste Composites for PO43− Ions Removal: Adsorption-Desorption, Kinetics, and Thermodynamics Studies. Adsorpt. Sci. Technol. 2022, 2022, 4071162. [Google Scholar] [CrossRef]
- Okhay, O.; Tkach, A. Synergetic Effect of Polyaniline and Graphene in Their Composite Supercapacitor Electrodes: Impact of Components and Parameters of Chemical Oxidative Polymerization. Nanomaterials 2022, 12, 2531. [Google Scholar] [CrossRef] [PubMed]
- Jilani, A.; Hussain, S.Z.; Ansari, M.O.; Kumar, R.; Dustgeer, M.R.; Othman, M.H.D.; Barakat, M.; Melaibari, A.A. Facile synthesis of silver decorated reduced graphene oxide@ zinc oxide as ternary nanocomposite: An efficient photocatalyst for the enhanced degradation of organic dye under UV–visible light. J. Mater. Sci. 2021, 56, 7434–7450. [Google Scholar] [CrossRef]
- Majumdar, D. Functionalized-graphene/polyaniline nanocomposites as proficient energy storage material: An overview. Innov. Energy Res. 2016, 5, 145. [Google Scholar]
- Cai, H.-M.; Chen, G.-J.; Peng, C.-Y.; Zhang, Z.-Z.; Dong, Y.-Y.; Shang, G.-Z.; Zhu, X.-H.; Gao, H.-J.; Wan, X.-C. Removal of fluoride from drinking water using tea waste loaded with Al/Fe oxides: A novel, safe and efficient biosorbent. Appl. Surf. Sci. 2015, 328, 34–44. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, J.; Zhang, Y.; Liu, J.; Duan, Y. Facile synthesis of hierarchical nanocomposites of aligned polyaniline nanorods on reduced graphene oxide nanosheets for microwave absorbing materials. RSC Adv. 2017, 7, 54031–54038. [Google Scholar] [CrossRef] [Green Version]
- Tong, Z.; Yang, Y.; Wang, J.; Zhao, J.; Su, B.-L.; Li, Y. Layered polyaniline/graphene film from sandwich-structured polyaniline/graphene/polyaniline nanosheets for high-performance pseudosupercapacitors. J. Mater. Chem. A 2014, 2, 4642–4651. [Google Scholar] [CrossRef]
- Li, Y.; Xia, Z.; Gong, Q.; Liu, X.; Yang, Y.; Chen, C.; Qian, C. Green synthesis of free standing cellulose/graphene oxide/polyaniline aerogel electrode for high-performance flexible all-solid-state supercapacitors. Nanomaterials 2020, 10, 1546. [Google Scholar] [CrossRef]
- Nagajyothi, P.C.; Yoo, K.; Ramaraghavulu, R.; Shim, J. Hydrothermal Synthesis of MnWO4@ GO Composite as Non-Precious Electrocatalyst for Urea Oxidation. Nanomaterials 2021, 12, 85. [Google Scholar] [CrossRef]
- Ebrahimian, A.; Saberikhah, E. Biosorption of methylene blue onto Foumanat tea waste: Equilibrium and thermodynamic studies. Cellul. Chem. Technol. 2013, 47, 657–666. [Google Scholar]
- Rong, X.; Qiu, F.; Zhang, C.; Fu, L.; Wang, Y.; Yang, D. Preparation, characterization and photocatalytic application of TiO2–graphene photocatalyst under visible light irradiation. Ceram. Int. 2015, 41, 2502–2511. [Google Scholar] [CrossRef]
- Mello, G.A.; Briega-Martos, V.; Climent, V.; Feliu, J.M. Bromide Adsorption on Pt (111) over a Wide Range of pH: Cyclic Voltammetry and CO Displacement Experiments. J. Phys. Chem. C 2018, 122, 18562–18569. [Google Scholar] [CrossRef] [Green Version]
- Nishi, M.; Ohkubo, T.; Yamasaki, M.; Takagi, H.; Kuroda, Y. Surplus adsorption of bromide ion into π-conjugated carbon nanospaces assisted by proton coadsorption. J. Colloid Interface Sci. 2017, 508, 415–418. [Google Scholar] [CrossRef] [PubMed]
- Sikdar, D.; Goswami, S.; Das, P. Activated carbonaceous materials from tea waste and its removal capacity of indigo carmine present in solution: Synthesis, batch and optimization study. Sustain. Environ. Res. 2020, 30, 1–16. [Google Scholar] [CrossRef]
- Kumbhar, P.; Narale, D.; Bhosale, R.; Jambhale, C.; Kim, J.-H.; Kolekar, S. Synthesis of tea waste/Fe3O4 magnetic composite (TWMC) for efficient adsorption of crystal violet dye: Isotherm, kinetic and thermodynamic studies. J. Environ. Chem. Eng. 2022, 10, 107893. [Google Scholar] [CrossRef]
- Ifelebuegu, A.; Ukpebor, J.; Obidiegwu, C.; Kwofi, B. Comparative potential of black tea leaves waste to granular activated carbon in adsorption of endocrine disrupting compounds from aqueous solution. Glob. J. Environ. Sci. Manag. 2015, 1, 205–214. [Google Scholar]
- Zhang, Y.-Q.; Wu, Q.-P.; Zhang, J.-M.; Yang, X.-H. Removal of bromide and bromate from drinking water using granular activated carbon. J. Water Health 2015, 13, 73–78. [Google Scholar] [CrossRef]
- Medellin-Castillo, N.A.; Isaacs-Páez, E.D.; Giraldo-Gutierrez, L.; Moreno-Piraján, J.C.; Rodríguez-Méndez, I.; Reyes-López, S.Y.; Reyes-Hernández, J.; Segovia-Sandoval, S.J. Data for the synthesis, characterization, and use of xerogels as adsorbents for the removal of fluoride and bromide in aqueous phase. Data Brief 2022, 42, 108138. [Google Scholar] [CrossRef]
Kinetic Model | Parameters | Values |
---|---|---|
Pseudo-first-order: | qe (exp) (mg g−1): | 21.1 |
qe (cal) (mg g−1): | 21.062 | |
k1 (min−1): | 0.047 | |
R2: | 0.984 | |
RMSE: | 1.016 | |
χ2 | 0.796 | |
Pseudo-second-order: | qe (cal) (mg g−1): | 24.210 |
k2 (g mg−1 min−1): | 0.0022 | |
R2: | 0.970 | |
RMSE: | 1.419 | |
χ2 | 1.650 | |
Elovich model: | a (mg g−1 min−1): | 2.196 |
β (mg g−1): | 0.186 | |
R2: | 0.938 | |
RMSE: | 2.027 | |
χ2 | 3.717 |
Isotherm Model | Parameters | Values |
---|---|---|
Langmuir | qm (mg g−1): | 26.920 |
KL (L mg−1): | 0.112 | |
R2: | 0.972 | |
RMSE: | 1.290 | |
χ2: | 1.620 | |
Freundlich | n: | 2.351 |
Kf (mg g−1) (mg L−1)−1/nF: | 4.717 | |
R2: | 0.901 | |
RMSE: | 2.427 | |
χ2: | 4.230 | |
Temkin | Bt (J mg−1) | 509.409 |
Kt (L mg−1): | 1.949 | |
R2: | 0.9108 | |
RMSE: | 2.306 | |
χ2: | 4.587 |
Materials | Efficiency | Conditions | Ref. | |||||
---|---|---|---|---|---|---|---|---|
pH | Mass (g) | Time (min.) | Temp. (°C) | Conc. (mg/L) | Volume (mL) | |||
MIEX resin | 11.51 mg/g | 4–9 | 1 | 60 | 30 | 1000 | 1000 | [10] |
δ-Bi2O3 | 147.1 mg/g | 7 | 2 | 1440 | 25 | 50–500 | 50 | [12] |
Purolite-Br | 90% | 6.5 | - | 15 | 21 | 250 | 600 | [37] |
Silver-impregnated activated carbon | 93% | 6–7 | 25 | 170 | 20 | 300 | 1000 | [38] |
AgCl-activated carbon | >90% | 6.5 | 0.01 | 2.5 | 25 | 1 | - | [39] |
Granular activated carbon | 91.2% | - | 400 | 2–5 | - | 50 | - | [40] |
Carbonized xerogel | 21% | 5 | 0.02 | - | 25 | 10–100 | 50 | [41] |
GO/PANI@GTW | 29.2 mg/g | 3 | 0.05 | 90 | 30 | 100 | 20 | This study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al Hawash, M.; Kumar, R.; Barakat, M.A. Fabrication of Polyaniline/Graphene Oxide Nanosheet@ Tea Waste Granules Adsorbent for Groundwater Purification. Nanomaterials 2022, 12, 3840. https://doi.org/10.3390/nano12213840
Al Hawash M, Kumar R, Barakat MA. Fabrication of Polyaniline/Graphene Oxide Nanosheet@ Tea Waste Granules Adsorbent for Groundwater Purification. Nanomaterials. 2022; 12(21):3840. https://doi.org/10.3390/nano12213840
Chicago/Turabian StyleAl Hawash, Misfer, Rajeev Kumar, and Mohamed A. Barakat. 2022. "Fabrication of Polyaniline/Graphene Oxide Nanosheet@ Tea Waste Granules Adsorbent for Groundwater Purification" Nanomaterials 12, no. 21: 3840. https://doi.org/10.3390/nano12213840
APA StyleAl Hawash, M., Kumar, R., & Barakat, M. A. (2022). Fabrication of Polyaniline/Graphene Oxide Nanosheet@ Tea Waste Granules Adsorbent for Groundwater Purification. Nanomaterials, 12(21), 3840. https://doi.org/10.3390/nano12213840