Investigation of Different Types of Micro- and Nanostructured Materials for Bone Grafting Application
Abstract
:1. Introduction
2. Results
2.1. Morphology Analysis
2.2. Elements Content
2.3. Fourier-Transformed Infrared Spectra
2.4. Crystal Structure
2.5. Thermogravimetric Analysis
2.6. Heat-Treating
3. Discussion
4. Materials and Methods
4.1. Materials Preparation
4.1.1. Allogenic Bone Block from Zimmer®
4.1.2. Allogenic Bone Block from the Tissue Bank in Katowice, Poland
4.1.3. Allogenic Bone Substitute Biobank Global-D
4.1.4. Bone Substitute Geistlich Bio-Oss®
4.1.5. Processed Human Extracted Tooth
4.2. Physical-Chemical Characterization
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kotze, M.J.; Bütow, K.-W.; Olorunju, S.A.; Kotze, H.F. A Comparison of Mandibular and Maxillary Alveolar Osteogenesis over Six Weeks: A Radiological Examination. Head Face Med. 2014, 10, 50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roccuzzo, A.; Imber, J.; Marruganti, C.; Salvi, G.E.; Ramieri, G.; Roccuzzo, M. Clinical Outcomes of Dental Implants in Patients with and without History of Periodontitis: A 20-year Prospective Study. J. Clin. Periodontol. 2022. [Google Scholar] [CrossRef] [PubMed]
- Jepsen, S.; Schwarz, F.; Cordaro, L.; Derks, J.; Hämmerle, C.H.F.; Heitz-Mayfield, L.J.; Hernández-Alfaro, F.; Meijer, H.J.A.; Naenni, N.; Ortiz-Vigón, A.; et al. Regeneration of Alveolar Ridge Defects. Consensus Report of Group 4 of the 15th European Workshop on Periodontology on Bone Regeneration. J. Clin. Periodontol. 2019, 46, 277–286. [Google Scholar] [CrossRef] [PubMed]
- Balan, E.; Delattre, S.; Roche, D.; Segalen, L.; Morin, G.; Guillaumet, M.; Blanchard, M.; Lazzeri, M.; Brouder, C.; Salje, E.K.H. Line-Broadening Effects in the Powder Infrared Spectrum of Apatite. Phys. Chem. Miner. 2011, 38, 111–122. [Google Scholar] [CrossRef]
- Anandan, D.; Jaiswal, A.K. Synthesis and Characterization of Human Bone-like Hydroxyapatite Using Schiff’s Base. Ceram. Int. 2018, 44, 9401–9407. [Google Scholar] [CrossRef]
- Rey, C.; Collins, B.; Goehl, T.; Dickson, I.R.; Glimcher, M.J. The Carbonate Environment in Bone Mineral: A Resolution-Enhanced Fourier Transform Infrared Spectroscopy Study. Calcif. Tissue Int. 1989, 45, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Boskey, A.; Pleshkocamacho, N. FT-IR Imaging of Native and Tissue-Engineered Bone and Cartilage. Biomaterials 2007, 28, 2465–2478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q.; Li, W.; Liu, R.; Zhang, K.; Zhang, H.; Fan, S.; Wang, Z. Human and Non-Human Bone Identification Using FTIR Spectroscopy. Int. J. Legal Med. 2019, 133, 269–276. [Google Scholar] [CrossRef] [PubMed]
- Han, M.; Li, Q.L.; Cao, Y.; Fang, H.; Xia, R.; Zhang, Z.H. In Vivo Remineralization of Dentin Using an Agarose Hydrogel Biomimetic Mineralization System. Sci. Rep. 2017, 7, srep41955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.-K.; Keun, J.; Kim, K.-W.; Um, I.-W.; Murat, M. Healing Mechanism and Clinical Application of Autogenous Tooth Bone Graft Material. In Advances in Biomaterials Science and Biomedical Applications; InTech: Sydney, Australia, 2013. [Google Scholar]
- Krithiga, G.; Sastry, T.P. Preparation and Characterization of a Novel Bone Graft Composite Containing Bone Ash and Egg Shell Powder. Bull. Mater. Sci. 2011, 34, 177–181. [Google Scholar] [CrossRef]
- Thula, T.T.; Rodriguez, D.E.; Lee, M.H.; Pendi, L.; Podschun, J.; Gower, L.B. In Vitro Mineralization of Dense Collagen Substrates: A Biomimetic Approach toward the Development of Bone-Graft Materials. Acta Biomater. 2011, 7, 3158–3169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiglusz, R.J.; Pozniak, B.; Zawisza, K.; Pazik, R. An Up-Converting HAP@β-TCP Nanocomposite Activated with Er 3+/Yb 3+ Ion Pairs for Bio-Related Applications. RSC Adv. 2015, 5, 27610–27622. [Google Scholar] [CrossRef]
- Othmani, M.; Bachoua, H.; Ghandour, Y.; Aissa, A.; Debbabi, M. Synthesis, Characterization and Catalytic Properties of Copper-Substituted Hydroxyapatite Nanocrystals. Mater. Res. Bull. 2018, 97, 560–566. [Google Scholar] [CrossRef]
- Biomet, Z. Puros Block Allograft Changing The Concept of Block Grafting. Available online: https://www.zimmerbiometdental.com/content/dam/zb-dental/products/brochures/zb0014_rev_a_puros_block_allograft_data_sheet_final_secured.pdf (accessed on 26 August 2022).
- Global-D Biobank Excellence in Allografts. Available online: http://globald.pl/images/pdf/BIO-BANK-2016-ulotka-EN.PDF (accessed on 26 August 2022).
- Tammer, M.G. Sokrates: Infrared and Raman Characteristic Group Frequencies: Tables and Charts. Colloid Polym. Sci. 2004, 283, 235. [Google Scholar] [CrossRef]
- Poinern, G.J.; Brundavanam, R.; Le, X.T.; Djordjevic, S.; Prokic, M.; Fawcett, D. Thermal and Ultrasonic Influence in the Formation of Nanometer Scale Hydroxyapatite Bio-Ceramic. Int. J. Nanomed. 2011, 6, 2083–2095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fleet, M.E.; Liu, X. Location of Type B Carbonate Ion in Type A–B Carbonate Apatite Synthesized at High Pressure. J. Solid State Chem. 2004, 177, 3174–3182. [Google Scholar] [CrossRef]
- Londoño-Restrepo, S.M.; Jeronimo-Cruz, R.; Millán-Malo, B.M.; Rivera-Muñoz, E.M.; Rodriguez-García, M.E. Effect of the Nano Crystal Size on the X-Ray Diffraction Patterns of Biogenic Hydroxyapatite from Human, Bovine, and Porcine Bones. Sci. Rep. 2019, 9, 5915. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sobierajska, P.; Wiglusz, R.J. Influence of Li + Ions on the Physicochemical Properties of Nanocrystalline Calcium–Strontium Hydroxyapatite Doped with Eu 3+ Ions. New J. Chem. 2019, 43, 14908–14916. [Google Scholar] [CrossRef]
- Sudarsanan, K.; Young, R.A. Significant Precision in Crystal Structural Details. Holly Springs Hydroxyapatite. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 1969, 25, 1534–1543. [Google Scholar] [CrossRef]
- Cervera-Maillo, J.M.; Morales-Schwarz, D.; Morales-Melendez, H.; Mahesh, L.; Calvo-Guirado, J.L. Autologous Tooth Dentin Graft: A Retrospective Study in Humans. Medicina 2021, 58, 56. [Google Scholar] [CrossRef] [PubMed]
Elements | Processe–Tooth | Gesitlich Bio-Oss | Allograft–Zimmer | Allograft–Biobank | Allograft–Katowice |
---|---|---|---|---|---|
C Atom (mol%) | 1.36 | 1.25 | 16.15 | 9.93 | 30.77 |
O Atom (mol%) | 38.68 | 39.63 | 43.27 | 51.38 | 35.02 |
P Atom (mol%) | 16.78 | 15.55 | 11.16 | 11.11 | 10.26 |
Cl Atom (mol%) | 0.50 | 0.19 | 0.16 | 0.15 | 0.10 |
Ca Atom (mol%) | 41.45 | 42.39 | 28.06 | 23.55 | 23.11 |
Mg Atom (mol%) | 0.39 | 0.58 | 0.45 | 0.27 | 0.23 |
Na Atom (mol%) | 0.85 | 0.42 | 0.75 | 3.62 | 0.52 |
Sample | a (Å) | c (Å) | V (Å3) | size (nm) | Rw (%) |
---|---|---|---|---|---|
single crystal * | 9.363 (2) | 6.878 (2) | 522.18 (27) | – | – |
Allograft–Zimmer | 9.426 (2) | 6.908 (0) | 531.56 (49) | 12.0 (1) | 2.1 |
Allograft–Biobank | 9.414 (4) | 6.898 (6) | 529.51 (33) | 9.4 (3) | 2.2 |
Geistlich Bio-Oss | 9.409 (3) | 6.894 (3) | 528.61 (01) | 21.1 (8) | 2.9 |
Allograft–Katowice | 9.422 (2) | 6.890 (9) | 529.79 (91) | 8.0 (2) | 2.3 |
Processed–tooth | 9.447 (2) | 6.899 (6) | 533.28 (67) | 28.0 (2) | 2.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Targonska, S.; Dominiak, S.; Wiglusz, R.J.; Dominiak, M. Investigation of Different Types of Micro- and Nanostructured Materials for Bone Grafting Application. Nanomaterials 2022, 12, 3752. https://doi.org/10.3390/nano12213752
Targonska S, Dominiak S, Wiglusz RJ, Dominiak M. Investigation of Different Types of Micro- and Nanostructured Materials for Bone Grafting Application. Nanomaterials. 2022; 12(21):3752. https://doi.org/10.3390/nano12213752
Chicago/Turabian StyleTargonska, Sara, Sebastian Dominiak, Rafał J. Wiglusz, and Marzena Dominiak. 2022. "Investigation of Different Types of Micro- and Nanostructured Materials for Bone Grafting Application" Nanomaterials 12, no. 21: 3752. https://doi.org/10.3390/nano12213752
APA StyleTargonska, S., Dominiak, S., Wiglusz, R. J., & Dominiak, M. (2022). Investigation of Different Types of Micro- and Nanostructured Materials for Bone Grafting Application. Nanomaterials, 12(21), 3752. https://doi.org/10.3390/nano12213752