Investigating the Absorption Spectra of a Plasmonic Metamaterial Absorber Based on Disc-in-Hole Nanometallic Structure
Abstract
:1. Introduction
2. Methodology
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nauryzbekova, S.; Nussupov, K.; Bakranova, D. Simulation of Antireflective coatings system based on Porous Si/DLC and SiO2/TiO2 for Si solar cells. Mater. Today Proc. 2021, 49, 2474–2477. [Google Scholar] [CrossRef]
- Munday, J.N.; Atwater, H.A. Large Integrated Absorption Enhancement in Plasmonic Solar Cells by Combining Metallic Gratings and Antireflection Coatings. Nano Lett. 2010, 11, 2195–2201. [Google Scholar] [CrossRef]
- Tanaka, Y.; Ishizaki, K.; De Zoysa, M.; Umeda, T.; Kawamoto, Y.; Fujita, S.; Noda, S. Photonic crystal microcrystalline silicon solar cells. Prog. Photovoltaics Res. Appl. 2015, 23, 1475–1483. [Google Scholar] [CrossRef] [Green Version]
- De Zoysa, M.; Ishizaki, K.; Tanaka, Y.; Sai, H.; Matsubara, K.; Noda, S. Enhanced efficiency of ultrathin (∼500 nm)-film microcrystalline silicon photonic crystal solar cells. Appl. Phys. Express 2016, 10, 012302. [Google Scholar] [CrossRef]
- Kulesza, G.; Panek, P.; Zięba, P. Time efficient texturization of multicrystalline silicon in the HF/HNO3 solutions and its effect on optoelectronic parameters of solar cells. Arch. Civ. Mech. Eng. 2014, 14, 595–601. [Google Scholar] [CrossRef]
- Royanian, S.; Ziabari, A.A.; Yousefi, R. Efficiency Enhancement of Ultra-thin CIGS Solar Cells Using Bandgap Grading and Embedding Au Plasmonic Nanoparticles. Plasmonics 2020, 15, 1173–1182. [Google Scholar] [CrossRef]
- Mirzaei, M.; Hasanzadeh, J.; Ziabari, A.A. Efficiency Enhancement of CZTS Solar Cells Using Al Plasmonic Nanoparticles: The Effect of Size and Period of Nanoparticles. J. Electron. Mater. 2020, 49, 7168–7178. [Google Scholar] [CrossRef]
- Arefin, S.M.N.; Islam, S.; Fairooz, F.; Hasan, J.; Chowdhury, M.H. Computational study of “sandwich” configuration of plasmonic nanoparticles to enhance the optoe-lectronic performance of thin-film solar cells. In Proceedings of the 2020 IEEE Region 10 Symposium (TENSYMP), Dhaka, Bangladesh, 5–7 June 2020. [Google Scholar]
- Liang, Y.; Lin, H.; Lin, S.; Wu, J.; Li, W.; Meng, F.; Yang, Y.; Huang, X.; Jia, B.; Kivshar, Y. Hybrid anisotropic plasmonic metasurfaces with multiple resonances of focused light beams. Nano Lett. 2021, 21, 8917–8923. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Gu, J.H.; Sha, W.E.I.; Chen, R.S. Efficient volumetric method of moments for modeling plasmonic thin-film solar cells with periodic structures. Opt. Express 2018, 26, 25037–25046. [Google Scholar] [CrossRef]
- Li, M.; Wang, G.; Gao, Y.; Gao, Y. An Infrared Ultra-Broadband Absorber Based on MIM Structure. Nanomaterials 2022, 12, 3477. [Google Scholar] [CrossRef]
- Daneshfar, N. The Study of Scattering-to-absorption Ratio in Plasmonic Nanoparticles for Photovoltaic Cells and Sensor Applications. Plasmonics 2021, 16, 2017–2023. [Google Scholar] [CrossRef]
- Fann, C.-H.; Zhang, J.; El Kabbash, M.; Donaldson, W.R.; Campbell, E.M.; Guo, C. Broadband infrared plasmonic metamaterial absorber with multipronged absorption mechanisms. Opt. Express 2019, 27, 27917–27926. [Google Scholar] [CrossRef] [PubMed]
- Heidarzadeh, H.; Mehrfar, F. Effect of Size Non-uniformity on Performance of a Plasmonic Perovskite Solar Cell: An Array of Embedded Plasmonic Nanoparticles with the Gaussian Distribution Radiuses. Plasmonics 2018, 13, 2305–2312. [Google Scholar] [CrossRef]
- Hong, L.; Wang, X.; Zheng, H.; He, L.; Wang, H.; Yu, H. Rusli High efficiency silicon nanohole/organic heterojunction hybrid solar cell. Appl. Phys. Lett. 2014, 104, 053104. [Google Scholar] [CrossRef]
- Han, S.E.; Chen, G. Optical Absorption Enhancement in Silicon Nanohole Arrays for Solar Photovoltaics. Nano Lett. 2010, 10, 1012–1015. [Google Scholar] [CrossRef]
- Irandoost, R.; Soleimani-Amiri, S. Design and analysis of high efficiency perovskite solar cell with ZnO nanorods and plasmonic nanoparticles. Optik 2019, 202, 163598. [Google Scholar] [CrossRef]
- Sachchidanand; Samajdar, D. Performance enhancement of Nanopyramid based Si hybrid solar cells utilizing the plasmonic properties of oxide coated Metal Nanoparticles. Opt. Mater. 2020, 107, 110166. [Google Scholar] [CrossRef]
- Chalh, M.; Vedraine, S.; Lucas, B.; Ratier, B. Plasmonic Ag nanowire network embedded in zinc oxide nanoparticles for inverted organic solar cells electrode. Sol. Energy Mater. Sol. Cells 2016, 152, 34–41. [Google Scholar] [CrossRef]
- Motavassel, S.; Seifouri, M.; Olyaee, S. Efficiency improvement of perovskite solar cell by modifying structural parameters and using Ag nanoparticles. Appl. Phys. A 2021, 127, 96. [Google Scholar] [CrossRef]
- Nair, A.T.; Anoop, C.; Vinod, G.A.; Reddy, V. Efficiency enhancement in polymer solar cells using combined plasmonic effects of multi-positional silver nanostructures. Org. Electron. 2020, 86, 105872. [Google Scholar] [CrossRef]
- Heidarzadeh, H.; Tavousi, A. Design of an LSPR-Enhanced Ultrathin CH3NH3PbX3 Perovskite Solar Cell Incorporating Double and Triple Coupled Nanoparticles. J. Electron. Mater. 2021, 50, 1817–1826. [Google Scholar] [CrossRef]
- Dey, J.; Rouf, H.K. Absorption Enhancement in Thin-Film Silicon Solar Cell using Plasmonic Nanoparticles. In Proceedings of the 2018 International Conference on Computer, Communication, Chemical, Material and Electronic Engineering (IC4ME2), Rajshahi, Bangladesh, 8–9 February 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Arefin, S.M.N.; Hasan, J.; Islam, S.; Fairooz, F.; Chowdhury, M.H. Influence of Particle Shape on the Ability of Plasmonic Metal Core-Silica Shell Nanoparticles Embedded within the Absorbing Layer to Enhance the Opto-electronic Performance of Thin-Film Solar Cells. In Proceedings of the 2020 2nd International Conference on Advanced Information and Communication Technology (ICAICT), Dhaka, Bangladesh, 28–29 November 2020; pp. 416–421. [Google Scholar]
- Rex, Z.T.; Di Vece, M. The effect of the refractive index profile on the optical response of plasmonic nanostructures inside semiconductors. Opt. Mater. 2019, 96, 109314. [Google Scholar] [CrossRef]
- Lei, L.; Li, S.; Huang, H.; Tao, K.; Xu, P. Ultra-broadband absorber from visible to near-infrared using plasmonic metamaterial. Opt. Express 2018, 26, 5686–5693. [Google Scholar] [CrossRef] [PubMed]
- Yao, K.; Liu, Y. Plasmonic Metamaterials. Nanotechnol. Rev. 2014, 3, 177–210. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.; Singh, B.K.; Pandey, P.C. Broadband metamaterial absorber in the visible region using a petal-shaped resonator for solar cell applications. Phys. E Low-Dimens. Syst. Nanostruct. 2022, 142, 115327. [Google Scholar] [CrossRef]
- Xu, F.; Lin, L.; Fang, J.; Huang, M.; Wang, F.; Su, J.; Li, S.; Pan, M. Broadband Solar Absorber Based on Square Ring cross Arrays of ZnS. Micromachines 2021, 12, 909. [Google Scholar] [CrossRef]
- Ullah, H.; Khan, A.D.; Ullah, A.; Ullah, I.; Noman, M. Plasmonic perfect absorber for solar cell applications. In Proceedings of the 2016 International Conference on Emerging Technologies (ICET), Islamabad, Pakistan, 18–19 October 2016; pp. 1–5. [Google Scholar]
- OptiFDTD 32-Bit Material Library. Available online: https://www.optiwave.com/ (accessed on 1 October 2022).
- Kim, H.K.; Ao, S.; Amouzegar, M.A.; Rieger, B.B. (Eds.) IAENG Transactions on Engineering Technologies; Springer: Dordrecht, The Netherlands, 2012. [Google Scholar]
- Almog, I.F.; Bradley, M.S.; Bulovic, V. The Lorentz Oscillator and Its Applications; Massachusetts Institute of Technology: Cambridge, MA, USA, 2011. [Google Scholar]
- Yang, J.-H.; Yu, M.-W.; Chen, K.-P. Absorption avoided resonance crossing of hybridization of silicon nanoparticles and gold nanoantennas. Sci. Rep. 2019, 9, 11778. [Google Scholar] [CrossRef] [Green Version]
- Tharwat, M.M.; Mahros, A.M. Enhanced plasmonic absorber based on a hexagonal annular nano-array and impact of imperfection. Mater. Express 2016, 6, 229–236. [Google Scholar] [CrossRef]
- Tuan, T.S.; Hoa, N.T.Q. Numerical Study of an Efficient Broadband Metamaterial Absorber in Visible Light Region. IEEE Photon. J. 2019, 11, 1–10. [Google Scholar] [CrossRef]
- Tharwat, M.M.; Almalki, A.; Mahros, A.M. Plasmon Enhanced Sunlight Harvesting in Thin Film Solar Cell by Randomly Distributed Nanoparticles Array. Materials 2021, 14, 1380. [Google Scholar] [CrossRef]
- Elrashidi, A. Light Harvesting in Silicon Nanowires Solar Cells by Using Graphene Layer and Plasmonic Nanoparticles. Appl. Sci. 2022, 12, 2519. [Google Scholar] [CrossRef]
Structure and Dimension | Range, Bandwidth, and Relative Bandwidth with Absorption >85% | Maximum, Minimum, and Average Absorption within the Range | Short Circuit Current Density | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Structure | d1 (nm) | d2 (nm) | λL (µm) | λU (µm) | BW (µm) | RAB (%) | Amin | Amax | SAR | Jsc (mA/cm2) |
disc -in- hole | 30 | 80 | 0.42 | 1.23 | 0.81 | 98% | 85% | 98% | 94% | 41 |
80 | 120 | 0.44 | 1.08 | 0.65 | 85% | 85% | 100% | 95% | 38 | |
120 | 170 | 0.45 | 0.98 | 0.53 | 75% | 85% | 100% | 96% | 36 | |
[26] Ti–SiO2–Al (cubic cap) | 0.71 | 99.8 | 97% | |||||||
[36] Axe-shaped resonator | 0.32 | 0.98 | 0.66 | 100% | 97% | |||||
[38] Graphene–Si–back oxide (silicon nanowire) | 38 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahros, A.M.; Alharbi, Y. Investigating the Absorption Spectra of a Plasmonic Metamaterial Absorber Based on Disc-in-Hole Nanometallic Structure. Nanomaterials 2022, 12, 3627. https://doi.org/10.3390/nano12203627
Mahros AM, Alharbi Y. Investigating the Absorption Spectra of a Plasmonic Metamaterial Absorber Based on Disc-in-Hole Nanometallic Structure. Nanomaterials. 2022; 12(20):3627. https://doi.org/10.3390/nano12203627
Chicago/Turabian StyleMahros, Amr M., and Yara Alharbi. 2022. "Investigating the Absorption Spectra of a Plasmonic Metamaterial Absorber Based on Disc-in-Hole Nanometallic Structure" Nanomaterials 12, no. 20: 3627. https://doi.org/10.3390/nano12203627
APA StyleMahros, A. M., & Alharbi, Y. (2022). Investigating the Absorption Spectra of a Plasmonic Metamaterial Absorber Based on Disc-in-Hole Nanometallic Structure. Nanomaterials, 12(20), 3627. https://doi.org/10.3390/nano12203627