Quantum Mechanical Analysis Based on Perturbation Theory of CdSe/ZnS Quantum-Dot Light-Emission Properties
Abstract
:1. Introduction
2. Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nitti, A.; Carfora, R.; Assanelli, G.; Notari, M.; Pasini, D. Single-Chain Polymer Nanoparticles for Addressing Morphologies and Functions at the Nanoscale: A Review. ACS Appl. Nano Mater. 2022. [Google Scholar] [CrossRef]
- Ikkanda, B.A.; Iverson, B.L. Exploiting the interactions of aromatic units for folding and assembly in aqueous environments. Chem. Commun. 2016, 52, 7752–7759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nitti, A.; Pacini, A.; Pasini, D. Chiral Nanotubes. Nanomaterials 2017, 7, 167. [Google Scholar] [CrossRef] [PubMed]
- Luque-Morales, P.A.; López-Peraza, A.; Nava-Olivas, O.J.; Amaya-Parra, G.; Báez-López, Y.A.; Orozco-Carmona, V.M.; Garrafa-Gálvez, H.E.; Chinchillas-Chinchillas, M.d.J. ZnO Semiconductor Nanoparticles and Their Application in Photocatalytic Degradation of Various Organic Dyes. Materials 2021, 14, 7537. [Google Scholar] [CrossRef]
- Anikeeva, P.O.; Halpert, J.E.; Bawendi, M.G.; Bulović, V. Quantum Dot Light-Emitting Devices with Electroluminescence Tunable over the Entire Visible Spectrum. Nano Lett. 2009, 9, 2532–2536. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Choi, M.K.; Yang, U.J.; Kim, S.Y.; Kim, Y.S.; Kim, J.H.; Kim, D.H.; Hyeon, T. Toward Full-Color Electroluminescent Quantum Dot Displays. Nano Lett. 2021, 21, 26–33. [Google Scholar] [CrossRef]
- Efros, A.L.; Brus, L.E. Nanocrystal Quantum Dots: From Discovery to Modern Development. ACS Nano 2021, 15, 6192–6210. [Google Scholar] [CrossRef]
- Yuan, Q.; Wang, T.; Yu, P.; Zhang, H.; Zhang, H.; Ji, W. A review on the electroluminescence properties of quantum-dot light-emitting diodes. Org. Electron. 2021, 90, 106086. [Google Scholar] [CrossRef]
- Kim, D.; Kwon, O.; Kim, M.; Lee, H. Charge carrier analysis via impedance spectroscopy and the achievement of high performance in CdSe/ZnS:di-[4-(N,N-di-p-tolyl-amino)-phenyl]cyclohexane hybrid quantum dot light-emitting diodes. Org. Electron. 2022, 108, 106593. [Google Scholar] [CrossRef]
- Ren, X.; Zhang, X.; Xie, H.; Cai, J.; Wang, C.; Chen, E.; Xu, S.; Ye, Y.; Sun, J.; Yan, Q.; et al. Perovskite Quantum Dots for Emerging Displays: Recent Progress and Perspectives. Nanomaterials 2022, 12, 2243. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.; Kim, B.J.; Lee, H.; Hahm, D.; Bae, W.K.; Lim, J.; Kwak, J. Bright and Stable Quantum Dot Light-Emitting Diodes. Adv. Mater. 2021, 34, 2106276. [Google Scholar] [CrossRef]
- Li, X.; Lin, Q.; Song, J.; Shen, H.; Zhang, H.; Li, L.S.; Li, X.; Du, Z. Quantum-Dot Light-Emitting Diodes for Outdoor Displays with High Stability at High Brightness. Adv. Opt. Mater. 2020, 8, 1901145. [Google Scholar] [CrossRef]
- Liu, H.; Zou, J.; Zhu, X.; Li, X.; Ni, H.; Liu, Y.; Tao, H.; Xu, M.; Wang, L.; Peng, J. Boosting the performance of solution-processed quantum dots light-emitting diodes by a hybrid emissive layer via doping small molecule hole transport materials into quantum dots. Org. Electron. 2021, 99, 106344. [Google Scholar] [CrossRef]
- Cho, H.; Park, S.; Shin, H.; Kim, M.; Jang, H.; Park, J.; Yang, J.H.; Han, C.W.; Baek, J.H.; Jung, Y.S.; et al. Highly Efficient Deep Blue Cd-Free Quantum Dot Light-Emitting Diodes by a p-Type Doped Emissive Layer. Small 2020, 16, 2002109. [Google Scholar] [CrossRef] [PubMed]
- Sultana, S.; Alam, M.S. Confinement Effects and Tunability of Quantum Dots within Strong Confinement Regime. In Proceedings of the 2015 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE) IEEE, Dhaka, Bangladesh, 19–20 December 2015; pp. 31–34. [Google Scholar] [CrossRef]
- Mathew, M.; Preetha, K.C. An exploration into the quantum confinement of CTS/natural dye core- shell quantum dots. Phys. B Condens. Matter 2020, 579, 411913. [Google Scholar] [CrossRef]
- Empedocles, S.A.; Bawendi, M.G. Quantum-Confined Stark Effect in Single CdSe Nanocrystallite Quantum Dots. Science 1997, 278, 2114–2117. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Lv, B.; Yang, H.; Xu, R.; Wang, X.; Xiao, M.; Cui, Y.; Zhang, J. Quantum-confined stark effect in the ensemble of phase-pure CdSe/CdS quantum dots. Nanoscale 2019, 11, 12619–12625. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, X. Modeling oxygen ionic conductivities of ABO3 Perovskites through machine learning. Chem. Phys. 2022, 558, 111511. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, X. Machine Learning Band Gaps of Doped-TiO2 Photocatalysts from Structural and Morphological Parameters. ACS Omega 2020, 5, 15344–15352. [Google Scholar] [CrossRef]
- Simos, T.E.; Williams, P.S. A finite-difference method for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 1997, 79, 189–205. [Google Scholar] [CrossRef] [Green Version]
- Sato, N.; Iwata, S. Application of Finite-Element Method to the Two-Dimensional Schrödinger Equation. J. Comput. Chem. 1988, 9, 222–231. [Google Scholar] [CrossRef]
- Lee, H. Semi-analytical Numerical Analysis of the Core-size and Electric-field Intensity Dependency of the Light Emission Wavelength of CdSe/ZnS Quantum Dots. J. Semicond. Disp. Technol. 2021, 20, 11–17. [Google Scholar]
- Park, J.; Shin, E.; Park, J.; Roh, Y. Improvement of Quantum Dot Light Emitting Device Characteristics by CdSe/ZnS Blended with HMDS (Hexamethyldisilazane). Appl. Sci. 2020, 10, 6081. [Google Scholar] [CrossRef]
- Zhang, W.; Yang, L.; Zhang, Q.; Zhang, Y.; Li, F.; Chang, C.; Sun, H.; Yang, M.; Yanto, S.; Zhang, Z. CdSe/ZnS Quantum-Dot Light-Emitting Diodes With Spiro-OMeTAD as Buffer Layer. IEEE Trans. Electron Devices 2019, 66, 4901–4906. [Google Scholar] [CrossRef]
- Kang, B.-H.; Lee, J.-S.; Lee, S.-W.; Kim, S.-W.; Lee, J.-W.; Gopalan, S.-A.; Park, J.-S.; Kwon, D.-H.; Bae, J.-H.; Kim, H.-R.; et al. Efficient exciton generation in atomic passivated CdSe/ZnS quantum dots light-emitting devices. Sci. Rep. 2016, 6, 34659. [Google Scholar] [CrossRef] [Green Version]
- Schmied, R. Using Mathematica for Quantum Mechanics, 1st ed.; Springer: Singapore, 2020; ISBN 978-981-13-7587-3. [Google Scholar]
- Waters, M.J.; Hashemi, D.; Kieffer, J. Semiclassical model for calculating exciton and polaron pair energetics at interfaces. Mater. Sci. Eng. B 2020, 261, 114657. [Google Scholar] [CrossRef]
- Samanta, A.; Deng, Z.; Liu, Y. Aqueous Synthesis of Glutathione-Capped CdTe/CdS/ZnS and CdTe/CdSe/ZnS Core/Shell/Shell Nanocrystal Heterostructures. Langmuir 2012, 28, 8205–8215. [Google Scholar] [CrossRef]
- Chukwuocha, E.O.; Onyeaju, M.C.; Harry, T.S.T. Theoretical Studies on the Effect of Confinement on Quantum Dots Using the Brus Equation. World J. Condens. Matter Phys. 2012, 02, 96–100. [Google Scholar] [CrossRef] [Green Version]
- Ninomiya, S.; Adachi, S. Optical properties of wurtzite CdS. J. Appl. Phys. 1995, 78, 1183–1190. [Google Scholar] [CrossRef]
- Querry, M.R. Optical Constants of Minerals and Other Materials from the Millimeter to the Ultraviolet; U.S. Army Armament Munitions Chemical Command: Aberdeen, MD, USA, 1987.
- Kim, M.; Kim, D.; Kwon, O.; Lee, H. Flexible CdSe/ZnS Quantum-Dot Light-Emitting Diodes with Higher Efficiency than Rigid Devices. Micromachines 2022, 13, 269. [Google Scholar] [CrossRef]
- Kwon, O.; Kim, D.; Kim, M.; Lee, H. High-performance tandem CdSe/ZnS quantum-dot light-emitting diodes with a double-layer interconnecting layer composed of thermally evaporated and sputtered metal oxides. J. Inf. Disp. 2022, 23, 213–219. [Google Scholar] [CrossRef]
- Wang, Z.B.; Zhang, J.Y.; Cui, Y.P.; Ye, Y.H. Effect of Electrical Field on Colloidal CdSe/ZnS Quantum Dots. Chin. Phys. Lett. 2008, 25, 4435–4438. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.; Kim, D. Quantum Mechanical Analysis Based on Perturbation Theory of CdSe/ZnS Quantum-Dot Light-Emission Properties. Nanomaterials 2022, 12, 3590. https://doi.org/10.3390/nano12203590
Lee H, Kim D. Quantum Mechanical Analysis Based on Perturbation Theory of CdSe/ZnS Quantum-Dot Light-Emission Properties. Nanomaterials. 2022; 12(20):3590. https://doi.org/10.3390/nano12203590
Chicago/Turabian StyleLee, Honyeon, and Dongjin Kim. 2022. "Quantum Mechanical Analysis Based on Perturbation Theory of CdSe/ZnS Quantum-Dot Light-Emission Properties" Nanomaterials 12, no. 20: 3590. https://doi.org/10.3390/nano12203590
APA StyleLee, H., & Kim, D. (2022). Quantum Mechanical Analysis Based on Perturbation Theory of CdSe/ZnS Quantum-Dot Light-Emission Properties. Nanomaterials, 12(20), 3590. https://doi.org/10.3390/nano12203590