Coexistence of Flexo- and Ferro-Electric Effects in an Ordered Assembly of BaTiO3 Nanocubes
Abstract
1. Introduction
2. Theoretical Model
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kato, K.; Dang, F.; Mimura, K.; Kinemuchi, Y.; Imai, H.; Wada, S.; Osada, M.; Haneda, H.; Kuwabara, M. Nano-sized cube-shaped single crystalline oxides and their potentials; composition, assembly and functions. Adv. Powder Technol. 2014, 25, 1401–1414. [Google Scholar] [CrossRef]
- Mimura, K. Processing of dielectric nanocube 3D-assemblies and their high electrical properties for next-generation devices. J. Ceram. Soc. Jpn. 2016, 124, 848–854. [Google Scholar] [CrossRef][Green Version]
- Zablotsky, D.; Rusevich, L.L.; Zvejnieks, G.; Kuzovkov, V.; Kotomin, E. Manifestation of dipole-induced disorder in self-assembly of ferroelectric and ferromagnetic nanocubes. Nanoscale 2019, 11, 7293–7303. [Google Scholar] [CrossRef] [PubMed]
- Kishi, H.; Mizuno, Y.; Chazono, H. Base-metal electrode-multilayer ceramic capacitors: Past, present and future perspectives. Jpn. J. Appl. Phys. 2003, 42, 1–15. [Google Scholar] [CrossRef]
- Mimura, K.; Kato, K. Enhanced dielectric properties of BaTiO3 nanocube assembled film in metal-insulator-metal capacitor structure. Appl. Phys. Express 2014, 7, 061501. [Google Scholar] [CrossRef]
- Mimura, K.; Kato, K. Dielectric properties of barium titanate nanocube ordered assembly sintered at various temperatures. Jpn. J. Appl. Phys. 2014, 53, 09PA03. [Google Scholar] [CrossRef]
- Mimura, K.; Kato, K. Dielectric properties of micropatterns consisting of barium titanate single-crystalline nanocubes. Jpn. J. Appl. Phys. 2015, 54, 10NA11. [Google Scholar] [CrossRef]
- Itasaka, H.; Mimura, K.; Yasui, K.; Hamamoto, K.; Kato, K. Effect of heat treatment on internal stress in barium titanate nanocube assemblies and their dielectric property. AIP Adv. 2021, 11, 025235. [Google Scholar] [CrossRef]
- Yasui, K.; Mimura, K.; Izu, N.; Kato, K. High dielectric constant associated with the strain-induced phase transition of an ordered assembly of BaTiO3 nanocubes under three-dimensional clamping. Jpn. J. Appl. Phys. 2017, 56, 021501. [Google Scholar] [CrossRef]
- Yasui, K.; Mimura, K.; Izu, N.; Kato, K. Numerical calculations of temperature dependence of dielectric constant for an ordered assembly of BaTiO3 nanocubes with small tilt angles. Jpn. J. Appl. Phys. 2018, 57, 031501. [Google Scholar] [CrossRef]
- Dang, F.; Mimura, K.; Kato, K.; Imai, H.; Wada, S.; Haneda, H.; Kuwabara, M. In situ growth BaTiO3 nanocubes and their superlattice from an aqueous process. Nanoscale 2012, 4, 1344–1349. [Google Scholar] [CrossRef]
- Ma, Q.; Mimura, K.; Kato, K. Diversity in size of barium titanate nanocubes synthesized by a hydrothermal method using an aqueous Ti compound. Cryst. Eng. Comm. 2014, 16, 8398–8405. [Google Scholar] [CrossRef]
- Ma, Q.; Mimura, K.; Kato, K. Tuning shape of barium titanate nanocubes by combination of oleic acid/tert-butylamine through hydrothermal process. J. Alloys Comp. 2016, 655, 71–78. [Google Scholar] [CrossRef][Green Version]
- Yasui, K.; Kato, K. Oriented attachment of cubic or spherical BaTiO3 nanocrystals by van der Waals torque. J. Phys. Chem. C 2015, 119, 24597–24605. [Google Scholar] [CrossRef]
- Itasaka, H.; Mimura, K.; Nishi, M.; Kato, K. Characterization of BaTiO3 nanocubes assembled into highly ordered monolayers using micro-and nano-Raman spectroscopy. Appl. Phys. Lett. 2018, 112, 212901. [Google Scholar] [CrossRef]
- Itasaka, H.; Mimura, K.; Kato, K. Extra surfactant-assisted self-assembly of highly ordered monolayers of BaTiO3 nanocubes at the air-water interface. Nanomaterials 2018, 8, 739. [Google Scholar] [CrossRef]
- Ma, Q.; Kato, K. Crystallographic fusion behavior and interface evolution of mon-layer BaTiO3 nanocube arrangement. Cryst. Eng. Comm. 2016, 18, 1543–1549. [Google Scholar] [CrossRef]
- Tsurumi, T.; Li, J.; Hoshina, T.; Kakemoto, H.; Nakada, M.; Akedo, J. Ultrawide range dielectric spectroscopy of BaTiO3-based perovskite dielectrics. Appl. Phys. Lett. 2007, 91, 182905. [Google Scholar] [CrossRef]
- Teranishi, T.; Hoshina, T.; Tsurumi, T. Wide range dielectric spectroscopy on perovskite dielectrics. Mater. Sci. Engnrng. B 2009, 161, 55–60. [Google Scholar] [CrossRef]
- Kamalasanan, M.N.; Kumar, N.D.; Chandra, S. Dielectric and ferroelectric properties of BaTiO3 thin films grown by the sol-gel process. J. Appl. Phys. 1993, 74, 5679–5686. [Google Scholar] [CrossRef]
- Cho, C.R.; Kwun, S.I.; Noh, T.W.; Jang, M.S. Electrical properties of sol-gel deposited BaTiO3 thin films on Si (100) substrate. Jpn. J. Appl. Phys. 1997, 36, 2196–2199. [Google Scholar] [CrossRef]
- Kato, K.; Tanaka, K.; Suzuki, K.; Kayukawa, S. Phase transition in bottom-up BaTiO3 films on Si. Appl. Phys. Lett. 2007, 91, 172907. [Google Scholar] [CrossRef]
- Tanaka, K.; Suzuki, K.; Kato, K. Fabrication of BaTiO3 thin films using modified chemical solutions and sintering method. Jpn. J. Appl. Phys. 2008, 47, 7480–7485. [Google Scholar] [CrossRef]
- Nakasone, F.; Kobayashi, K.; Suzuki, T.; Mizuno, Y.; Chazono, H.; Imai, H. Nanoparticle-sintered BaTiO3 thin films and its orientation control by solid phase epitaxy. Jpn. J. Appl. Phys. 2008, 47, 8518–8524. [Google Scholar] [CrossRef]
- Yasui, K.; Itasaka, H.; Mimura, K.; Kato, K. Dynamic dielectric-response model of flexoelectric polarization from kHz to MHz range in an ordered assembly of BaTiO3 nanocubes. J. Phys. Condens. Matter 2020, 32, 495301. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Huang, W.; Zhang, S. Flexoelectric nano-generator: Materials, structures and devices. Nano Energy 2013, 2, 1079–1092. [Google Scholar] [CrossRef]
- Nguyen, T.D.; Mao, S.; Yeh, Y.; Purohit, P.K.; McAlpine, M.C. Nanoscale flexoelectricity. Adv. Mater. 2013, 25, 946–974. [Google Scholar] [CrossRef]
- Ma, L.L.; Chen, W.J.; Zheng, Y. Flexoelectric effect at the nanoscale. In Handbook of Mechanics of Materials; Hsueh, C.-H., Schmauder, S., Chen, C., Chawla, K.K., Chawla, N., Chen, W., Kagawa, Y., Eds.; Springer: Berlin/Heiildeberg, Germany, 2019; Chapter 17; pp. 549–589. [Google Scholar] [CrossRef]
- Wang, B.; Gu, Y.; Zhang, S.; Chen, L. Flexoelectricity in solids: Progress, challenges, and perspectives. Prog. Mater. Sci. 2019, 106, 100570. [Google Scholar] [CrossRef]
- Yudin, P.V.; Tagantsev, A.K. Fundamentals of flexoelectricity in solids. Nanotechnology 2013, 24, 432001. [Google Scholar] [CrossRef]
- Zubko, P.; Catalan, G.; Tagantsev, A.K. Flexoelectric effect in solids. Annu. Rev. Mater. Res. 2013, 43, 387–421. [Google Scholar] [CrossRef]
- Shu, L.; Liang, R.; Rao, Z.; Fei, L.; Ke, S.; Wang, Y. Flexoelectric materials and their related applications: A focused review. J. Adv. Ceram. 2019, 8, 153–173. [Google Scholar] [CrossRef]
- Ma, W.; Cross, L.E. Flexoelectricity of barium titanate. Appl. Phys. Lett. 2006, 88, 232902. [Google Scholar] [CrossRef]
- Catalan, G.; Sinnamon, L.J.; Gregg, J.M. The effect of flexoelectricity on the dielectric properties of inhomogeneously strained ferroelectric thin films. J. Phys. Condens. Matter 2004, 16, 2253–2264. [Google Scholar] [CrossRef]
- Catalan, G.; Noheda, B.; McAneney, J.; Sinnamon, L.J.; Gregg, J.M. Strain gradients in epitaxial ferroelectrics. Phys. Rev. B 2005, 72, 020102. [Google Scholar] [CrossRef]
- Ma, W. Flexoelectric effect in ferroelectrics. Func. Mater. Lett. 2008, 1, 235–238. [Google Scholar] [CrossRef]
- Ponomareva, I.; Tagantsev, A.K.; Bellaiche, L. Finite-temperature flexoelectricity in ferroelectric thin films from first principles. Phys. Rev. B 2012, 85, 104101. [Google Scholar] [CrossRef]
- Ahluwalia, R.; Tagantsev, A.K.; Yudin, P.; Setter, N.; Ng, N.; Srolovitz, D.J. Influence of flexoelectric coupling on domain patterns in ferroelectrics. Phys. Rev. B 2014, 89, 174105. [Google Scholar] [CrossRef]
- Gu, Y.; Li, M.; Morozovska, A.N.; Wang, Y.; Eliseev, E.A.; Gopalan, V.; Chen, L. Flexoelectricity and ferroelectric domain wall structures: Phase-field modeling and DFT calculations. Phys. Rev. B 2014, 89, 174111. [Google Scholar] [CrossRef]
- Gu, Y.; Hong, Z.; Britson, J.; Chen, L. Nanoscale mechanical switching of ferroelectric polarization via flexoelectricity. Appl. Phys. Lett. 2015, 106, 022904. [Google Scholar] [CrossRef]
- Morozovska, A.N.; Glinchuk, M.D.; Eliseev, E.A.; Vysochanskii, Y.M. Flexocoupling-induced soft acoustic modes and the spatially modulated phases in ferroelectrics. Phys. Rev. B 2017, 96, 094111. [Google Scholar] [CrossRef]
- Tan, P.; Tian, H.; Huang, F.; Meng, X.; Wang, Y.; Hu, C.; Cao, X.; Li, L.; Zhou, Z. Strain-gradient-controlled disorder dynamics in chemically substituted ferroelectrics. Phys. Rev. Appl. 2019, 11, 024037. [Google Scholar] [CrossRef]
- Tian, D.; Hou, Y.; Zhou, W.; Chu, B. Flexoelectric response of ferroelectric ceramics with reduced surface layer effect. J. Appl. Phys. 2021, 129, 194103. [Google Scholar] [CrossRef]
- Ke, X.; Deng, Q.; Yang, S. Origin of large intrinsic flexoelectric coefficients near curie temperature of BaTiO3. Ceram. Intern. 2021, 47, 4310–4314. [Google Scholar] [CrossRef]
- Hong, J.; Vanderbilt, D. First-principles theory and calculation of flexoelectricity. Phys. Rev. B 2013, 88, 174107. [Google Scholar] [CrossRef]
- Plymill, A.; Xu, H. Flexoelectricity in ATiO3 (A = Sr, Ba, Pb) perovskite oxide superlattices from density functional theory. J. Appl. Phys. 2018, 123, 144101. [Google Scholar] [CrossRef]
- Yasui, K. Acoustic Cavitation and Bubble Dynamics; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Yasui, K.; Hamamoto, K. Importance of dislocations in ultrasound-assisted sintering of silver nanoparticles. J. Appl. Phys. 2021, 130, 194901. [Google Scholar] [CrossRef]
- Resta, R.; Vanderbilt, D. Theory of polarization: A modern approach. In Physics of Ferroelectrics; Rabe, K., Ahn, C.H., Triscone, J.-M., Eds.; Springer: Berlin/Heildeberg, Germany, 2007; pp. 31–68. [Google Scholar]
- Uchino, K.; Sadanaga, E.; Hirose, T. Dependence of the crystal structure on particle size in barium titanate. J. Am. Ceram. Soc. 1989, 72, 155–158. [Google Scholar] [CrossRef]
- Saegusa, K.; Rhine, W.E.; Bowen, H.K. Effect of composition and size of crystallite on crystal phase in lead barium titanate. J. Am. Ceram. Soc. 1993, 76, 1505–1512. [Google Scholar] [CrossRef]
- Begg, B.D.; Vance, E.R.; Nowotny, J. Effect of particle size on the room-temperature crystal structure of barium titanate. J. Am. Ceram. Soc. 1994, 77, 3186–3192. [Google Scholar] [CrossRef]
- Hsiang, H.; Yen, F. Effect of crystallite size on the ferroelectric domain growth of ultrafine BaTiO3 powders. J. Am. Cearm. Soc. 1996, 79, 1053–1060. [Google Scholar] [CrossRef]
- Tsunekawa, S.; Ito, S.; Mori, T.; Ishikawa, K.; Li, Z. -Q.; Kawazoe, Y. Critical size and anomalous lattice expansion in nanocrystalline BaTiO3 particles. Phys. Rev. B 2000, 62, 3065–3070. [Google Scholar] [CrossRef]
- Yamamoto, T.; Niori, H.; Moriwake, H. Particle-size dependence of crystal structure of BaTiO3 powder. Jpn J. Appl. Phys. 2000, 39, 5683–5686. [Google Scholar] [CrossRef]
- Wada, S.; Yasuno, H.; Hoshina, T.; Nam, S.; Kakemoto, H.; Tsurumi, T. Preparation of nm-sized barium titanate fine particles and their powder dielectric properties. Jpn. J. Appl. Phys. 2003, 42, 6188–6195. [Google Scholar] [CrossRef]
- Hoshina, T.; Kakemoto, H.; Tsurumi, T.; Wada, S.; Yashima, M. Size and temperature induced phase transition behaviors of barium titanate nanoparticles. J. Appl. Phys. 2006, 99, 054311. [Google Scholar] [CrossRef]
- Yasui, K.; Kato, K. Influence of adsorbate-induced charge screening, depolarization factor, mobile carrier concentration, and defect-induced microstrain on the size effect of a BaTiO3 naoparticle. J. Phys. Chem. C 2013, 117, 19632–19644. [Google Scholar] [CrossRef]
- Kao, K.C. Dielectric Phenomena in Solids; Elsevier Academic Press: Amsterdam, The Netherlands, 2004. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yasui, K.; Itasaka, H.; Mimura, K.-i.; Kato, K. Coexistence of Flexo- and Ferro-Electric Effects in an Ordered Assembly of BaTiO3 Nanocubes. Nanomaterials 2022, 12, 188. https://doi.org/10.3390/nano12020188
Yasui K, Itasaka H, Mimura K-i, Kato K. Coexistence of Flexo- and Ferro-Electric Effects in an Ordered Assembly of BaTiO3 Nanocubes. Nanomaterials. 2022; 12(2):188. https://doi.org/10.3390/nano12020188
Chicago/Turabian StyleYasui, Kyuichi, Hiroki Itasaka, Ken-ichi Mimura, and Kazumi Kato. 2022. "Coexistence of Flexo- and Ferro-Electric Effects in an Ordered Assembly of BaTiO3 Nanocubes" Nanomaterials 12, no. 2: 188. https://doi.org/10.3390/nano12020188
APA StyleYasui, K., Itasaka, H., Mimura, K.-i., & Kato, K. (2022). Coexistence of Flexo- and Ferro-Electric Effects in an Ordered Assembly of BaTiO3 Nanocubes. Nanomaterials, 12(2), 188. https://doi.org/10.3390/nano12020188