Stress-Tuned Optical Transitions in Layered 1T-MX2 (M=Hf, Zr, Sn; X=S, Se) Crystals
Abstract
:1. Introduction
2. Methods and Materials
3. Results
3.1. Theoretical Analysis
3.2. Comparison with Experiment
4. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
Abbreviations
CB | Conduction band |
CBM | Conduction band minimum |
DFT | Density functional theory |
GGA | Generalized gradient approximations |
mBJ | modified Becke–Johnson |
PBE | Perdew–Burke–Ernzerhof |
SO | Spin-orbit |
TMDs | Transition metal dichalcogenides |
VB | Valence band |
VBM | Valence band maximum |
vdW | van der Waals |
XC | Exchange-correlation |
Appendix A. Band Gap Dependence on Geometrical Parameters
Appendix B. Stress vs. Strain Dependencies
Appendix C. Indirect Transition
Pressure Range of (kbar) | Stress Range of (kbar) | Stress Range of (kbar) | ||||
---|---|---|---|---|---|---|
I | II | I | II | I | II | |
HfS | [0–60] | [60–180] | [0–23.5] | [23.5–60.9] | [0–58.5] | [58.5–239.5] |
HfSe | [0–40] | [40–60] | [0–24.5] | [24.5–61.3] | [0-62.9] | |
ZrS | [0–60] | [60–120] | [0–23.2] | [23.2–53.01] | [0–53.8] | [53.8–169.0] |
ZrSe | [0–20] | [0–25.5] | [25.5–63.5] | [0–27.56] | ||
SnS | [0–180] | [0–20.6] | [20.6–29.5] | [0–32.3] | [50.5–169.8] | |
SnSe | [0–80] | [0–5.26] | [8.2–25.2] | [0–11.8] | [25.6–129.2] | |
(meV/kbar) | (meV/kbar) | (meV/kbar) | ||||
n | I | II | I | II | I | II |
HfS | −10.66 | −6.75 | −9.40 | −4.63 | −3.78 | −8.33 |
HfSe | −12.61 | −9.37 | −8.90 | −4.95 | −10.95 | |
ZrS | −10.57 | −7,19 | −9.04 | −3.94 | −4.23 | −8.53 |
ZrSe | −13.67 | −8.06 | −3.84 | −8.56 | ||
SnS | −8.52 | −11.92 | −22.53 | 3.71 | −4.51 | |
SnSe | −7.19 | −13.70 | −32.98 | 2.43 | −7.38 |
Appendix D. Tables with Pressure Coefficients
Point | v | c | E | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
L | VB | CB | 2.076 | ‖/ ⊥ | −7.61 | −5.45 | −5.05 | −5.16 | −2.91 | −1.72 | −5.49 | −6.99 | −7.68 |
VB | CB | 2.448 | ⊥ | −6.64 | −3.56 | −3.78 | −12.83 | −9.51 | −8.00 | 1.08 | -6.29 | −9.26 | |
n.A | VB | CB | 2.687 | ‖ | −4.19 | −1.71 | −0.96 | −9.16 | −7.96 | −7.03 | −1.71 | −2.07 | −2.98 |
VB-1 | CB | 2.690 | ‖ | 0.87 | 0.66 | 0.66 | −0.21 | 0.14 | 0.25 | −1.63 | −6.74 | −9.75 | |
L | VB-1 | CB | 2.781 | ‖/ ⊥ | −2.63 | −1.26 | −0.94 | 1.06 | 2.63 | 3.50 | −6.89 | −4.89 | −4.98 |
A | VB | CB | 2.833 | ‖ | 0.98 | 0.84 | 0.80 | 2.44 | 2.34 | 2.23 | −1.56 | −1.85 | −2.06 |
VB-2 | CB+1 | 2.842 | ‖ | −1.54 | −1.06 | −1.06 | −0.26 | 0.33 | 0.54 | −0.73 | 2.32 | 2.52 | |
A | VB-1 | CB+1 | 2.955 | ‖ | 0.86 | 0.85 | 0.85 | 2.42 | 2.37 | 2.28 | −1.85 | −1.84 | −2.18 |
M | VB | CB | 3.120 | ‖ | −0.89 | −0.91 | −0.93 | 5.29 | 4.73 | 4.44 | −6.07 | −5.50 | −5.59 |
VB | CB+2 | 3.134 | ⊥ | −8.26 | −5.23 | −3.57 | −8.88 | −5.68 | −4.29 | −4.98 | −4.13 | −2.76 | |
VB-1 | CB+2 | 3.356 | ‖ | −4.00 | −3.50 | −2.55 | 3.10 | 3.57 | 3.65 | −6.57 | −3.70 | −2.70 | |
n.AL | VB-2 | CB+1 | 3.486 | ⊥ | 0.03 | 1.07 | 1.38 | −6.03 | −5.59 | −5.65 | 4.10 | 2.86 | 2.07 |
A | VB | CB+2 | 3.841 | ‖ | 0.84 | 0.44 | 0.32 | 3.97 | 3.43 | 3.16 | −3.82 | −4.60 | −5.40 |
A | VB-1 | CB+2 | 4.082 | ⊥ | 0.74 | 0.37 | 0.25 | 3.97 | 3.45 | 3.18 | −3.92 | −4.67 | −5.47 |
VB | CB | 1.699 | ‖ | −9.04 | −6.57 | −5.79 | −10.77 | −8.70 | −7.94 | −8.15 | −13.52 | −14.72 | |
VB-1 | CB | 1.716 | ‖/ ⊥ | −4.02 | −4.06 | −4.79 | 0.84 | 1.03 | 1.13 | −4.34 | −12.03 | −13.93 | |
L | VB | CB | 1.758 | ‖/ ⊥ | −10.18 | −8.11 | −6.97 | −3.32 | −2.02 | −1.26 | −8.63 | −9.98 | −9.97 |
VB-1 | CB+1 | 1.811 | ‖ | −2.92 | −2.33 | −1.96 | 0.34 | 0.71 | 0.94 | 0.40 | −2.10 | −2.58 | |
A | VB | CB | 1.962 | ‖ | 1.32 | 1.02 | 0.79 | 4.02 | 3.63 | 3.57 | −3.06 | −3.65 | −4.49 |
VB-1 | CB+2 | 2.140 | ⊥ | −5.78 | −4.69 | −3.47 | 3.35 | 3.89 | 4.34 | −3.46 | −2.85 | −2.77 | |
VB | CB+2 | 2.161 | ‖ | −10.81 | −7.20 | −4.47 | −8.26 | −5.84 | −4.72 | −7.27 | −4.35 | −3.57 | |
L | VB-1 | CB | 2.183 | ‖/ ⊥ | −9.48 | −7.63 | −6.59 | −1.24 | 1.46 | 3.00 | −5.95 | −5.51 | −5.32 |
VB-2 | CB | 2.256 | ⊥ | −5.25 | −4.32 | −4.75 | −1.68 | 0.11 | 0.64 | −3.39 | −5.52 | −5.64 | |
A | VB-1 | CB | 2.317 | ‖ | 1.35 | 1.05 | 0.81 | 3.93 | 3.52 | 3.47 | −2.93 | −3.52 | −4.36 |
A | VB-1 | CB+1 | 2.318 | ‖ | 1.09 | 0.86 | 0.69 | 3.79 | 3.45 | 3.44 | −2.92 | −3.07 | −2.89 |
VB-2 | CB+1 | 2.341 | ‖ | −4.15 | −2.60 | −1.92 | −2.18 | −0.21 | 0.45 | 1.34 | 4.41 | 5.71 | |
M | VB | CB | 2.476 | ‖ | −0.15 | −0.65 | −0.82 | 6.80 | 5.87 | 5.79 | −7.30 | −7.71 | −7.66 |
VB-2 | CB+1 | 2.673 | ‖/ ⊥ | −7.02 | −4.96 | −3.41 | 0.83 | 2.97 | 3.85 | −2.52 | 3.66 | 5.52 | |
A | VB | CB+2 | 2.728 | ‖ | 1.41 | 0.86 | 0.54 | 5.45 | 4.57 | 4.38 | −5.38 | −7.07 | −7.29 |
A | VB-1 | CB+2 | 3.055 | ‖ | 1.45 | 0.89 | 0.57 | 5.35 | 4.46 | 4.27 | −5.25 | −6.94 | −7.15 |
n.AL | VB-2 | CB | 3.433 | ⊥ | 2.28 | 2.00 | 1.83 | −0.26 | −0.81 | −1.32 | −2.76 | −7.23 | −7.53 |
Point | v | c | E | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
VB | CB+1 | 1.777 | ‖ | −5.41 | −2.53 | −1.69 | −11.51 | −8.27 | −7.22 | −3.73 | −3.09 | −2.86 | |
L | VB | CB | 1.949 | ‖/ ⊥ | −7.64 | −5.70 | −5.30 | −5.17 | −2.70 | −1.52 | −1.68 | −1.01 | −0.60 |
VB-1 | CB+2 | 2.073 | ‖ | −4.41 | −4.44 | −4.10 | 3.65 | 4.20 | 4.69 | 1.18 | 1.57 | 1.86 | |
VB-2 | CB+1 | 2.164 | ‖ | −1.37 | −0.96 | −0.78 | −0.16 | 0.23 | 0.40 | −0.05 | 0.09 | 0.16 | |
A | VB | CB | 2.209 | ‖ | 1.36 | 1.11 | 1.13 | 2.96 | 2.67 | 2.63 | 0.96 | 1.00 | 1.04 |
L | VB-1 | CB+1 | 2.259 | ‖ | 0.83 | 1.32 | 1.45 | −2.60 | −2.09 | −2.03 | −0.84 | −0.78 | −0.80 |
A | VB-1 | CB+1 | 2.299 | ‖ | 1.40 | 1.15 | 1.15 | 2.93 | 2.67 | 2.64 | 0.95 | 1.00 | 1.05 |
A | VB-1 | CB+2 | 2.331 | ‖ | 1.32 | 0.64 | 0.48 | 5.45 | 4.53 | 4.34 | 1.76 | 1.69 | 1.72 |
VB | CB+2 | 2.547 | ⊥ | −8.45 | −5.98 | −5.00 | 5.45 | −4.29 | −2.90 | −2.51 | −1.61 | −1.15 | |
M | VB | CB | 2.702 | ‖ | −0.07 | −0.45 | −0.82 | 6.52 | 5.76 | 5.73 | 2.11 | 2.15 | 2.27 |
VB-1 | CB | 2.834 | ‖ | −1.38 | −1.03 | −1.55 | −0.16 | 0.16 | 0.29 | −0.05 | 0.06 | 0.11 | |
VB-2 | CB+2 | 2.927 | ‖ | −4.41 | −4.42 | −4.08 | 3.58 | 4.21 | 4.72 | 1.16 | 1.57 | 1.87 | |
M | VB-1 | CB+1 | 3.366 | ‖ | 5.93 | 3.13 | 3.71 | 2.94 | 0.01 | −1.80 | 0.95 | 0.01 | −0.71 |
n.AL | VB-2 | CB | 3.400 | ⊥ | −2.42 | −0.46 | −0.35 | −6.41 | −4.89 | −4.47 | −2.07 | −1.83 | −1.77 |
A | VB | CB+2 | 3.486 | ‖ | 1.33 | 0.64 | 0.49 | 5.47 | 4.53 | 4.34 | 1.77 | 1.69 | 1.72 |
M | VB-2 | CB | 3.894 | ‖/ ⊥ | −1.71 | −2.81 | −2.88 | −2.25 | −2.04 | −1.70 | −0.73 | −0.76 | −0.67 |
L | VB | CB+1 | 4.272 | ‖ | −0.01 | 1.55 | 1.90 | −9.14 | −7.58 | −7.38 | −2.96 | −2.83 | −2.93 |
VB | CB+1 | 1.151 | ‖ | −6.76 | −3.50 | −2.46 | −8.29 | −5.75 | −4.92 | −2.92 | −3.48 | 0.60 | |
n.A | VB | CB | 1.252 | ‖ | −5.31 | −2.36 | −1.46 | −10.08 | −7.87 | −7.06 | −3.62 | −10.30 | −12.88 |
VB-1 | CB | 1.252 | ‖ | −2.87 | −2.88 | −5.39 | 1.34 | 1.38 | 1.34 | −1.65 | −12.33 | −9.91 | |
L | VB | CB | 1.320 | ‖/ ⊥ | −10.03 | −7.75 | −7.10 | −3.25 | −1.86 | −0.98 | −9.22 | −10.43 | −10.32 |
A | VB | CB | 1.460 | ‖ | 1.64 | 1.33 | 0.89 | 4.46 | 3.91 | 3.87 | −2.94 | −3.10 | −3.34 |
A | VB | CB+1 | 1.465 | ‖ | 1.68 | 1.35 | 0.90 | 4.49 | 3.92 | 3.87 | −2.95 | −3.01 | −3.11 |
VB | CB+2 | 1.513 | ⊥ | −11.36 | −7.40 | −3.97 | −5.66 | −2.54 | −1.15 | −10.02 | −3.77 | 0.50 | |
VB-1 | CB+2 | 1.604 | ‖ | −7.28 | −5.86 | −3.40 | 3.19 | 4.04 | 4.75 | −6.41 | −1.67 | −2.53 | |
L | VB-1 | CB | 1.653 | ‖ | −9.60 | −7.59 | −6.93 | −0.65 | 2.10 | 3.65 | −6.73 | −5.97 | −5.78 |
VB-2 | CB+1 | 1.663 | ‖ | −3.23 | −1.94 | −1.76 | 0.42 | 0.65 | 0.79 | 0.23 | 3.85 | 5.16 | |
A | VB-1 | CB+1 | 1.798 | ‖ | 1.82 | 1.47 | 1.02 | 4.37 | 3.79 | 3.72 | −2.70 | −2.77 | −2.88 |
VB-2 | CB+2 | 2.031 | ‖/ ⊥ | −7.83 | −5.84 | −3.27 | 3.04 | 3.86 | 4.55 | −6.87 | 3.56 | 5.06 | |
M | VB | CB | 2.133 | ‖ | 0.49 | −0.12 | −0.51 | 7.90 | 6.75 | 6.63 | −7.60 | −7.90 | −7.85 |
A | VB | CB+2 | 2.379 | ‖ | 1.63 | 0.92 | 0.45 | 7.07 | 5.78 | 5.53 | −6.55 | −8.38 | −9.36 |
A | VB-1 | CB+2 | 2.663 | ‖ | 1.78 | 1.05 | 0.57 | 6.95 | 5.65 | 5.37 | −6.30 | −8.13 | −9.12 |
L | VB-1 | CB+1 | 3.939 | ‖ | 0.52 | 1.86 | 2.21 | −4.54 | −2.68 | −2.17 | 7.12 | 8.78 | 8.82 |
L | VB | CB+2 | 4.107 | ‖ | 1.98 | 3.16 | 3.19 | −7.75 | −7.38 | −7.74 | 6.45 | 4.05 | 2.07 |
M | VB | CB+1 | 4.272 | ‖ | 9.62 | 8.37 | 7.57 | 5.71 | 4.46 | 4.00 | 4.14 | 4.85 | 4.91 |
H | VB-1 | CB | 4.372 | ‖/ ⊥ | 2.58 | −0.12 | 0.03 | −5.76 | −5.51 | −5.96 | 2.37 | 0.99 | 0.32 |
L | VB-1 | CB+2 | 4.413 | ‖ | 2.41 | 3.33 | 3.36 | −5.16 | −3.42 | −3.12 | 8.93 | 8.51 | 6.61 |
K | VB-1 | CB | 4.500 | ‖/ ⊥ | 5.25 | 4.87 | 4.64 | −4.69 | −4.92 | −5.46 | 9.90 | 9.73 | 1.37 |
Point | v | c | E | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
VB | CB | 2.595 | ⊥ | −4.73 | 0.22 | 1.28 | −28.59 | −25.78 | −24.78 | 13.08 | 1.03 | −1.09 | |
L | VB-2 | CB | 3.786 | ‖/ ⊥ | 2.20 | 4.21 | 8.71 | −4.56 | −1.89 | −0.30 | 4.32 | 1.38 | −2.14 |
H | VB | CB | 3.871 | ‖ | 3.01 | 3.00 | 2.85 | −2.63 | −3.11 | −3.71 | 3.84 | 2.21 | 1.42 |
H | VB-1 | CB | 3.889 | ‖ | 2.89 | 3.01 | 2.85 | −2.48 | −2.99 | −3.60 | 3.78 | 2.16 | 1.38 |
K | VB | Cb | 3.953 | ‖ | 3.87 | 2.52 | 1.65 | 1.38 | 0.96 | 0.55 | 2.64 | 1.52 | 0.96 |
L | VB-1 | CB | 3.960 | ‖ | 11.38 | 9.33 | 3.81 | 14.60 | 18.29 | 20.07 | 1.79 | 1.56 | 1.23 |
A | VB-2 | CB | 4.439 | ‖ | 13.55 | 9.42 | 3.37 | 9.98 | 8.16 | 7.35 | 6.32 | 4.01 | 2.43 |
VB | CB | 1.446 | ‖/ ⊥ | −5.31 | −0.15 | 1.17 | −34.07 | −31.48 | −32.20 | 11.54 | −0.14 | −2.98 | |
VB-2 | CB | 1.959 | ‖ | 3.18 | 8.11 | 8.06 | −6.45 | −5.74 | 2.35 | 4.45 | 0.08 | −2.75 | |
H | VB | CB | 2.969 | ‖/ ⊥ | 2.74 | 3.00 | 2.56 | −4.41 | −5.21 | −6.68 | 4.16 | 2.25 | 1.21 |
L | VB-2 | CB | 2.986 | ‖/ ⊥ | 4.16 | 4.95 | 4.96 | 1.36 | 5.21 | 8.35 | 1.66 | −2.95 | −4.30 |
H | VB-1 | CB | 3.056 | ‖ | 2.92 | 3.12 | 2.66 | −3.91 | −4.71 | −6.15 | 4.02 | 2.13 | 1.10 |
K | VB | CB | 3.072 | ‖ | 4.17 | 3.24 | 1.43 | 0.47 | −0.52 | −1.76 | 2.73 | 1.42 | 0.69 |
K | VB-1 | CB | 3.158 | ‖ | 3.56 | 2.52 | 2.16 | −0.38 | −1.65 | −3.34 | 2.75 | 1.42 | 0.67 |
A | VB-2 | CB | 3.620 | ‖ | 16.97 | 12.85 | 5.78 | 14.57 | 12.49 | 11.58 | 5.25 | 2.93 | 0.86 |
A | VB | CB+1 | 3.676 | ‖ | −0.08 | 0.27 | 5.86 | −6.28 | −6.90 | −8.13 | 4.06 | 3.08 | 2.62 |
A | VB-1 | CB+1 | 3.937 | ‖ | 0.01 | 0.33 | 5.92 | −6.45 | −7.13 | −8.36 | 4.29 | 3.29 | 2.83 |
VB-1 | CB+1 | 3.955 | ‖ | 6.62 | 1.84 | 1.78 | 6.22 | 7.03 | −0.44 | 7.55 | 2.74 | 2.37 | |
M | VB-2 | CB | 4.092 | ‖ | 16.77 | 12.96 | 11.78 | 24.12 | 24.44 | 26.34 | −2.00 | −2.70 | −3.50 |
K | VB-2 | CB | 4.445 | ⊥ | −10.08 | −6.11 | −5.83 | −25.72 | −26.06 | −29.05 | 6.28 | 3.92 | 2.70 |
References
- Khan, K.; Tareen, A.K.; Aslam, M.; Wang, R.; Zhang, Y.; Mahmood, A.; Ouyang, Z.; Zhang, H.; Guo, Z. Recent developments in emerging two-dimensional materials and their applications. J. Mater. Chem. C 2020, 8, 387–440. [Google Scholar] [CrossRef]
- Bao, Q.; Hoh, H.Y. 2D Materials for Photonic and Optoelectronic Applications; Elsevier: Amsterdam, The Netherlands, 2020; p. 326. [Google Scholar]
- Li, N.; Wang, Y.; Sun, H.; Hu, J.; Zheng, M.; Ye, S.; Wang, Q.; Li, Y.; He, D.; Wang, J.; et al. Resistive switching behaviors and mechanisms of HfS2 film memory devices studied by experiments and density functional theory calculations. Appl. Phys. Lett. 2020, 116, 063503. [Google Scholar] [CrossRef]
- Yin, J.; Zhu, F.; Lai, J.; Chen, H.; Zhang, M.; Zhang, J.; Wang, J.; He, T.; Zhang, B.; Yuan, J.; et al. Hafnium Sulfide Nanosheets for Ultrafast Photonic Device. Adv. Opt. Mater. 2019, 7, 1801303. [Google Scholar] [CrossRef]
- Gedi, S.; Minnam Reddy, V.R.; Pejjai, B.; Park, C.; Jeon, C.W.; Kotte, T.R.R. Studies on chemical bath deposited SnS2 films for Cd-free thin film solar cells. Ceram. Int. 2017, 43, 3713–3719. [Google Scholar] [CrossRef]
- Feng, T.; Zhang, D.; Li, X.; Abdul, Q.; Shi, Z.; Lu, J.; Guo, P.; Zhang, Y.; Liu, J.; Wang, Q.J. SnS2 Nanosheets for Er-Doped Fiber Lasers. ACS Appl. Nano Mater. 2020, 3, 674–681. [Google Scholar] [CrossRef]
- He, K.; Poole, C.; Mak, K.F.; Shan, J. Experimental Demonstration of Continuous Electronic Structure Tuning via Strain in Atomically Thin MoS2. Nano Lett. 2013, 13, 2931–2936. [Google Scholar] [CrossRef]
- Shi, H.; Pan, H.; Zhang, Y.W.; Yakobson, B.I. Quasiparticle band structures and optical properties of strained monolayer MoS2 and WS2. Phys. Rev. B 2013, 87, 155304. [Google Scholar] [CrossRef]
- Conley, H.J.; Wang, B.; Ziegler, J.I.; Haglund, R.F.; Pantelides, S.T.; Bolotin, K.I. Bandgap Engineering of Strained Monolayer and Bilayer MoS2. Nano Lett. 2013, 13, 3626–3630. [Google Scholar] [CrossRef]
- Scalise, E.; Houssa, M.; Pourtois, G.; Afanas’ev, V.; Stesmans, A. Strain-induced semiconductor to metal transition in the two-dimensional honeycomb structure of MoS2. Nano Res. 2012, 5, 43–48. [Google Scholar] [CrossRef]
- Ghorbani-Asl, M.; Borini, S.; Kuc, A.; Heine, T. Strain-dependent modulation of conductivity in single-layer transition-metal dichalcogenides. Phys. Rev. B 2013, 87, 235434. [Google Scholar] [CrossRef] [Green Version]
- Castellanos-Gomez, A.; Singh, V.; van der Zant, H.S.J.; Steele, G.A. Mechanics of freely-suspended ultrathin layered materials. Ann. Der Phys. 2015, 527, 27–44. [Google Scholar] [CrossRef]
- Bertolazzi, S.; Brivio, J.; Kis, A. Stretching and Breaking of Ultrathin MoS2. ACS Nano 2011, 5, 9703–9709. [Google Scholar] [CrossRef] [PubMed]
- Griffith, A.A.V.I. The phenomena of rupture and flow in solids. Philos. Trans. R. Soc. Lond. A 1921, 221, 163–198. [Google Scholar] [CrossRef]
- Dybała, F.; Polak, M.P.; Kopaczek, J.; Scharoch, P.; Wu, K.; Tongay, S.; Kudrawiec, R. Pressure coefficients for direct optical transitions in MoS2, MoSe2, WS2, and WSe2 crystals and semiconductor to metal transitions. Sci. Rep. 2016, 6, 26663. [Google Scholar] [CrossRef] [PubMed]
- Oliva, R.; Laurien, M.; Dybala, F.; Kopaczek, J.; Qin, Y.; Tongay, S.; Rubel, O.; Kudrawiec, R. Pressure dependence of direct optical transitions in ReS2 and ReSe2. NPJ 2D Mater. Appl. 2019, 3, 20. [Google Scholar] [CrossRef]
- Oliva, R.; Woźniak, T.; Dybala, F.; Tołłoczko, A.; Kopaczek, J.; Scharoch, P.; Kudrawiec, R. Valley polarization investigation of GeS under high pressure. Phys. Rev. B 2020, 101, 235205. [Google Scholar] [CrossRef]
- Oliva, R.; Woźniak, T.; Dybala, F.; Kopaczek, J.; Scharoch, P.; Kudrawiec, R. Hidden spin-polarized bands in semiconducting 2H-MoTe2. Mater. Res. Lett. 2020, 8, 75–81. [Google Scholar] [CrossRef]
- Pang, X.; Zhang, Q.; Shao, Y.; Liu, M.; Zhang, D.; Zhao, Y. A Flexible Pressure Sensor Based on Magnetron Sputtered MoS2. Sensors 2021, 21, 1130. [Google Scholar] [CrossRef]
- Yang, C.; Zhang, D.; Wang, D.; Chen, X.; Luan, H. Ultra-sensitive, stretchable, and bidirectional wearable strain sensor for human motion detection. J. Mater. Chem. C 2022, 10, 7076–7086. [Google Scholar] [CrossRef]
- Lee, J.; Feng, P.X.L. Atomically-Thin MoS2 Resonators for Pressure Sensing. In Proceedings of the 2014 IEEE International Frequency Control Symposium (FCS), UFFC; Asia Pacific Metrol Programme; Minist Sci & Technol; NAR Labs; Instrument Technol Res Ctr; Sensors & Actuators Tech. Tsing Hua Univ, Taipei, Taiwan, 19–22 May 2014; pp. 276–279. [Google Scholar]
- Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O.V.; Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2017, 2, 17033. [Google Scholar] [CrossRef]
- Omkaram, I.; Hong, Y.K.; Kim, S. Transition Metal Dichalcogenide Photodetectors. In Two-Dimensional Materials for Photodetector; Nayak, P.K., Ed.; IntechOpen: Rijeka, Croatia, 2017; Chapter 2. [Google Scholar] [CrossRef]
- Gong, C.; Zhang, H.; Wang, W.; Colombo, L.; Wallace, R.M.; Cho, K. Band alignment of two-dimensional transition metal dichalcogenides: Application in tunnel field effect transistors. Appl. Phys. Lett. 2013, 103, 053513. [Google Scholar] [CrossRef]
- Xu, K.; Wang, Z.; Wang, F.; Huang, Y.; Wang, F.; Yin, L.; Jiang, C.; He, J. Ultrasensitive Phototransistors Based on Few-Layered HfS2. Adv. Mater. 2015, 27, 7881–7887. [Google Scholar] [CrossRef] [PubMed]
- Fiori, G.; Bonaccorso, F.; Iannaccone, G.; Palacios, T.; Neumaier, D.; Seabaugh, A.; Banerjee, S.K.; Colombo, L. Electronics based on two-dimensional materials. Nat. Nanotechnol. 2014, 9, 768–779. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Gan, L.; Tian, W.; Zhang, Q.; Jin, S.; Li, H.; Bando, Y.; Golberg, D.; Zhai, T. Ultrathin SnSe2 Flakes Grown by Chemical Vapor Deposition for High-Performance Photodetectors. Adv. Mater. 2015, 27, 8035–8041. [Google Scholar] [CrossRef] [PubMed]
- Yang, E.; Ji, H.; Jung, Y. Two-Dimensional Transition Metal Dichalcogenide Monolayers as Promising Sodium Ion Battery Anodes. J. Phys. Chem. C 2015, 119, 26374–26380. [Google Scholar] [CrossRef]
- Ibáñez, J.; Woźniak, T.; Dybala, F.; Oliva, R.; Hernández, S.; Kudrawiec, R. High-pressure Raman scattering in bulk HfS2: Comparison of density functional theory methods in layered MS2 compounds (M=Hf, Mo) under compression. Sci. Rep. 2018, 8, 12757. [Google Scholar] [CrossRef]
- Grzeszczyk, M.; Gawraczyński, J.; Woźniak, T.; Ibáñez, J.; Muhammad, Z.; Zhao, W.; Molas, M.; Babiński, A. Pressure-Driven Phase Transitions in Bulk HfS2. Acta Phys. Pol. A 2022, 141, 95–98. [Google Scholar] [CrossRef]
- Hong, M.; Dai, L.; Hu, H.; Zhang, X.; Li, C.; He, Y. High-pressure structural phase transitions and metallization in layered HfS2 under different hydrostatic environments up to 42.1 GPa. J. Mater. Chem. C 2022, 10, 10541–10550. [Google Scholar] [CrossRef]
- Rahman, S.; Saqib, H.; Liang, X.; Errandonea, D.; Resta, A.; Molina-Sanchez, A.; Gao, G.; Wang, L.; Tian, Y.; Mao, H.K. Pressure-induced metallization and robust superconductivity in pristine 1T-HfSe2. Mater. Today Phys. 2022, 25, 100698. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Holzwarth, N.A.W.; Tackett, A.R.; Matthews, G.E. A Projector Augmented Wave (PAW) code for electronic structure calculations, Part I: Atom paw for generating atom-centered functions. Comput. Phys. Commun. 2001, 135, 329–347. [Google Scholar] [CrossRef]
- Paier, J.; Hirschl, R.; Marsman, M.; Kresse, G. The Perdew–Burke–Ernzerhof exchange-correlation functional applied to the G2-1 test set using a plane-wave basis set. J. Chem. Phys. 2005, 122, 234102. [Google Scholar] [CrossRef] [PubMed]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Birowska, M.; Milowska, K.; Majewski, J.A. Van Der Waals Density Functionals for Graphene Layers and Graphite. Acta Phys. Pol. A 2011, 120, 845–848. [Google Scholar] [CrossRef]
- Birowska, M.; Marchwiany, M.E.; Draxl, C.; Majewski, J.A. Assessment of approaches for dispersive forces employing semihydrogenated graphene as a case study. Comput. Mater. Sci. 2021, 186, 109940. [Google Scholar] [CrossRef]
- Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Guo, Y.; Si, K.; Ren, Z.; Bai, J.; Xu, X. Elastic, electronic, and dielectric properties of bulk and monolayer ZrS2, ZrSe2, HfS2, HfSe2 from van der Waals density-functional theory. Phys. Status Solidib 2017, 254, 1700033. [Google Scholar] [CrossRef]
- Hedin, L. On correlation effects in electron spectroscopies and the GW approximation. J. Phys.: Condens. Matter 1999, 11, R489–R528. [Google Scholar] [CrossRef]
- Becke, A.D.; Johnson, E.R. A simple effective potential for exchange. J. Chem. Phys. 2006, 124, 221101. [Google Scholar] [CrossRef]
- Tran, F.; Blaha, P. Accurate Band Gaps of Semiconductors and Insulators with a Semilocal Exchange-Correlation Potential. Phys. Rev. Lett. 2009, 102, 226401. [Google Scholar] [CrossRef]
- Gusakova, J.; Wang, X.; Shiau, L.L.; Krivosheeva, A.; Shaposhnikov, V.; Borisenko, V.; Gusakov, V.; Tay, B.K. Electronic Properties of Bulk and Monolayer TMDs: Theoretical Study Within DFT Framework (GVJ-2e Method). Phys. Status Solidi A 2017, 214, 1700218. [Google Scholar] [CrossRef]
- Oliva, R.; Wozniak, T.; Faria, P.E.; Dybala, F.; Kopaczek, J.; Fabian, J.; Scharoch, P.; Kudrawiec, R. Strong Substrate Strain Effects in Multilayered WS2 Revealed by High-Pressure Optical Measurements. ACS Appl. Mater. Interfaces 2022, 14, 19857–19868. [Google Scholar] [CrossRef] [PubMed]
- Gajdo, M.; Hummer, K.; Kresse, G.; Furthmüller, J.; Bechstedt, F. Linear optical properties in the projector-augmented wave methodology. Phys. Rev. B 2006, 73, 045112. [Google Scholar] [CrossRef]
- Manjón, F.J.; Segura, A.; Muñoz Sanjosé, V.; Tobías, G.; Ordejón, P.; Canadell, E. Band structure of indium selenide investigated by intrinsic photoluminescence under high pressure. Phys. Rev. B 2004, 70, 125201. [Google Scholar] [CrossRef]
- Errandonea, D.; Segura, A.; Manjón, F.J.; Chevy, A.; Machado, E.; Tobias, G.; Ordejón, P.; Canadell, E. Crystal symmetry and pressure effects on the valence band structure of γ-InSe and ϵ-GaSe: Transport measurements and electronic structure calculations. Phys. Rev. B 2005, 71, 125206. [Google Scholar] [CrossRef]
- Jiang, H. Band gaps from the Tran-Blaha modified Becke-Johnson approach: A systematic investigation. J. Chem. Phys. 2013, 138, 134115. [Google Scholar] [CrossRef]
- Beal, A.R.; Knights, J.C.; Liang, W.Y. Transmission spectra of some transition metal dichalcogenides. II. Group VIA: Trigonal prismatic coordination. J. Phys. Solid State Phys. 1972, 5, 3540–3551. [Google Scholar] [CrossRef]
- Saigal, N.; Sugunakar, V.; Ghosh, S. Exciton binding energy in bulk MoS2: A reassessment. Appl. Phys. Lett. 2016, 108, 132105. [Google Scholar] [CrossRef]
- Arora, A.; Drüppel, M.; Schmidt, R.; Deilmann, T.; Schneider, R.; Molas, M.R.; Marauhn, P.; Michaelis de Vasconcellos, S.; Potemski, M.; Rohlfing, M.; et al. Interlayer excitons in a bulk van der Waals semiconductor. Nat. Commun. 2017, 8, 639. [Google Scholar] [CrossRef] [Green Version]
- Jung, E.; Park, J.C.; Seo, Y.S.; Kim, J.H.; Hwang, J.; Lee, Y.H. Unusually large exciton binding energy in multilayered 2H-MoTe2. Sci. Rep. 2022, 12, 4543. [Google Scholar] [CrossRef]
- Birowska, M.; Faria Junior, P.E.; Fabian, J.; Kunstmann, J. Large exciton binding energies in MnPS3 as a case study of a van der Waals layered magnet. Phys. Rev. B 2021, 103, L121108. [Google Scholar] [CrossRef]
- Brotons-Gisbert, M.; Segura, A.; Robles, R.; Canadell, E.; Ordejón, P.; Sánchez-Royo, J.F. Optical and electronic properties of 2H-MoS2 under pressure: Revealing the spin-polarized nature of bulk electronic bands. Phys. Rev. Mater. 2018, 2, 054602. [Google Scholar] [CrossRef]
- Hodul, D.T.; Stacy, A.M. Anomalies in the properties of Hf(S2-xTex)1-y and Hf(Se2-xTex)1-y near the metal-insulator transition. J. Solid State Chem. 1984, 54, 438–446. [Google Scholar] [CrossRef]
- Greenaway, D.; Nitsche, R. Preparation and optical properties of group IV–VI2 chalcogenides having the CdI2 structure. J. Phys. Chem. Solids 1965, 26, 1445–1458. [Google Scholar] [CrossRef]
- Terashima, K.; Imai, I. Indirect absorption edge of ZrS2 and HfS2. Solid State Commun. 1987, 63, 315–318. [Google Scholar] [CrossRef]
- Gaiser, C.; Zandt, T.; Krapf, A.; Serverin, R.; Janowitz, C.; Manzke, R. Band-gap engineering with HfSxSe2-x. Phys. Rev. B 2004, 69, 075205. [Google Scholar] [CrossRef]
- Lee, P.; Said, G.; Davis, R.; Lim, T. On the optical properties of some layer compounds. J. Phys. Chem. Solids 1969, 30, 2719–2729. [Google Scholar] [CrossRef]
- Roubi, L.; Carlone, C. Resonance Raman spectrum of HfS2 and ZrS2. Phys. Rev. B 1988, 37, 6808–6812. [Google Scholar] [CrossRef]
- Starnberg, H.I.; Brauer, H.E.; Hughes, H.P. Photoemission studies of the conduction band filling in and Cs-intercalated and. J. Phys.: Condens. Matter 1996, 8, 1229–1234. [Google Scholar] [CrossRef]
- Moustafa, M.; Zandt, T.; Janowitz, C.; Manzke, R. Growth and band gap determination of the ZrSxSe2-x single crystal series. Phys. Rev. B 2009, 80, 035206. [Google Scholar] [CrossRef]
- Julien, C.; Eddrief, M.; Samaras, I.; Balkanski, M. Optical and electrical characterizations of SnSe, SnS2 and SnSe2 single crystals. Mater. Sci. Eng. B 1992, 15, 70–72. [Google Scholar] [CrossRef]
- Fong, C.Y.; Cohen, M.L. Electronic Energy-Band Structure of SnS2 and SnSe2. Phys. Rev. B 1972, 5, 3095–3101. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, B.; Liu, S.; Li, J.; Liu, R.; Wang, P.; Dong, Q.; Li, S.; Tian, H.; Li, Q.; et al. Semiconductor-to-metal transition in HfSe2 under high pressure. J. Alloys Compd. 2021, 867, 158923. [Google Scholar] [CrossRef]
- Zhai, H.; Qin, Z.; Sun, D.; Wang, J.; Liu, C.; Min, N.; Li, Q. Pressure-induced phase transition, metallization and superconductivity in ZrS2. Phys. Chem. Chem. Phys. 2018, 20, 23656–23663. [Google Scholar] [CrossRef]
- Martino, E.; Santos-Cottin, D.; Le Mardelé, F.; Semeniuk, K.; Pizzochero, M.; Čerņevičs, K.; Baptiste, B.; Delbes, L.; Klotz, S.; Capitani, F.; et al. Structural Phase Transition and Bandgap Control through Mechanical Deformation in Layered Semiconductors 1T–ZrX2 (X = S, Se). ACS Mater. Lett. 2020, 2, 1115–1120. [Google Scholar] [CrossRef]
- Zhang, X.; Dai, L.; Hu, H.; Hong, M.; Li, C. Pressure-induced coupled structural–electronic transition in SnS2 under different hydrostatic environments up to 39.7 GPa. RSC Adv. 2022, 12, 2454–2461. [Google Scholar] [CrossRef]
- Zhen, Z.Q.; Wang, H.Y. Density Functional Study of the Electronic, Elastic, and Lattice Dynamic Properties of SnS2. Acta Phys. Pol. A 2020, 137, 1095–1100. [Google Scholar] [CrossRef]
- Javed, Y.; Mirza, S.M.; Rafiq, M.A. Effect of Pressure on Mechanical and Thermal Properties of SnSe2. Int. J. Thermophys. 2021, 42, 146. [Google Scholar] [CrossRef]
System | (Å) | (Å) | (eV) | (Å) | (Å) | (eV) |
---|---|---|---|---|---|---|
HfS | 3.59 | 5.75 | 1.50 | 3.63 [56] | 5.86 [56] | 1.96 [57], 1.80 [58], 1.87 [59] |
HfSe | 3.70 | 6.08 | 0.71 | 3.67 [56] | 6.00 [56] | 1.13 [57], 1.15 [58] |
ZrS | 3.63 | 5.72 | 1.12 | 3.66 [57] | 5.82 [57] | 1.68 [57], 1.70 [60], 1.78 [61] |
ZrSe | 3.74 | 6.04 | 0.33 | 3.77 [57] | 6.14 [57] | 1.20 [60], 1.10 [62], 1.18 [63] |
SnS | 3.67 | 5.80 | 2.14 | 3.65 [64] | 5.90 [64] | 2.88 [65] |
SnSe | 3.84 | 6.00 | 1.10 | 3.82 [64] | 6.14 [64] | 1.63 [65] |
Point | v | c | E | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
L | VB | CB | 2.076 | 21 | 11 | −7.61 | −5.45 | −5.05 | −5.16 | −2.91 | −1.72 | −5.49 | −6.99 | −7.68 |
VB | CB | 2.448 | 0 | 3 | −6.64 | −3.56 | −3.78 | −12.83 | −9.51 | −8.00 | 1.08 | -6.29 | −9.26 | |
n.A | VB | CB | 2.687 | 67 | 0 | −4.19 | −1.71 | −0.96 | −9.16 | −7.96 | −7.03 | −1.71 | −2.07 | −2.98 |
VB-1 | CB | 2.690 | 66 | 0 | 0.87 | 0.66 | 0.66 | −0.21 | 0.14 | 0.25 | −1.63 | −6.74 | −9.75 | |
L | VB-1 | CB | 2.781 | 30 | 2 | −2.63 | −1.26 | −0.94 | 1.06 | 2.63 | 3.50 | −6.89 | −4.89 | −4.98 |
VB | CB | 1.699 | 52 | 0 | −9.04 | −6.57 | −5.79 | −10.77 | −8.70 | −7.94 | −8.15 | −13.52 | −14.72 | |
VB-1 | CB | 1.716 | 5 | 5 | −4.02 | −4.06 | −4.79 | 0.84 | 1.03 | 1.13 | −4.34 | −12.03 | −13.93 | |
L | VB | CB | 1.758 | 14 | 14 | −10.18 | −8.11 | −6.97 | −3.32 | −2.02 | −1.26 | −8.63 | −9.98 | −9.97 |
VB-1 | CB+1 | 1.811 | 22 | 0 | −2.92 | −2.33 | −1.96 | 0.34 | 0.71 | 0.94 | 0.40 | −2.10 | −2.58 | |
A | VB | CB | 1.962 | 68 | 0 | 1.32 | 1.02 | 0.79 | 4.02 | 3.63 | 3.57 | −3.06 | −3.65 | −4.49 |
VB | CB+1 | 1.777 | 4 | 0 | −5.41 | −2.53 | −1.69 | −11.51 | −8.27 | −7.22 | −3.73 | −3.09 | −2.86 | |
L | VB | CB | 1.949 | 10 | 20 | −7.64 | −5.70 | −5.30 | −5.17 | −2.70 | −1.52 | −1.68 | −1.01 | −0.60 |
VB-1 | CB+2 | 2.073 | 11 | 0 | −4.41 | −4.44 | −4.10 | 3.65 | 4.20 | 4.69 | 1.18 | 1.57 | 1.86 | |
VB-2 | CB+1 | 2.164 | 41 | 0 | −1.37 | −0.96 | −0.78 | −0.16 | 0.23 | 0.40 | −0.05 | 0.09 | 0.16 | |
A | VB | CB | 2.209 | 61 | 0 | 1.36 | 1.11 | 1.13 | 2.96 | 2.67 | 2.63 | 0.96 | 1.00 | 1.04 |
VB | CB+1 | 1.151 | 14 | 0 | −6.76 | −3.50 | −2.46 | −8.29 | −5.75 | −4.92 | −2.92 | −3.48 | 0.60 | |
n.A | VB | CB | 1.252 | 54 | 0 | −5.31 | −2.36 | −1.46 | −10.08 | −7.87 | −7.06 | −3.62 | −10.30 | −12.88 |
VB-1 | CB | 1.252 | 53 | 0 | −2.87 | −2.88 | −5.39 | 1.34 | 1.38 | 1.34 | −1.65 | −12.33 | −9.91 | |
L | VB | CB | 1.320 | 23 | 6 | −10.03 | −7.75 | −7.10 | −3.25 | −1.86 | −0.98 | −9.22 | −10.43 | −10.32 |
A | VB | CB | 1.460 | 60 | 0 | 1.64 | 1.33 | 0.89 | 4.46 | 3.91 | 3.87 | −2.94 | −3.10 | −3.34 |
VB | CB | 2.595 | 0 | 61 | −4.73 | 0.22 | 1.28 | −28.59 | −25.78 | −24.78 | 13.08 | 1.03 | −1.09 | |
L | VB-2 | CB | 3.786 | 3 | 35 | 2.20 | 4.21 | 8.71 | −4.56 | −1.89 | −0.30 | 4.32 | 1.38 | −2.14 |
H | VB | CB | 3.871 | 4 | 0 | 3.01 | 3.00 | 2.85 | −2.63 | −3.11 | −3.71 | 3.84 | 2.21 | 1.42 |
H | VB-1 | CB | 3.889 | 7 | 0 | 2.89 | 3.01 | 2.85 | −2.48 | −2.99 | −3.60 | 3.78 | 2.16 | 1.38 |
K | VB | CB | 3.953 | 20 | 0 | 3.87 | 2.52 | 1.65 | 1.38 | 0.96 | 0.55 | 2.64 | 1.52 | 0.96 |
VB | CB | 1.446 | 8 | 67 | −5.31 | −0.15 | 1.17 | −34.07 | −31.48 | −32.20 | 11.54 | −0.14 | −2.98 | |
VB-2 | CB | 1.959 | 112 | 0 | 3.18 | 8.11 | 8.06 | −6.45 | −5.74 | 2.35 | 4.45 | 0.08 | −2.75 | |
H | VB | CB | 2.969 | 3 | 3 | 2.74 | 3.00 | 2.56 | −4.41 | −5.21 | −6.68 | 4.16 | 2.25 | 1.21 |
L | VB-2 | CB | 2.986 | 14 | 14 | 4.16 | 4.95 | 4.96 | 1.36 | 5.21 | 8.35 | 1.66 | −2.95 | −4.30 |
K | VB | CB | 3.072 | 22 | 0 | 4.17 | 3.24 | 1.43 | 0.47 | −0.52 | −1.76 | 2.73 | 1.42 | 0.69 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rybak, M.; Woźniak, T.; Birowska, M.; Dybała, F.; Segura, A.; Kapcia, K.J.; Scharoch, P.; Kudrawiec, R. Stress-Tuned Optical Transitions in Layered 1T-MX2 (M=Hf, Zr, Sn; X=S, Se) Crystals. Nanomaterials 2022, 12, 3433. https://doi.org/10.3390/nano12193433
Rybak M, Woźniak T, Birowska M, Dybała F, Segura A, Kapcia KJ, Scharoch P, Kudrawiec R. Stress-Tuned Optical Transitions in Layered 1T-MX2 (M=Hf, Zr, Sn; X=S, Se) Crystals. Nanomaterials. 2022; 12(19):3433. https://doi.org/10.3390/nano12193433
Chicago/Turabian StyleRybak, Miłosz, Tomasz Woźniak, Magdalena Birowska, Filip Dybała, Alfredo Segura, Konrad J. Kapcia, Paweł Scharoch, and Robert Kudrawiec. 2022. "Stress-Tuned Optical Transitions in Layered 1T-MX2 (M=Hf, Zr, Sn; X=S, Se) Crystals" Nanomaterials 12, no. 19: 3433. https://doi.org/10.3390/nano12193433