Performance Research and Formulation Optimization of High-Performance Local Insulation Spray Coating Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimen Preparation
2.1.1. Materials
2.1.2. Specimen Preparation
2.2. Testing and Characterization
2.2.1. SEM and EDS Analysis
2.2.2. DMA Analysis
2.2.3. Thermogravimetric Analysis
2.2.4. Tensile Test
2.2.5. Water Absorption Test
2.2.6. Electrical Performance Test
3. Formulation Optimization
3.1. Effect of Various Factors on the Mechanical and Physical Properties of PU-ER
3.1.1. Effect of Factors on the Tensile Strength of PU-ER
3.1.2. Effect of Various Factors on Elongation at Break of PU-ER
3.1.3. Effect of Various Factors on the Water Absorption of PU-ER
3.2. Effect of Various Factors on the Electrical Performance of PU-ER
3.2.1. Effect of Various Factors on the Industrial Frequency Breakdown Strength of PU-ER
3.2.2. Effect of Various Factors on PU-ER Leakage Current
3.2.3. Effect of Various Factors on Dielectric Loss of PU-ER
3.3. Determination of the Optimal Formulation Combination
4. Discussion and Analysis of Results
4.1. Micromorphological Analysis
4.2. Thermomechanical Property Analysis
4.3. Thermal Stability Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
PU-ER without Filler | |
---|---|
Tensile strength (MPa) | 2.50 |
Elongation at break (%) | 58.20 |
Water absorption rate(%) | 0.17 |
Breakdown strength (kV/mm) | 30.67 |
Leakage current (µA) | 50.12 |
Dielectric loss (%) | 25.44 |
References
- Zhang, M.Y. Analysis of the causes of bird damage fault in distribution lines and prevention and control measures. Oil Gas Field Ground Eng. 2018, 37, 81–83. [Google Scholar]
- Hao, Y.Y.; Wang, Y.L.; Zhao, S.; Zhao, J.Z. Analysis of the causes of bird damage and preventive measures. Power Saf. Technol. 2007, 11, 48. [Google Scholar]
- Miao, S.C. Research and practice of anti-bird damage technology for transmission lines. Zhejiang Electr. Power 2007, 1, 33–36. [Google Scholar]
- Ding, Z.Y. Analysis of bird damage on transmission lines and its prevention and control. Jiangxi Electr. Power 2007, 31, 43–44. [Google Scholar]
- Yang, M.X. Research on the Causes of Bird Damage in North China Power Grid and the Method of Class Zoning. PHD Dissertation, North China Electric Power University, Beijing, China, 2011. [Google Scholar]
- Hu, S.B. Research on bird damage of transmission lines and development of bird repellent devices. China New Technol. New Prod. 2015, 16, 183. [Google Scholar]
- Ma, J.X.; Hu, Z.Y.; Wang, Y.C. Rapid low-temperature curing of epoxy resin/polythiol systems. Resins 2011, 1, 35–38. [Google Scholar]
- Hu, Z.Y.; Wu, T.Y.; Li, C.L.; Wang, Y.C. Curing of polysallene and epoxy resins with multi-branched polythionates. Plastics 2009, 2, 48–50. [Google Scholar]
- Wang, A.T. Synthesis of Polythiol Fast Curing Agent. Resins 2009, 1, 17–19. [Google Scholar]
- Singh, H.; Singh, T. Effect of fillers of various sizes on mechanical characterization of natural fiber polymer hybrid composites: A review. Mater. Today: Proc. 2019, 18, 5345–5350. [Google Scholar] [CrossRef]
- Bian, W.C.; Yao, T.; Chen, M.; Shao, T.; Yang, Y. The synergistic effects of the micro-BN and nano-Al2O3 in micro-nano composites on enhancing the thermal conductivity for insulating epoxy resin. Compos. Sci. Technol. 2018, 168, 420–428. [Google Scholar] [CrossRef]
- Mai, Y.X.; Du, B.; Liu, Q.; Zhao, Y.S.; Yang, W.; Yan, B.Y. Influence of micro@ Nano-Al2O3 structure on mechanical properties, thermal conductivity, and electrical properties of epoxy resin composites. J. Electron. Mater. 2022, 51, 232–242. [Google Scholar] [CrossRef]
- Luo, L.D.; Ma, Q.; Wang, Q.W.; Ding, L.F.; Gong, Z.Y.; Jiang, W.Z. Study of a nano-SiO2 microsphere-modified basalt flake epoxy resin coating. Coatings 2019, 9, 154. [Google Scholar] [CrossRef]
- Li, G.; Hu, W.J.; Cui, H.Y.; Zhou, J.C. Long-term effectiveness of carbonation resistance of concrete treated with nano-SiO2 modified polymer coatings. Constr. Build. Mater. 2019, 201, 623–630. [Google Scholar] [CrossRef]
- Khan, M.Z.; Wang, F.P.; He, L.; Huang, Z.Y.; Mehmood, M.A. Influence of treated nano-Al2O3 and gas-phase fluorination on the dielectric properties of epoxy resin/alumina nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 2020, 27, 410–417. [Google Scholar] [CrossRef]
- Yang, H.D.; Chen, Q.G.; Wang, X.Y.; Chi, M.H.; Liu, H.Q.; Ning, X. Dielectric and thermal conductivity of epoxy resin impregnated nano-h-BN modified insulating paper. Polymers 2019, 11, 1359. [Google Scholar] [CrossRef]
- Rahim, N.H.; Lau, K.Y.; Muhamad, N.A.; Mohamad, N.; Rahman, W.A.W.A.; Vaughan, A.S. Effects of filler calcination on structure and dielectric properties of polyethylene/silica nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 2019, 26, 284–291. [Google Scholar] [CrossRef]
- Mohan, K.; Rajmohan, T. Effects of MWCNT on mechanical properties of glass-flax fiber reinforced nano composites. Mater. Today: Proc. 2018, 5, 11628–11635. [Google Scholar] [CrossRef]
- Katsiropoulos, C.V.; Pappas, P.; Koutroumanis, N.; Kokkinos, A.; Galiotis, C. Enhancement of damping response in polymers and composites by the addition of graphene nanoplatelets. Compos. Sci. Technol. 2022, 109562. [Google Scholar] [CrossRef]
- Xiao, C.F.; Tan, Y.F.; Yang, X.P.; Xu, T.; Wang, L.L.; Qi, Z.H. Mechanical properties and strengthening mechanism of epoxy resin reinforced with nano-SiO2 particles and multi-walled carbon nanotubes. Chem. Phys. Lett. 2018, 695, 34–43. [Google Scholar] [CrossRef]
- Wu, Z.H.; Xiao, J.Y.; Liu, J.; Xing, S.L.; Yang, J.S. Study on mechanical properties of aluminum hydroxide particles filled with unsaturated polyester resin composites. Funct. Mater. 2015, 2, 189–191. [Google Scholar]
- Liu, H.C.; Sun, Y.; Yu, Y.F.; Zhang, M.J.; Li, L.; Ma, L. Effect of nano-SiO2 modification on mechanical and insulation properties of basalt fiber reinforced composites. Polymers 2022, 14, 3353. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Li, R.K. Effect of water absorption on the mechanical and dielectric properties of nano-alumina filled epoxy nanocomposites. Compos. Part A Appl. Sci. Manuf. 2008, 39, 602–611. [Google Scholar] [CrossRef]
- Prasad, V.; Joseph, M.A.; Sekar, K. Investigation of mechanical, thermal and water absorption properties of flax fibre reinforced epoxy composite with nano TiO2 addition. Compos. Part A Appl. Sci. Manuf. 2018, 115, 360–370. [Google Scholar] [CrossRef]
- Preetha, P.; Thomas, M.J. AC breakdown characteristics of epoxy nanocomposites. IEEE Trans Dielectr Electr Insul. 2011, 18, 1526–1534. [Google Scholar] [CrossRef]
- Li, Z.; Okamoto, K.; Ohki, Y.; Tanaka, T. Effects of Nano-Filler Addition on Partial Discharge Resistance and Dielectric Breakdown Strength of Micro-Al2O3/Epoxy Composite. IEEE Trans. Dielectr. Electr. Insul. 2010, 17, 654–663. [Google Scholar] [CrossRef]
- Zhou, H.; Zhu, J.; Sun, X.D.; Guo, Y.N.; Zhang, Y.X.; Chen, L. Preparation and Properties of Epoxy Resin/BN Nanocomposites. Insul. Mater. 2012, 4, 5–8. [Google Scholar]
- Roy, M.; Nelson, J.K.; MacCrone, R.K.; Schadler, L.S. Candidate mechanisms controlling the electrical characteristics of silica/XLPE nanodielectrics. J. Mater. Sci. 2007, 42, 3789–3799. [Google Scholar] [CrossRef]
- Cao, C.C.; Li, W.B.; Lin, H.T.; Cheng, X.; Zhuo, Y.; Tian, X.Q. Study on the Electrothermal Properties of Nano SiO2/Epoxy Resin Composites. Plast. Ind. 2020, 12, 30–34. [Google Scholar]
- Du, B.X.; Cui, B.; Xu, H.; Li, J.; Fu, B.M. Arc resistance and dielectric properties of polyethylene/boron nitride high thermal conductivity composites. High Volt. Eng. 2018, 44, 1412–1420. [Google Scholar]
- Liu, S.; Tian, F.Q.; Wang, Y.; Li, P. Electrical Insulation Properties of Polyimide-based BN Micro-nano Composites. Insul. Mater. 2017, 50, 24–29. [Google Scholar]
- Ma, W.L.; Tian, F.Q.; Xiong, W.W.; Yao, J.Y. Study on Thermal Conductivity and Electrical Insulation Properties of Epoxy Resin/Boron Nitride Micro-Nano Composites. Insul. Mater. 2019, 52, 36–42. [Google Scholar]
- Ning, X.Q.; Wang, L.D.; Wang, Y.; Zhao, K.X. Dielectric and thermal properties of micrometer Al2O3/epoxy resin composites. Insul. Mater. 2020, 10, 32–37. [Google Scholar]
- Shah, A.H.; Li, X.; Xu, X.D.; Dayo, A.Q.; Liu, W.-B.; Bai, J.W.; Wang, J. Evaluation of mechanical and thermal properties of modified epoxy resin by using acacia catechu particles. Mater. Chem. Phys. 2019, 225, 239–246. [Google Scholar] [CrossRef]
- Ji, J.R.; Xu, Z.P.; Qian, J.F.; Liu, Y.H. Preparation and properties of organosilicon modified epoxy resin thin film encapsulation materials. Mater. Guide 2022, 36, 240–248. [Google Scholar]
- Chen, C.H.; Jian, J.Y.; Yen, F.S. Preparation and characterization of epoxy/γ-aluminum oxide nanocomposites. Compos. Part A Appl. Sci. Manuf. 2009, 40, 463–468. [Google Scholar] [CrossRef]
- Rong, M.Z.; Ji, Q.L.; Zhang, M.Q.; Friedrich, K. Graft polymerization of vinyl monomers onto nanosized alumina particles. Eur. Polym. J. 2002, 38, 1573–1582. [Google Scholar] [CrossRef]
- Foo, E.; Jaafar, M.; Aziz, A.; Sim, L.C. Properties of spin coated epoxy/silica thin film composites: Effect of nano- and micron-size fillers. Compos. Part A Appl. Sci. Manuf. 2011, 42, 1432–1437. [Google Scholar] [CrossRef]
Level | Factor | ||
---|---|---|---|
Al2O3/% | SiO2/% | Mg(OH)2/% | |
1 | 1.5 | 0.3 | 3 |
2 | 2 | 1 | 7 |
3 | 2.5 | 1.7 | 11 |
Test Number | Project | Level | ||
---|---|---|---|---|
Al2O3/% | SiO2/% | Mg(OH)2/% | ||
1 | A1B1C1 | 1.5 | 0.3 | 3 |
2 | A1B2C2 | 1.5 | 1 | 7 |
3 | A1B3C3 | 1.5 | 1.7 | 11 |
4 | A2B1C2 | 2 | 0.3 | 7 |
5 | A2B2C3 | 2 | 1 | 11 |
6 | A2B3C1 | 2 | 1.7 | 3 |
7 | A3B1C3 | 2.5 | 0.3 | 11 |
8 | A3B2C1 | 2.5 | 1 | 3 |
9 | A3B3C2 | 2.5 | 1.7 | 7 |
Project | Factor | ||
---|---|---|---|
Al2O3 | SiO2 | Mg(OH)2 | |
Mean of level 1 | 3.65 | 3.40 | 4.14 |
Mean of level 2 | 5.08 | 3.94 | 4.11 |
Mean of level 3 | 3.56 | 4.96 | 4.04 |
Extreme difference | 1.52 | 1.56 | 0.10 |
Project | Factor | ||
---|---|---|---|
Al2O3 | SiO2 | Mg(OH)2 | |
Mean of level 1 | 101.76 | 89.57 | 90.17 |
Mean of level 2 | 84.66 | 105.33 | 105.86 |
Mean of level 3 | 93.14 | 84.66 | 83.87 |
Extreme difference | 17.10 | 20.67 | 21.99 |
Project | Factor | ||
---|---|---|---|
Al2O3 | SiO2 | Mg(OH)2 | |
Mean of level 1 | 0.21 | 0.22 | 0.22 |
Mean of level 2 | 0.19 | 0.20 | 0.21 |
Mean of level 3 | 0.22 | 0.18 | 0.21 |
Extreme difference | 0.03 | 0.04 | 0.01 |
Project | Factor | ||
---|---|---|---|
Al2O3 | SiO2 | Mg(OH)2 | |
Mean of level 1 | 33.5 | 34.47 | 34.67 |
Mean of level 2 | 35.13 | 35.17 | 35.4 |
Mean of level 3 | 36.6 | 35.6 | 35.17 |
Extreme difference | 3.1 | 1.13 | 0.73 |
Project | Factor | ||
---|---|---|---|
Al2O3 | SiO2 | Mg(OH)2 | |
Mean of level 1 | 44.913 | 44.675 | 44 |
Mean of level 2 | 44.257 | 43.14 | 44.531 |
Mean of level 3 | 44.995 | 46.35 | 45.63 |
Extreme difference | 9.783 | 3.21 | 1.63 |
Project | Factor | ||
---|---|---|---|
Al2O3 | SiO2 | Mg(OH)2 | |
Mean of level 1 | 16.42 | 16.495 | 16.177 |
Mean of level 2 | 17.3 | 15.79 | 19.14 |
Mean of level 3 | 18.26 | 19.705 | 16.66 |
Extreme difference | 1.84 | 3.915 | 2.963 |
Project | Tg (°C) |
---|---|
Pure resin | 17.06 |
A3B3C2 | 30.54 |
Project | T5% (°C) | T50% (°C) | Tmax (°C) |
---|---|---|---|
Pure resin | 156.40 | 373.04 | 359.41 |
A3B3C2 | 170.44 | 363.38 | 358.20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Wei, L.; Gao, F.; Tang, L.; Li, L.; Sun, Z.; Liu, Y.; Dong, P. Performance Research and Formulation Optimization of High-Performance Local Insulation Spray Coating Materials. Nanomaterials 2022, 12, 3344. https://doi.org/10.3390/nano12193344
Liu H, Wei L, Gao F, Tang L, Li L, Sun Z, Liu Y, Dong P. Performance Research and Formulation Optimization of High-Performance Local Insulation Spray Coating Materials. Nanomaterials. 2022; 12(19):3344. https://doi.org/10.3390/nano12193344
Chicago/Turabian StyleLiu, Hechen, Liwei Wei, Fengsheng Gao, Li Tang, Le Li, Zhanglin Sun, Yunpeng Liu, and Peng Dong. 2022. "Performance Research and Formulation Optimization of High-Performance Local Insulation Spray Coating Materials" Nanomaterials 12, no. 19: 3344. https://doi.org/10.3390/nano12193344
APA StyleLiu, H., Wei, L., Gao, F., Tang, L., Li, L., Sun, Z., Liu, Y., & Dong, P. (2022). Performance Research and Formulation Optimization of High-Performance Local Insulation Spray Coating Materials. Nanomaterials, 12(19), 3344. https://doi.org/10.3390/nano12193344