A New Strategy for Fabricating Well-Distributed Polyaniline/Graphene Composite Fibers toward Flexible High-Performance Supercapacitors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Preparation of Polyaniline
2.3. Fabrication of Polyaniline/Graphene Composite Fibers
2.4. Characterization
2.5. Preparation of Fiber-Shaped Supercapacitors and Electrochemical Measurements
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Qu, G.; Cheng, J.; Li, X.; Yuan, D.; Chen, P.; Chen, X.; Wang, B.; Peng, H. A Fiber Supercapacitor with High Energy Density Based on Hollow Graphene/Conducting Polymer Fiber Electrode. Adv. Mater. 2016, 28, 3646–3652. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Jiang, K.; Huang, T.; Shen, G. Recent Advances in Fiber Supercapacitors: Materials, Device Configurations, and Applications. Adv. Mater. 2020, 32, e1901806. [Google Scholar] [CrossRef]
- Zhai, S.; Karahan, H.E.; Wang, C.; Pei, Z.; Wei, L.; Chen, Y. 1D Supercapacitors for Emerging Electronics: Current Status and Future Directions. Adv. Mater. 2020, 32, e1902387. [Google Scholar] [CrossRef]
- Dong, K.; Peng, X.; Wang, Z.L. Fiber/Fabric-Based Piezoelectric and Triboelectric Nanogenerators for Flexible/Stretchable and Wearable Electronics and Artificial Intelligence. Adv. Mater. 2019, 32, e1902549. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Lou, Z.; Chen, D.; Jiang, K.; Han, W.; Shen, G. Recent Advances in Flexible/Stretchable Supercapacitors for Wearable Electronics. Small 2018, 14, e1702829. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Llerena Zambrano, B.; Woo, J.; Yoon, K.; Lee, T. Recent Advances in 1D Stretchable Electrodes and Devices for Textile and Wearable Electronics: Materials, Fabrications, and Applications. Adv. Mater. 2020, 32, e1902532. [Google Scholar] [CrossRef] [PubMed]
- Liao, M.; Ye, L.; Zhang, Y.; Chen, T.; Peng, H. The Recent Advance in Fiber-Shaped Energy Storage Devices. Adv. Electron. Mater. 2019, 5, 1800456. [Google Scholar] [CrossRef]
- Zhu, Y.H.; Yang, X.Y.; Liu, T.; Zhang, X.B. Flexible 1D Batteries: Recent Progress and Prospects. Adv. Mater. 2019, 32, e1901961. [Google Scholar] [CrossRef]
- Wu, G.; Tan, P.; Wu, X.; Peng, L.; Cheng, H.; Wang, C.F.; Chen, W.; Yu, Z.; Chen, S. High-Performance Wearable Micro-Supercapacitors Based on Microfluidic-Directed Nitrogen-Doped Graphene Fiber Electrodes. Adv. Funct. Mater. 2017, 27, 1702493. [Google Scholar] [CrossRef]
- Xu, T.; Yang, D.; Fan, Z.; Li, X.; Liu, Y.; Guo, C.; Zhang, M.; Yu, Z.-Z. Reduced graphene oxide/carbon nanotube hybrid fibers with narrowly distributed mesopores for flexible supercapacitors with high volumetric capacitances and satisfactory durability. Carbon 2019, 152, 134–143. [Google Scholar] [CrossRef]
- Ma, W.; Chen, S.; Yang, S.; Zhu, M. Hierarchically porous carbon black/graphene hybrid fibers for high performance flexible supercapacitors. RSC Adv. 2016, 6, 50112–50118. [Google Scholar] [CrossRef]
- Meng, J.; Wu, G.; Wu, X.; Cheng, H.; Xu, Z.; Chen, S. Microfluidic-Architected Nanoarrays/Porous Core–Shell Fibers toward Robust Micro-Energy-Storage. Adv. Sci. 2019, 7, 1901931. [Google Scholar] [CrossRef] [PubMed]
- Chu, X.; Huang, T.; Hu, Y.; Dong, R.; Luo, J.; Cai, S.; Gao, W.; Xu, Z.; Gao, C. Wet-spinning assembly of nitrogen-doped graphene film for stable graphene-polyaniline supercapacitor electrodes with high mass loading. Sci. China Mater. 2019, 63, 1889–1897. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, J.; Luo, X.; Wan, Y.; Zhao, Z.; Han, X.; Xia, Z. Energy density-enhancement mechanism and design principles for heteroatom-doped carbon supercapacitors. Nano Energy 2020, 72, 104666. [Google Scholar] [CrossRef]
- Zhou, C.; Gao, T.; Wang, Y.; Liu, Q.; Huang, Z.; Liu, X.; Qing, M.; Xiao, D. Synthesis of P-Doped and NiCo-Hybridized Graphene-Based Fibers for Flexible Asymmetrical Solid-State Micro-Energy Storage Device. Small 2019, 15, e1803469. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, Q.; Wang, J.; Huang, X.; Bai, H. A self-assembly route to porous polyaniline/reduced graphene oxide composite materials with molecular-level uniformity for high-performance supercapacitors. Energy Environ. Sci. 2018, 11, 1280–1286. [Google Scholar] [CrossRef]
- Blaha, M.; Bousa, M.; Vales, V.; Frank, O.; Kalbac, M. Two-Dimensional CVD-Graphene/Polyaniline Supercapacitors: Synthesis Strategy and Electrochemical Operation. ACS Appl. Mater. Interfaces 2021, 13, 34686–34695. [Google Scholar] [CrossRef]
- Fang, B.; Chang, D.; Xu, Z.; Gao, C. A Review on Graphene Fibers: Expectations, Advances, and Prospects. Adv. Mater. 2020, 32, e1902664. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, C.H.; Lu, W.; Dai, L. Recent Advances in Fiber-Shaped Supercapacitors and Lithium-Ion Batteries. Adv. Mater. 2020, 32, e1902779. [Google Scholar] [CrossRef]
- Du, X.Y.; Li, Q.; Wu, G.; Chen, S. Multifunctional Micro/Nanoscale Fibers Based on Microfluidic Spinning Technology. Adv. Mater. 2019, 31, e1903733. [Google Scholar] [CrossRef]
- Wu, X.; Wu, G.; Tan, P.; Cheng, H.; Hong, R.; Wang, F.; Chen, S. Construction of microfluidic-oriented polyaniline nanorod arrays/graphene composite fibers for application in wearable micro-supercapacitors. J. Mater. Chem. A 2018, 6, 8940–8946. [Google Scholar] [CrossRef]
- He, W.; Zhang, W.; Li, Y.; Jing, X. A high concentration graphene dispersion stabilized by polyaniline nanofibers. Synth. Met. 2012, 162, 1107–1113. [Google Scholar] [CrossRef]
- Luo, W.; Zhang, L.; Wang, W.; Ouyang, L.; Xue, H. Polyaniline-Modified Hierarchical Graphene Fiber for Ultrahigh-Performance Electrochemical Supercapacitor with Carbon Fiber in Core as Current Collector. Energy Technol. 2019, 7, 1900522. [Google Scholar] [CrossRef]
- Zheng, J.; Miao, F.; Peng, Y.; Miao, F. The fabrication of hierarchical nanostructured graphene/PPy fiber composites and its electrochemical properties. Ionics 2020, 26, 2667–2671. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, Y.; Jia, M. Three-Dimensional Reduced Graphene Oxides Hydrogel Anchored with Ultrafine CoO Nanoparticles as Anode for Lithium Ion Batteries. Electrochim. Acta 2014, 129, 425–432. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, X.; Yang, T.; Zhang, P.; Wei, X.; Zhang, L.; Li, H. Polyaniline/graphene hybrid fibers as electrodes for flexible supercapacitors. Synth. Met. 2020, 268, 116484. [Google Scholar] [CrossRef]
- Guo, F.; Kim, F.; Han, T.H.; Shenoy, V.; Huang, J.X.; Hurt, R. Hydration-Responsive Folding and Unfolding in Graphene Oxide Liquid Crystal Phases. ACS Nano 2011, 5, 8019–8025. [Google Scholar] [CrossRef]
- Wu, G.; Ma, Z.; Wu, X.; Zhu, X.; Man, Z.; Lu, W.; Xu, J. Interfacial Polymetallic Oxides and Hierarchical Porous Core-Shell Fibres for High Energy-Density Electrochemical Supercapacitors. Angew. Chem. Int. Ed. Engl. 2022, 61, e202203765. [Google Scholar] [CrossRef]
- Qiu, H.; Cheng, H.; Meng, J.; Wu, G.; Chen, S. Magnetothermal Microfluidic-Assisted Hierarchical Microfibers for Ultrahigh-Energy-Density Supercapacitors. Angew. Chem. Int. Ed. Engl. 2020, 132, 8008–8017. [Google Scholar] [CrossRef]
- Cheng, H.; Meng, J.; Wu, G.; Chen, S. Hierarchical Micro-Mesoporous Carbon-Framework-Based Hybrid Nanofibres for High-Density Capacitive Energy Storage. Angew. Chem. Int. Ed. Engl. 2019, 58, 17465–17473. [Google Scholar] [CrossRef]
- Zheng, X.; Yao, L.; Qiu, Y.; Wang, S.; Zhang, K. Core–Sheath Porous Polyaniline Nanorods/Graphene Fiber-Shaped Supercapacitors with High Specific Capacitance and Rate Capability. ACS Appl. Energy Mater. 2019, 2, 4335–4344. [Google Scholar] [CrossRef]
- Gao, L.; Song, J.; Surjadi, J.U.; Cao, K.; Han, Y.; Sun, D.; Tao, X.; Lu, Y. Graphene-Bridged Multifunctional Flexible Fiber Supercapacitor with High Energy Density. ACS Appl. Mater. Interfaces 2018, 10, 28597–28607. [Google Scholar] [CrossRef]
- Gopalsamy, K.; Yang, Q.; Cai, S.; Huang, T.; Gao, Z.; Gao, C. Wet-spun poly(ionic liquid)-graphene hybrid fibers for high performance all-solid-state flexible supercapacitors. J. Energy Chem. 2019, 34, 104–110. [Google Scholar] [CrossRef]
- Yang, X.; Qiu, Y.; Zhang, M.; Zhang, L.; Li, H. Facile Fabrication of Polyaniline/Graphene Composite Fibers as Electrodes for Fiber-Shaped Supercapacitors. Appl. Sci. 2021, 11, 8690. [Google Scholar] [CrossRef]
- Jia, Y.; Zhang, M.; Li, H.; Wang, J.; Guan, F. Controllable synthesis and electrochemical performance of hierarchically structured graphene fibers. Mater. Chem. Phys. 2017, 193, 35–41. [Google Scholar] [CrossRef]
- Cao, Y.; Zhang, H.; Zhang, Y.; Yang, Z.; Liu, D.; Fu, H.; Zhang, Y.; Liu, M.; Li, Q. Epitaxial nanofiber separator enabling folding-resistant coaxial fiber-supercapacitor module. Energy Storage Mater. 2022, 49, 102–110. [Google Scholar] [CrossRef]
- Ma, W.; Chen, S.; Yang, S.; Chen, W.; Cheng, Y.; Guo, Y.; Peng, S.; Ramakrishna, S.; Zhu, M. Hierarchical MnO2 nanowire/graphene hybrid fibers with excellent electrochemical performance for flexible solid-state supercapacitors. J. Power Sources 2016, 306, 481–488. [Google Scholar] [CrossRef]
- Yang, Q.; Xu, Z.; Fang, B.; Huang, T.; Cai, S.; Chen, H.; Liu, Y.; Gopalsamy, K.; Gao, W.; Gao, C. MXene/graphene hybrid fibers for high performance flexible supercapacitors. J. Mater. Chem. A 2017, 5, 22113–22119. [Google Scholar] [CrossRef]
- Tong, Y.-L.; Xu, B.; Du, X.-F.; Cheng, H.-Y.; Wang, C.-F.; Wu, G.; Chen, S. Microfluidic-Spinning-Directed Conductive Fibers toward Flexible Micro-Supercapacitors. Macromol. Mater. Eng. 2018, 303, 1700664. [Google Scholar] [CrossRef]
- Jia, Y.; Ahmed, A.; Jiang, X.; Zhou, L.; Fan, Q.; Shao, J. Microfluidic fabrication of hierarchically porous superconductive carbon black/ graphene hybrid fibers for wearable supercapacitor with high specific capacitance. Electrochim. Acta 2020, 354, 136731. [Google Scholar] [CrossRef]
- Jia, Y.; Ahmed, A.; Jiang, X.; Zhou, L.; Fan, Q.; Shao, J. Microfluidic-architected core–shell flower-like δ-MnO2@graphene fibers for high energy-storage wearable supercapacitors. Electrochim. Acta 2021, 372, 137827. [Google Scholar] [CrossRef]
- Huang, T.; Zheng, B.; Kou, L.; Gopalsamy, K.; Xu, Z.; Gao, C.; Meng, Y.; Wei, Z. Flexible high performance wet-spun graphene fiber supercapacitors. RSC Adv. 2013, 3, 23957–23962. [Google Scholar] [CrossRef]
- Chen, S.; Ma, W.; Cheng, Y.; Weng, Z.; Sun, B.; Wang, L.; Chen, W.; Li, F.; Zhu, M.; Cheng, H.-M. Scalable non-liquid-crystal spinning of locally aligned graphene fibers for high-performance wearable supercapacitors. Nano Energy 2015, 15, 642–653. [Google Scholar] [CrossRef]
- Meng, J.; Nie, W.; Zhang, K.; Xu, F.; Ding, X.; Wang, S.; Qiu, Y. Enhancing Electrochemical Performance of Graphene Fiber-Based Supercapacitors by Plasma Treatment. ACS Appl. Mater. Interfaces 2018, 10, 13652–13659. [Google Scholar] [CrossRef]
- Li, B.; Cheng, J.; Wang, Z.; Li, Y.; Ni, W.; Wang, B. Highly-wrinkled reduced graphene oxide-conductive polymer fibers for flexible fiber-shaped and interdigital-designed supercapacitors. J. Power Sources 2018, 376, 117–124. [Google Scholar] [CrossRef]
- Liu, X.; Qian, T.; Xu, N.; Zhou, J.; Guo, J.; Yan, C. Preparation of on chip, flexible supercapacitor with high performance based on electrophoretic deposition of reduced graphene oxide/polypyrrole composites. Carbon 2015, 92, 348–353. [Google Scholar] [CrossRef]
- Ding, X.; Zhao, Y.; Hu, C.; Hu, Y.; Dong, Z.; Chen, N.; Zhang, Z.; Qu, L. Spinning fabrication of graphene/polypyrrole composite fibers for all-solid-state, flexible fibriform supercapacitors. J. Mater. Chem. A 2014, 2, 12355–12360. [Google Scholar] [CrossRef]
- Wu, Y.; Meng, Z.; Yang, J.; Xue, Y. Flexible fiber-shaped supercapacitors based on graphene/polyaniline hybrid fibers with high energy density and capacitance. Nanotechnology 2021, 32, 295401. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, Y.; Jia, X.; Zhang, M.; Li, H. A New Strategy for Fabricating Well-Distributed Polyaniline/Graphene Composite Fibers toward Flexible High-Performance Supercapacitors. Nanomaterials 2022, 12, 3297. https://doi.org/10.3390/nano12193297
Qiu Y, Jia X, Zhang M, Li H. A New Strategy for Fabricating Well-Distributed Polyaniline/Graphene Composite Fibers toward Flexible High-Performance Supercapacitors. Nanomaterials. 2022; 12(19):3297. https://doi.org/10.3390/nano12193297
Chicago/Turabian StyleQiu, Yihan, Xiaoyu Jia, Mei Zhang, and Hongwei Li. 2022. "A New Strategy for Fabricating Well-Distributed Polyaniline/Graphene Composite Fibers toward Flexible High-Performance Supercapacitors" Nanomaterials 12, no. 19: 3297. https://doi.org/10.3390/nano12193297
APA StyleQiu, Y., Jia, X., Zhang, M., & Li, H. (2022). A New Strategy for Fabricating Well-Distributed Polyaniline/Graphene Composite Fibers toward Flexible High-Performance Supercapacitors. Nanomaterials, 12(19), 3297. https://doi.org/10.3390/nano12193297