Fast-Response Photodetector Based on Hybrid Bi2Te3/PbS Colloidal Quantum Dots
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Device Fabrication
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martyniuk, P.; Kopytko, M.; Rogalski, A. Barrier infrared detectors. Opto-Electron. Rev. 2014, 22, 127–146. [Google Scholar] [CrossRef]
- Liu, M.; Yazdani, N.; Yarema, M.; Jansen, M.; Wood, V.; Sargent, E.H. Colloidal quantum dot electronics. Nat. Electron. 2021, 4, 548–558. [Google Scholar] [CrossRef]
- Chuang, C.H.; Brown, P.R.; Bulovic, V.; Bawendi, M.G. Improved performance and stability in quantum dot solar cells through band alignment engineering. Nat. Mater. 2014, 13, 796–801. [Google Scholar] [CrossRef]
- McDonald, S.A.; Konstantatos, G.; Zhang, S.; Cyr, P.W.; Klem, E.J.; Levina, L.; Sargent, E.H. Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nat. Mater. 2005, 4, 138–142. [Google Scholar] [CrossRef]
- Pradhan, S.; Di Stasio, F.; Bi, Y.; Gupta, S.; Christodoulou, S.; Stavrinadis, A.; Konstantatos, G. High-efficiency colloidal quantum dot infrared light-emitting diodes via engineering at the supra-nanocrystalline level. Nat. Nanotechnol. 2019, 14, 72–79. [Google Scholar] [CrossRef]
- Yin, X.; Zhang, C.; Guo, Y.; Yang, Y.; Xing, Y.; Que, W. PbS QD-based photodetectors: Future-oriented near-infrared detection technology. J. Mater. Chem. C 2021, 9, 417–438. [Google Scholar] [CrossRef]
- Saran, R.; Curry, R.J. Lead sulphide nanocrystal photodetector technologies. Nat. Photonics 2016, 10, 81–92. [Google Scholar] [CrossRef]
- Kovalenko, M.V.; Scheele, M.; Talapin, D.V. Colloidal nanocrystals with molecular metal chalcogenide surface ligands. Science 2009, 324, 1417–1420. [Google Scholar] [CrossRef] [PubMed]
- Malgras, V.; Nattestad, A.; Yamauchi, Y.; Dou, S.X.; Kim, J.H. The effect of surface passivation on the structure of sulphur-rich PbS colloidal quantum dots for photovoltaic application. Nanoscale 2015, 7, 5706–5711. [Google Scholar] [CrossRef] [PubMed]
- Brown, P.R.; Kim, D.; Lunt, R.R.; Zhao, N.; Bawendi, M.G.; Grossman, J.C.; Bulović, V. Energy Level Modification in Lead Sulfide Quantum Dot Thin Films through Ligand Exchange. ACS Nano 2014, 8, 5863–5872. [Google Scholar] [CrossRef]
- Nian, Q.; Gao, L.; Hu, Y.; Deng, B.; Tang, J.; Cheng, G.J. Graphene/PbS-Quantum Dots/Graphene Sandwich Structures Enabled by Laser Shock Imprinting for High Performance Photodetectors. ACS Appl. Mater. Interfaces 2017, 9, 44715–44723. [Google Scholar] [CrossRef]
- Jeong, H.; Song, J.H.; Jeong, S.; Chang, W.S. Graphene/PbS quantum dot hybrid structure for application in near-infrared photodetectors. Sci. Rep. 2020, 10, 12475. [Google Scholar] [CrossRef]
- Kufer, D.; Nikitskiy, I.; Lasanta, T.; Navickaite, G.; Koppens, F.H.; Konstantatos, G. Hybrid 2D-0D MoS2-PbS quantum dot photodetectors. Adv. Mater. 2015, 27, 176–180. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, C.-X.; Qi, X.-L.; Dai, X.; Fang, Z.; Zhang, S.-C. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys. 2009, 5, 438–442. [Google Scholar] [CrossRef]
- Wang, K.; Liu, Y.; Wang, W.; Meyer, N.; Bao, L.H.; He, L.; Lang, M.R.; Chen, Z.G.; Che, X.Y.; Post, K.; et al. High-quality Bi2Te3 thin films grown on mica substrates for potential optoelectronic applications. Appl. Phys. Lett. 2013, 103, 031605. [Google Scholar] [CrossRef]
- Wang, Z.; Li, M.; Yang, L.; Zhang, Z.; Gao, X.P.A. Broadband photovoltaic effect of n-type topological insulator Bi2Te3 films on p-type Si substrates. Nano Res. 2016, 10, 1872–1879. [Google Scholar] [CrossRef]
- Hines, M.A.; Scholes, G.D. Colloidal PbS Nanocrystals with Size-Tunable Near-Infrared Emission: Observation of Post-Synthesis Self-Narrowing of the Particle Size Distribution. Adv. Mater. 2003, 15, 1844–1849. [Google Scholar] [CrossRef]
- Kullmann, W.; Geurts, J.; Richter, W.; Lehner, N.; Rauh, H.; Steigenberger, U.; Eichhorn, G.; Geick, R. Effect of Hydrostatic and Uniaxial Pressure on Structural Properties and Raman Active Lattice Vibrations in Bi2Te3. Phys. Status Solidi (B) 1984, 125, 131–138. [Google Scholar] [CrossRef]
- Jeong, M.-W.; Na, S.; Shin, H.; Park, H.-B.; Lee, H.-J.; Joo, Y.-C. Thermomechanical In Situ Monitoring of Bi2Te3 Thin Film and Its Relationship with Microstructure and Thermoelectric Performances. Electron. Mater. Lett. 2018, 14, 426–431. [Google Scholar] [CrossRef]
- Souza, S.M.; Trichês, D.M.; Poffo, C.M.; de Lima, J.C.; Grandi, T.A.; de Biasi, R.S. Structural, thermal, optical, and photoacoustic study of nanocrystalline Bi2Te3 produced by mechanical alloying. J. Appl. Phys. 2011, 109, 013512. [Google Scholar] [CrossRef]
- Wang, C.; Zhu, X.; Nilsson, L.; Wen, J.; Wang, G.; Shan, X.; Zhang, Q.; Zhang, S.; Jia, J.; Xue, Q. In situ Raman spectroscopy of topological insulator Bi2Te3 films with varying thickness. Nano Res. 2013, 6, 688–692. [Google Scholar] [CrossRef]
- Li, S.; Fan, T.; Liu, X.; Liu, F.; Meng, H.; Liu, Y.; Pan, F. Graphene Quantum Dots Embedded in Bi2Te3 Nanosheets To Enhance Thermoelectric Performance. ACS Appl. Mater. Interfaces 2017, 9, 3677–3685. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.; Agarwal, K.; Mehta, B.R. An anomalously high Seebeck coefficient and power factor in ultrathin Bi2Te3 film: Spin–orbit interaction. J. Appl. Phys. 2020, 128, 035108. [Google Scholar] [CrossRef]
- Tarachand; Saxena, M.; Okram, G.S.; Lakhani, A.; Kuo, Y.K.; Tyagi, S.; Behera, P.; Bhalerao, G.M.; Sathe, V.; Deshpande, U. Enhanced thermoelectric performance of solution-grown Bi2Te3 nanorods. Mater. Today Energy 2021, 21, 100700. [Google Scholar] [CrossRef]
- Fu, J.; Song, S.; Zhang, X.; Cao, F.; Zhou, L.; Li, X.; Zhang, H. Bi2Te3 nanoplates and nanoflowers: Synthesized by hydrothermal process and their enhanced thermoelectric properties. CrystEngComm 2012, 14, 2159. [Google Scholar] [CrossRef]
- Sarkar, S.S.; Mukherjee, S.; Khatri, R.K.; Ray, S.K. Solution-processed MoS2 quantum dot/GaAs vertical heterostructure based self-powered photodetectors with superior detectivity. Nanotechnology 2020, 31, 135203. [Google Scholar] [CrossRef]
- Wang, J.; Chen, J. High-sensitivity silicon: PbS quantum dot heterojunction near-infrared photodetector. Surf. Interfaces 2022, 30, 101945. [Google Scholar] [CrossRef]
- Xu, J.; Wang, H.; Yang, S.; Ni, G.; Zou, B. High-sensitivity broadband colloidal quantum dot heterojunction photodetector for night-sky radiation. J. Alloy Compd. 2018, 764, 446–451. [Google Scholar] [CrossRef]
- Zheng, L.; Zhou, W.; Ning, Z.; Wang, G.; Cheng, X.; Hu, W.; Zhou, W.; Liu, Z.; Yang, S.; Xu, K.; et al. Ambipolar Graphene-Quantum Dot Phototransistors with CMOS Compatibility. Adv. Opt. Mater. 2018, 6, 1800985. [Google Scholar] [CrossRef]
- Nikitskiy, I.; Goossens, S.; Kufer, D.; Lasanta, T.; Navickaite, G.; Koppens, F.H.; Konstantatos, G. Integrating an electrically active colloidal quantum dot photodiode with a graphene phototransistor. Nat. Commun. 2016, 7, 11954. [Google Scholar] [CrossRef]
- Hu, C.; Dong, D.; Yang, X.; Qiao, K.; Yang, D.; Deng, H.; Yuan, S.; Khan, J.; Lan, Y.; Song, H.; et al. Synergistic Effect of Hybrid PbS Quantum Dots/2D-WSe2Toward High Performance and Broadband Phototransistors. Adv. Funct. Mater. 2017, 27, 1603605. [Google Scholar] [CrossRef]
Device | Excitation Wavelength (nm) | Rise/Fall Time | Responsivity (A/W) | Detectivity (Jones) | Ref. |
---|---|---|---|---|---|
PCBM/PbS-TBAl/Bi2Te3 | 660 | 128 (μs)/3 (ms) | 18 | 2.1 × 1011 | This work |
PbS-TBAI/SiNx/Si | 1064/1310 | 160/320 (μs) | 0.68/0.29 | 7.74 × 1010/3.32 × 1010 | [27] |
ZnO/PbS-TBAl/PbS-EDT | 500/910 | 25.5/25.6 (ms) | 385/444 | 3.9 × 1013/4.52 × 1013 | [28] |
PbS-QD/graphene | 1550 | 3/200 (ms) | 104 | 1012 | [29] |
PbS-QD/graphene | 635/1600 | -/200 (ms) | - | 4 × 1012 | [30] |
PbS-QD/WSe2 | 970 | 7/480 (ms) | 2 × 105 | 7 × 1013 | [31] |
PbS-QD/MoS2 | 400–1500 | -/0.3 (s) | 6 × 105 | 5 × 1011 | [13] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, L.; Tian, P.; Tang, L.; Hao, Q.; Teng, K.S.; Zhong, H.; Yue, B.; Wang, H.; Yan, S. Fast-Response Photodetector Based on Hybrid Bi2Te3/PbS Colloidal Quantum Dots. Nanomaterials 2022, 12, 3212. https://doi.org/10.3390/nano12183212
Yu L, Tian P, Tang L, Hao Q, Teng KS, Zhong H, Yue B, Wang H, Yan S. Fast-Response Photodetector Based on Hybrid Bi2Te3/PbS Colloidal Quantum Dots. Nanomaterials. 2022; 12(18):3212. https://doi.org/10.3390/nano12183212
Chicago/Turabian StyleYu, Lijing, Pin Tian, Libin Tang, Qun Hao, Kar Seng Teng, Hefu Zhong, Biao Yue, Haipeng Wang, and Shunying Yan. 2022. "Fast-Response Photodetector Based on Hybrid Bi2Te3/PbS Colloidal Quantum Dots" Nanomaterials 12, no. 18: 3212. https://doi.org/10.3390/nano12183212
APA StyleYu, L., Tian, P., Tang, L., Hao, Q., Teng, K. S., Zhong, H., Yue, B., Wang, H., & Yan, S. (2022). Fast-Response Photodetector Based on Hybrid Bi2Te3/PbS Colloidal Quantum Dots. Nanomaterials, 12(18), 3212. https://doi.org/10.3390/nano12183212