Synthesis of Uniform Size Rutile TiO2 Microrods by Simple Molten-Salt Method and Its Photoluminescence Activity
Abstract
:1. Introduction
2. Experimental Procedures
2.1. Materials
2.2. Preparation of TiO2 Microrods
2.3. Characterization
3. Result and Discussion
4. Conclusions
- It is concluded that micrometer-length TiO2 rods were successfully synthesized by using the molten-salt method using TiO2(rutile: anatase)/NaCl/Na(PO3)6/Na3P4O7 as precursors.
- In the molten-salt precursors, rutile TiO2 acted as nuclei for rod formations and anatase TiO2 acted as a source of titanium (Ti) for rutile rod growth in the presence of NaCl as reacting media with eutectic composition of sodium phosphates (Na(PO3)6/Na3P4O7).
- For proper eutectic composition, five different ratios of NaCl/Na(PO3)6/Na3P4O7 were used and among them only 4:1:1 showed TiO2 rods significantly controlled in size and length.
- By keeping the constant ratio of sodium chloride and sodium phosphate (NaCl: Na(PO3)6:Na3P4O7) as 4:1:1, variation of TiO2 precursors (rutile:anatase) was studied and it was found that a (1:3) ratio produced comparatively uniform size and length of TiO2 rods.
- The synthesized rutile TiO2 showed various emission wavelengths, such as 430, 470, 575, 785, and 825 nm at 355 nm excitation wavelength. Photoluminescence emission was observed due to oxygen vacancy generated at high temperature annealing (900 °C).
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wedd, M.; Ward-Smith, S.; Rawle, A. Particle Size Analysis. In Encyclopedia of Analytical Science; Elsevier: Amsterdam, The Netherlands, 2019; pp. 144–157. [Google Scholar]
- Trogadas, P.; Fuller, T.F. The Effect of Uniform Particle Size Distribution on Pt Stability. ECS Trans. 2011, 41, 761–773. [Google Scholar] [CrossRef]
- Nan, J.; Huang, C.; Tian, L.; Shen, C. Effects of micro-emulsion method on microwave dielectric properties of 0.9Al2O3-0.1TiO2 ceramics. Mater. Lett. 2019, 249, 132–135. [Google Scholar] [CrossRef]
- Shivaraj, B.; Prabhakara, M.C.; Naik, H.S.B.; Naik, E.I.; Viswanath, R.; Shashank, M.; Swamy, B.E.K. Optical, bio-sensing, and antibacterial studies on Ni-doped ZnO nanorods, fabricated by chemical co-precipitation method. Inorg. Chem. Commun. 2021, 134, 109049. [Google Scholar] [CrossRef]
- Lee, B.T.; Han, J.K.; Gain, A.K.; Lee, K.H.; Saito, F. TEM microstructure characterization of nano TiO2 coated on nano ZrO2 powders and their photocatalytic activity. Mater. Lett. 2006, 60, 2101–2104. [Google Scholar] [CrossRef]
- Jiang, H.; Liu, Y.; Li, J.; Wang, H. Synergetic effects of lanthanum, nitrogen and phosphorus tri-doping on visible-light photoactivity of TiO2 fabricated by microwave-hydrothermal process. J. Rare Earths 2016, 34, 604–613. [Google Scholar] [CrossRef]
- Nguyen, C.K.; Cha, H.G.; Kang, Y.S. Axis-Oriented, Anatase TiO2 Single Crystals with Dominant {001} and {100} Facets. Cryst. Growth Des. 2011, 11, 3947–3953. [Google Scholar] [CrossRef]
- Hao, W.C. Comparison of the photocatalytic activity of TiO2 powder with different particle size. J. Mater. Sci. Lett. 2002, 21, 1807. [Google Scholar] [CrossRef]
- Chu, S.; Miao, Y.; Qian, Y.; Ke, F.; Chen, P.; Jiang, C.; Chen, X. Synthesis of uniform layer of TiO2 nanoparticles coated on natural cellulose micrometer-sized fibers through a facile one-step solvothermal method. Cellulose 2019, 26, 4757–4765. [Google Scholar] [CrossRef]
- Veronovski, N. TiO2 Applications as a Function of Controlled Surface Treatment. In Titanium Dioxide; Chapter 21; IntechOpen: London, UK, 2018. [Google Scholar]
- Wijnhoven, J.E.G.J.; Bechger, L.; Vos, W.L. Fabrication and Characterization of Large Macroporous Photonic Crystals in Titania. Chem. Mater. 2001, 13, 4486–4499. [Google Scholar] [CrossRef]
- Liu, W.; Wang, Y.; Ge, M.; Gao, Q. One-dimensional light-colored conductive antimony-doped tin oxide@TiO2 whiskers: Synthesis and applications. J. Mater. Sci. Mater. Electron. 2018, 29, 619–627. [Google Scholar] [CrossRef]
- Wang, X.; Li, Z.; Shi, J.; Yu, Y. One-Dimensional Titanium Dioxide Nanomaterials: Nanowires, Nanorods, and Nanobelts. Chem. Rev. 2014, 114, 9346–9384. [Google Scholar] [CrossRef]
- Lee, K.; Mazare, A.; Schmuki, P. One-Dimensional Titanium Dioxide Nanomaterials: Nanotubes. Chem. Rev. 2014, 114, 9385–9454. [Google Scholar] [CrossRef] [Green Version]
- Xia, Y.; Yang, P.; Sun, Y.; Wu, Y.; Mayers, B.; Gates, B.; Yin, Y.; Kim, F.; Yan, H. One-Dimensional Nanostructures: Synthesis, Characterization, and Applications. Adv. Mater. 2003, 15, 353–389. [Google Scholar] [CrossRef]
- Roy, B.; Fuierer, P.A. Influence of Sodium Chloride and Dibasic Sodium Phosphate SaltMatrices on the Anatase–Rutile Phase Transformation and Particle Sizeof Titanium Dioxide Powder. J. Am. Ceram. Soc. 2010, 93, 436–444. [Google Scholar] [CrossRef]
- Tseng, L.; Luo, X.; Tan, T.T.; Li, S.; Yi, J. Doping concentration dependence of microstructure and magnetic behaviours in Co-doped TiO2 nanorods. Nanoscale Res. Lett. 2014, 9, 673. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Chen, H.M.; Liu, C.; Andrews, S.C.; Hahn, C.; Yang, P. Large-Scale Synthesis of Transition-Metal-Doped TiO2 Nanowires with Controllable Overpotential. J. Am. Chem. Soc. 2013, 135, 9995–9998. [Google Scholar] [CrossRef] [Green Version]
- Roy, B.; Ahrenkiel, S.P.; Fuierer, P.A. Controlling the Size and Morphology of TiO2 Powder by Molten and Solid Salt Synthesis. J. Am. Ceram. Soc. 2008, 91, 2455–2463. [Google Scholar] [CrossRef]
- Beyene, A.M.; Baek, C.; Jung, W.K.; Ragupathy, P.; Kim, D.K. Understanding the role of oxygen ion (O2−) activity in 1-D crystal growth of rutile TiO2 in molten salts. CrystEngComm 2018, 20, 487–495. [Google Scholar] [CrossRef]
- Egerton, T.A. UV-Absorption—The Primary Process in Photocatalysis and Some Practical Consequences. Molecules 2014, 19, 18192–18214. [Google Scholar] [CrossRef] [Green Version]
- Tauc, J. Amorphous and Liquid Semiconductors; Plenum Press: New York, NY, USA, 1974; Volume 159. [Google Scholar]
- Sánchez-Vergara, M.E.; Álvarez-Bada, J.R.; Perez-Baeza, C.O.; Loza-Neri, E.A.; Torres-García, R.A.; Rodríguez-Gómez, A.; Alonso-Huitron, J.C. Morphological and Optical Properties of Dimetallo-Phthalocyanine-Complex Thin Films. Adv. Mater. Phys. Chem. 2014, 4, 20–28. [Google Scholar] [CrossRef] [Green Version]
- Kubelka, P. New Contributions to the Optics of Intensely Light-Scattering Materials. Part I. J. Oct. Soc. Am. 1948, 38, 448. [Google Scholar] [CrossRef] [PubMed]
- Barcelo, D. Modern Fourier Transform Infrared Spectroscopy; Wilson & Wilson’s: New York, NY, USA, 2001. [Google Scholar]
- Murphy, A.B. Band-gap determination from diffuse reflectance measurements of semiconductor films, and application to photoelectrochemical water-splitting. Sol. Energy Mater. Sol. Cell 2007, 91, 1326. [Google Scholar] [CrossRef]
- Fochs, P.D. The Measurement of the Energy Gap of Semiconductors from their Diffuse Reflection Spectra. Proc. Phys. Soc. 1956, B69, 70. [Google Scholar] [CrossRef]
- Selman, A.M.; Hassan, Z. Structural and Photoluminescence Studies of Rutile TiO2 Nanorods Prepared by CBD Method on Si Substrates. Am. J. Mater. Sci. 2015, 5, 16–20. [Google Scholar]
- Nasralla, N.H.S.; Yeganeh, M.; Astuti, Y.; Piticharoenphun, S.; Šiller, L. Systematic study of electronic properties of Fe-doped TiO2 nanoparticles by X-ray photoemission spectroscopy. J. Mater. Sci. Mater. Electron. 2018, 29, 17956. [Google Scholar] [CrossRef] [Green Version]
- Pallotti, D.K.; Passoni, L.; Maddalena, P.; Fonzo, F.D.; Lettieri, S. Photoluminescence Mechanisms in Anatase and Rutile TiO2. J. Phys. Chem. C 2017, 121, 9011–9021. [Google Scholar] [CrossRef]
- Nasralla, N.H.S.; Yeganeh, M.; Šiller, L. Photoluminescence study of anatase and rutile structures of Fe-doped TiO2 nanoparticles at different dopant concentrations. Appl. Phys. A Mater. Sci. Process. 2020, 126, 192. [Google Scholar] [CrossRef]
- Nakamura, R.; Nakato, Y. Primary Intermediates of Oxygen Photoevolution Reaction on TiO2 (Rutile) Particles, Revealed by in Situ FTIR Absorption and Photoluminescence Measurements. J. Am. Chem. Soc. 2004, 126, 1290–1298. [Google Scholar] [CrossRef]
- Nakamura, R.; Okamura, T.; Ohashi, N.; Imanishi, A.; Nakato, Y. Molecular Mechanisms of Photoinduced Oxygen Evolution, PL Emission, and Surface Roughening at Atomically Smooth (110) and (100) N-TiO2 (Rutile) Surfaces in Aqueous Acidic Solutions. J. Am. Chem. Soc. 2005, 127, 12975–12983. [Google Scholar] [CrossRef]
- Imanishi, A.; Okamura, T.; Ohashi, N.; Nakamura, R.; Nakato, Y. Mechanism of Water Photooxidation Reaction at Atomically Flat TiO2 (Rutile) (110) and (100) Surfaces: Dependence on Solution pH. J. Am. Chem. Soc. 2007, 129, 11569–11578. [Google Scholar] [CrossRef]
- Lee, J.S.; Kim, J.H.; Lee, Y.J.; Jeong, N.C.; Yoon, K.B. Manual Assembly of Microcrystal Monolayers on Substrates. Angew. Chem. Int. Ed. 2007, 46, 3087–3090. [Google Scholar] [CrossRef]
- Foratirad, H.; Baharvandi, H.R.; Maragheh, M.G. Chemo-Rheological Behavior of Aqueous Titanium Carbide Suspension and Evaluation of the Gelcasted Green Body Properties. Mater. Res. 2017, 20, 175–182. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ngo, H.M.; Pawar, A.U.; Tang, J.; Zhuo, Z.; Lee, D.K.; Ok, K.M.; Kang, Y.S. Synthesis of Uniform Size Rutile TiO2 Microrods by Simple Molten-Salt Method and Its Photoluminescence Activity. Nanomaterials 2022, 12, 2626. https://doi.org/10.3390/nano12152626
Ngo HM, Pawar AU, Tang J, Zhuo Z, Lee DK, Ok KM, Kang YS. Synthesis of Uniform Size Rutile TiO2 Microrods by Simple Molten-Salt Method and Its Photoluminescence Activity. Nanomaterials. 2022; 12(15):2626. https://doi.org/10.3390/nano12152626
Chicago/Turabian StyleNgo, Hieu Minh, Amol Uttam Pawar, Jun Tang, Zhongbiao Zhuo, Don Keun Lee, Kang Min Ok, and Young Soo Kang. 2022. "Synthesis of Uniform Size Rutile TiO2 Microrods by Simple Molten-Salt Method and Its Photoluminescence Activity" Nanomaterials 12, no. 15: 2626. https://doi.org/10.3390/nano12152626
APA StyleNgo, H. M., Pawar, A. U., Tang, J., Zhuo, Z., Lee, D. K., Ok, K. M., & Kang, Y. S. (2022). Synthesis of Uniform Size Rutile TiO2 Microrods by Simple Molten-Salt Method and Its Photoluminescence Activity. Nanomaterials, 12(15), 2626. https://doi.org/10.3390/nano12152626