Amphiphilic Lignin Nanoparticles Made from Lignin-Acrylic Acid-Methyl Methacrylate Copolymers
Abstract
:1. Introduction
2. Experiments
2.1. Materials
2.2. Copolymerization of KL with AA and MMA
2.3. Characterization of KL-AA and KL-AA-MMA Copolymers
2.4. KL-AA-MMA Nanoparticle Formation
2.5. TEM Imaging Analysis of KL-AA-MMA Nanoparticles
2.6. Hydrodynamic Diameter Determination of KL-AA-MMA Nanoparticles
2.7. Contact Angle Measurement of KL-AA-MMA Nanoparticles
2.8. QCM-D Studies of KL-AA-MMA Nanoparticles
3. Results and Discussion
3.1. Synthetic Process of KL-AA-MMA Nanoparticles
3.2. Copolymerization Verification of KL with AA and MMA
3.3. Morphology, Size, and Contact Angle Analyses of KL-AA-MMA Nanoparticles
3.4. QCM-D Adsorption Performance of KL-AA-MMA Nanoparticles
4. Conclusions
5. Application and Future Studies
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mishra, P.K.; Ekielski, A. The self-assembly of lignin and its application in nanoparticle synthesis: A short review. Nanomaterials 2019, 9, 243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meng, Y.; Lu, J.; Cheng, Y.; Li, Q.; Wang, H. Lignin-based hydrogels: A review of preparation, properties, and application. Int. J. Biol. Macromol. 2019, 135, 1006–1019. [Google Scholar] [CrossRef] [PubMed]
- Sabaghi, S.; Fatehi, P. Phenomenological changes in lignin following polymerization and its effects on flocculating clay particles. Biomacromolecules 2019, 20, 3940–3951. [Google Scholar] [CrossRef] [PubMed]
- Mondal, A.K.; Qin, C.; Ragauskas, A.J.; Ni, Y.; Huang, F. Effect of using regenerated combined FAU and MOR zeolites as catalysts during the pyrolysis of kraft lignin. Bioresources 2020, 16, 417–440. [Google Scholar] [CrossRef]
- Yang, L.; Seshan, K.; Li, Y. A review on thermal chemical reactions of lignin model compounds. Catal. Today 2017, 298, 276–297. [Google Scholar] [CrossRef]
- Aro, T.; Fatehi, P. Production and application of lignosulfonates and sulfonated lignin. ChemSusChem 2017, 10, 1861–1877. [Google Scholar] [CrossRef] [Green Version]
- Mondal, A.K.; Qin, C.; Ragauskas, A.J.; Ni, Y.; Huang, F. Preparation and characterization of various kraft lignins and impact on their pyrolysis behaviors. Ind. Eng. Chem. Res. 2020, 59, 3310–3320. [Google Scholar] [CrossRef]
- Huang, W.; Wu, M.; Liu, W.; Hua, Z.; Wang, Z.; Zhou, L. Value-adding of organosolv lignin: Designing mechanically robust UV-resistant polymeric glass via ARGET ATRP. Appl. Surf. Sci. 2019, 475, 302–311. [Google Scholar] [CrossRef]
- Zhang, Z.; Terrasson, V.; Guénin, E. Lignin nanoparticles and their nanocomposites. Nanomaterials 2021, 11, 1336. [Google Scholar] [CrossRef]
- Buono, D.D.; Luzi, F.; Puglia, D. Lignin nanoparticles: A promising tool to improve maize physiological, biochemical, and chemical traits. Nanomaterials 2021, 11, 846. [Google Scholar] [CrossRef]
- Liu, H.; Chung, H. Lignin-based polymers via graft copolymerization. J. Polym. Sci. Part A Polym. Chem. 2017, 55, 3515–3528. [Google Scholar] [CrossRef]
- Kong, F.; Wang, S.; Price, J.T.; Konduri, M.K.R.; Fatehi, P. Water soluble kraft lignin-acrylic acid copolymer: Synthesis and characterization. Green Chem. 2015, 17, 4355–4366. [Google Scholar] [CrossRef]
- Alipoormazandarani, N.; Fatehi, P. Lignin-methyl methacrylate polymer as a hydrophobic multifunctional material. Ind. Crops Prod. 2020, 154, 112728. [Google Scholar] [CrossRef]
- Chung, Y.; Olsson, J.V.; Li, R.J.; Frank, C.W.; Waymouth, R.M.; Billington, S.L.; Sattely, E.S. A renewable lignin-lactide copolymer and application in biobased composites. ACS Sustain. Chem. Eng. 2013, 1, 1231–1238. [Google Scholar] [CrossRef]
- Wang, J.; Yao, K.; Korich, A.L.; Li, S.; Ma, S.; Ploehn, H.J.; Iovine, P.M.; Wang, C.; Chu, F.; Tang, C. Combining renewable gum rosin and lignin: Towards hydrophobic polymer composites by controlled polymerization. J. Polym. Sci. Part A Polym. Chem. 2011, 49, 3728–3738. [Google Scholar] [CrossRef]
- Korich, A.L.; Fleming, A.B.; Walker, A.R.; Wang, J.; Tang, C.; Iovine, P.M. Chemical modification of organosolv lignin using boronic acid-containing reagents. Polymer 2012, 53, 87–93. [Google Scholar] [CrossRef]
- Chen, R.; Kokta, B.V.; Valade, J.L. Graft copolymerization of lignosulfonate and styrene. J. Appl. Polym. Sci. 1979, 24, 1609–1618. [Google Scholar] [CrossRef]
- Liu, X.; Wang, J.; Yu, J.; Zhang, M.; Wang, C.; Xu, Y.; Chu, F. Preparation and characterization of lignin based macromonomer and its copolymers with butyl methacrylate. Int. J. Biol. Macromol. 2013, 60, 309–315. [Google Scholar] [CrossRef]
- Kong, F.; Wang, S.; Gao, W.; Fatehi, P. Novel pathway to produce high molecular weight kraft lignin–acrylic acid polymers in acidic suspension systems. RSC Adv. 2018, 8, 12322. [Google Scholar] [CrossRef] [Green Version]
- Argyropoulos, D.S. Quantitative phosphorus-31 NMR analysis of lignins, a new tool for the lignin chemist. J. Wood Chem. Technol. 1994, 14, 45–63. [Google Scholar] [CrossRef]
- Ghavidel, N.; Fatehi, P. Synergistic effect of lignin incorporation into polystyrene for producing sustainable superadsorbent. RSC Adv. 2019, 9, 17639–17652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernández, M.A.; Velasco, J.A.; Asomoza, M.; Solís, S.; Rojas, F.; Lara, V.H. Adsorption of benzene, toluene, and p-xylene on microporous SiO2. Ind. Eng. Chem. Res. 2004, 43, 1779–1787. [Google Scholar] [CrossRef]
- Penfold, J.; Staples, E.; Tucker, I.; Thomas, R.K. Adsorption of mixed anionic and nonionic surfactants at the hydrophilic silicon surface. Langmuir 2002, 18, 5755–5760. [Google Scholar] [CrossRef]
- Pant, R.; Roy, P.K.; Nagarajan, A.K.; Khare, K. Slipperiness and stability of hydrophilic surfaces coated with a lubricating fluid. RSC Adv. 2016, 6, 15002–15007. [Google Scholar] [CrossRef]
- Alipoormazandarani, N.; Zhang, Y.; Fatehi, P. Super functional anionic hydrolysis lignin for capturing dyes. Ind. Crops Prod. 2021, 162, 113243. [Google Scholar] [CrossRef]
- Doliška, A.; Ribitsch, V.; Kleinschek, K.S.; Strnad, S. Viscoelastic properties of fibrinogen adsorbed onto poly (ethylene terephthalate) surfaces by QCM-D. Carbohydr. Polym. 2013, 93, 246–255. [Google Scholar] [CrossRef]
- Schneider, W.D.H.; Dillon, A.J.P.; Camassola, M. Lignin nanoparticles enter the scene: A promising versatile green tool for multiple applications. Biotechnol. Adv. 2020, 47, 107685. [Google Scholar] [CrossRef]
- Zong, E.; Liu, X.; Liu, L.; Wang, J.; Song, P.; Ma, Z.; Ding, J.; Fu, S. Graft polymerization of acrylic monomers onto lignin with CaCl2-H2O2 as initiator: Preparation, mechanism, characterization, and application in poly (lactic acid). ACS Sustain. Chem. Eng. 2018, 6, 337–348. [Google Scholar] [CrossRef]
- Liu, X.; Wang, J.; Li, S.; Zhuang, X.; Xu, Y.; Wang, C.; Chu, F. Preparation and propertiesof UV-absorbent lignin graft copolymer films from lignocellulosic butanol residue. Ind. Crops Prod. 2014, 52, 633–641. [Google Scholar] [CrossRef]
- Granata, A.; Argyropoulos, D.S. 2-Chloro-4, 4, 5, 5-tetramethyl-1, 3, 2-dioxapho-spholane, a reagent for the accurate determination of the uncondensed and condensed phenolic moieties in lignins. J. Agric. Food Chem. 1995, 43, 1538–1544. [Google Scholar] [CrossRef]
- Schwanninger, M.; Rodrigues, J.; Pereira, H.; Hinterstoisser, B. Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vib. Spectrosc. 2004, 36, 23–40. [Google Scholar] [CrossRef]
- Ghavidel, N.; Fatehi, P. Pickering/Non-pickering emulsions of nanostructured sulfonated lignin derivatives. ChemSusChem 2020, 13, 4567–4578. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Xu, Y.; Yu, J.; Li, S.; Wang, J.; Wang, C.; Chu, F. Integration of lignin and acrylic monomers towards grafted copolymers by free radical polymerization. Int. J. Biol. Macromol. 2014, 67, 483–489. [Google Scholar] [CrossRef]
- Wang, J.; Qian, Y.; Li, L.; Qiu, X. Atomic force microscopy and molecular dynamics simulations for study of lignin solution self-assembly mechanisms in organi-aqueous solvent mixtures. ChemSusChem 2020, 13, 4420–4427. [Google Scholar] [CrossRef]
- Mao, J.; Tan, H.; Yang, B.; Zhang, W.; Yang, X.; Zhang, Y.; Zhang, H. Novel hydrophobic associating polymer with good salt tolerance. Polymers 2018, 10, 849. [Google Scholar] [CrossRef] [Green Version]
- Kalliola, S.; Repo, E.; Srivastava, V.; Zhao, F.; Heiskanen, J.P.; Sirviö, J.A.; Liimatainen, H.; Sillanpää, M. Carboxymethyl chitosan and its hydrophobically modified derivative as pH-switchable emulsifiers. Langmuir 2018, 34, 2800–2806. [Google Scholar] [CrossRef] [Green Version]
- Zeng, T.; Deng, A.; Yang, D.; Li, H.; Qi, C.; Gao, Y. Triple-responsive Pickering emulsion stabilized by core cross-linked supramolecular polymer particles. Langmuir 2019, 35, 11872–11880. [Google Scholar] [CrossRef]
- Eita, M. In situ study of the adsorption of humic acid on the surface of aluminium oxide by QCM-D reveals novel features. Soft Matter 2011, 7, 709–715. [Google Scholar] [CrossRef]
Sample Label | Water/DMSO (v/v) | AA (mL) | MMA (mL) | KPS (mL) | Temperature (°C) | Time (h) | Grafting Yield (%) |
---|---|---|---|---|---|---|---|
KL-AA | 1/1 | 6 | 0 | 5 | 80 | 3 | 68.2 |
KL-AA-MMA3 | 1/1 | 6 | 3 | 5 | 80 | 3 | 86.9 |
KL-AA-MMA6 | 1/1 | 6 | 6 | 5 | 80 | 3 | 91.0 |
KL-AA-MMA9 | 1/1 | 6 | 9 | 5 | 80 | 3 | 96.5 |
Chemical Shift | Assignment | Content (mmol/g) | |||
---|---|---|---|---|---|
KL-AA | KL-AA-MMA3 | KL-AA-MMA6 | KL-AA-MMA9 | ||
149.0–145.0 | Aliphatic OH | 1.26 | 1.10 | 0.93 | 0.43 |
135.5–132.8 | Carboxylic OH | 0.49 | 0.90 | 2.43 | 4.01 |
143.2–140.5 | Syringyl OH | 0.92 | 0.81 | 0.44 | 0.18 |
140.0–137.9 | Guaiacyl OH | 0.70 | 0.62 | 0.45 | 0.30 |
137.7–136.3 | p-Hydroxyl-phenyl OH | 0.54 | 0.44 | 0.21 | 0.02 |
Total phenolic OH | 2.16 | 1.87 | 1.10 | 0.50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Alipoormazandarani, N.; Puumala, L.S.; Gao, W.; Liu, S.; Kong, F.; Wang, Q.; Fatehi, P. Amphiphilic Lignin Nanoparticles Made from Lignin-Acrylic Acid-Methyl Methacrylate Copolymers. Nanomaterials 2022, 12, 2612. https://doi.org/10.3390/nano12152612
Wang Y, Alipoormazandarani N, Puumala LS, Gao W, Liu S, Kong F, Wang Q, Fatehi P. Amphiphilic Lignin Nanoparticles Made from Lignin-Acrylic Acid-Methyl Methacrylate Copolymers. Nanomaterials. 2022; 12(15):2612. https://doi.org/10.3390/nano12152612
Chicago/Turabian StyleWang, Yingchao, Niloofar Alipoormazandarani, Lauren Skye Puumala, Weijue Gao, Shanshan Liu, Fangong Kong, Qiang Wang, and Pedram Fatehi. 2022. "Amphiphilic Lignin Nanoparticles Made from Lignin-Acrylic Acid-Methyl Methacrylate Copolymers" Nanomaterials 12, no. 15: 2612. https://doi.org/10.3390/nano12152612
APA StyleWang, Y., Alipoormazandarani, N., Puumala, L. S., Gao, W., Liu, S., Kong, F., Wang, Q., & Fatehi, P. (2022). Amphiphilic Lignin Nanoparticles Made from Lignin-Acrylic Acid-Methyl Methacrylate Copolymers. Nanomaterials, 12(15), 2612. https://doi.org/10.3390/nano12152612