Surface and Electrical Characterization of Bilayers Based on BiFeO3 and VO2
Abstract
:1. Introduction
2. Experimental Details
3. Results and Discussion
3.1. Profilometry and AFM Studies
3.2. Chemical States
3.3. Electrical Characterization
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mao, W.; Yao, Q.; Fan, Y.; Wang, Y.; Wang, X.; Pu, Y.; Li, X. Combined experimental and theoretical investigation on modulation of multiferroic properties in BiFeO3 ceramics induced by Dy and transition metals co-doping. J. Alloys Compd. 2019, 784, 117–124. [Google Scholar] [CrossRef]
- Kumar, M.; Yadav, K.L. Magnetic field induced phase transition in multiferroic BiFe1−xTixO3 ceramics prepared by rapid liquid phase sintering. Appl. Phys. Lett. 2007, 91, 112911. [Google Scholar] [CrossRef]
- Kadomtseva, A.M.; Popov, Y.F.; Pyatakov, A.P.; Vorob’Ev, G.P.; Zvezdin, A.K.; Viehland, D. Phase transitions in multiferroic BiFeO3 crystals, thin-layers, and ceramics: Enduring potential for a single phase, room-temperature magnetoelectric ‘holy grail’. Phase Transit. 2006, 79, 1019–1042. [Google Scholar] [CrossRef] [Green Version]
- Zavaliche, F.; Yang, S.Y.; Zhao, T.; Chu, Y.H.; Cruz, M.P.; Eom, C.B.; Ramesh, R. Multiferroic BiFeO3 films: Domain structure and polarization dynamics. Phase Transit. 2006, 79, 991–1017. [Google Scholar] [CrossRef]
- Martínez, J.; Dionizio, S.; Gutierrez, N.; Mosquera, E.; Diosa, J.E.; Bolañoz, G.; Moran, O. General aspects of the physical beahavior of polycrystalline BiFeO3/VO2 bilayers grown on sapphire substrates. Appl. Phys. A, 2022; in Press. [Google Scholar]
- Freitas, R.R.Q.; Mota, F.D.B.; Rivelino, R.; de Castilho, C.M.C.; Kakanakova-Georgieva, A.; Gueorguiev, G.K. Spin-orbit-induced gap modification in buckled honeycomb XBi and XBi3 (X = B, Al, Ga, and In) sheets. J. Phys. Condens. Matter 2015, 27, 485306. [Google Scholar] [CrossRef] [Green Version]
- Chakrabarti, K.; Sarkar, B.; Ashok, V.D.; Chaudhuri, S.S.; De, S. Enhanced magnetic and dielectric behavior in Co doped BiFeO3 nanoparticles. J. Magn. Magn. Mater. 2015, 381, 271–277. [Google Scholar] [CrossRef]
- Narváez, C.A.; Raigoza, C.F.V.; Nieva, A.P.G. Modificación de las propiedades estructurales, eléctricas y magnéticas del BiFeO3 por la incorporación de Ba y Nb. Química Nova 2017, 40, 182–191. [Google Scholar] [CrossRef]
- Bea, H.; Bibes, M.; Herranz, G.; Zhu, X.-H.; Fusil, S.; Bouzehouane, K.; Jacquet, E.; Deranlot, C.; Barthelemy, A. Integration of Multiferroic BiFeO3 Thin Films into Heterostructures for Spintronics. IEEE Trans. Magn. 2008, 44, 1941–1945. [Google Scholar] [CrossRef]
- Wu, S.M.; Cybart, S.; Yu, P.; Rossell, M.D.; Zhang, J.X.; Ramesh, R.; Dynes, R.C. Reversible electric control of exchange bias in a multiferroic field-effect device. Nat. Mater. 2010, 9, 756–761. [Google Scholar] [CrossRef]
- Kakanakova-Georgieva, A.; Gueorguiev, G.; Sangiovanni, D.G.; Suwannaharn, N.; Ivanov, I.G.; Cora, I.; Pécz, B.; Nicotra, G.; Giannazzo, F. Nanoscale phenomena ruling deposition and intercalation of AlN at the graphene/SiC interface. Nanoscale 2020, 12, 19470–19476. [Google Scholar] [CrossRef]
- Lauzier, J.P.; Sutton, L.; de la Venta, J. Magnetic irreversibility in VO2/Ni bilayers. J. Phys. Condens. Matter 2018, 30, 374004. [Google Scholar] [CrossRef]
- Sutton, L.; Blehm, A.; Lauzier, J.; Malone, K.; Smith, G.; Singh, M.; De La Venta, J. Effects of W Doping in VO2 on the Magnetic Properties of VO2/Ni Heterostructures. J. Supercond. Nov. Magn. 2020, 33, 2493–2499. [Google Scholar] [CrossRef]
- Spaldin, N.A.; Fiebig, M. The Renaissance of Magnetoelectric Multiferroics. Science 2005, 309, 391–392. [Google Scholar] [CrossRef]
- De La Venta, J.; Wang, S.; Ramirez, J.G.; Schuller, I.K. Control of magnetism across metal to insulator transitions. Appl. Phys. Lett. 2013, 102, 122404. [Google Scholar] [CrossRef] [Green Version]
- de la Venta, J.; Wang, S.; Saerbeck, T.; Ramírez, J.G.; Valmianski, I.; Schuller, I.K. Coercivity enhancement in V2O3/Ni bilayers driven by nanoscale phase coexistence. Appl. Phys. Lett. 2014, 104, 062410. [Google Scholar] [CrossRef]
- Saerbeck, T.; de la Venta, J.; Wang, S.; Ramirez, J.G.; Erekhinsky, M.; Valmianski, I.; Schuller, I.K. Coupling of magnetism and structural phase transitions by interfacial strain. J. Mater. Res. 2014, 29, 2353–2365. [Google Scholar] [CrossRef]
- Yin, L.; Mi, W. Progress in BiFeO3-based heterostructures: Materials, properties and applications. Nanoscale 2020, 12, 477–523. [Google Scholar] [CrossRef]
- Lee, M.K.; Nath, T.K.; Eom, C.B.; Smoak, M.C.; Tsui, F. Strain modification of epitaxial perovskite oxide thin films using structural transitions of ferroelectric BaTiO3 substrate. Appl. Phys. Lett. 2000, 77, 3547–3549. [Google Scholar] [CrossRef] [Green Version]
- Burbure, N.V.; Salvador, P.A.; Rohrer, G. Orientation and Phase Relationships between Titania Films and Polycrystalline BaTiO3 Substrates as Determined by Electron Backscatter Diffraction Mapping. J. Am. Ceram. Soc. 2010, 93, 2530–2533. [Google Scholar] [CrossRef]
- Feng, H.-J. Photovoltaic and magnetic properties of BiFeO3/TiO2 heterostructures under epitaxial strain and an electric field. Mater. Chem. Phys. 2015, 153, 405–409. [Google Scholar] [CrossRef]
- Sarkar, A.; Khan, G.G.; Chaudhuri, A.; Das, A.; Mandal, K. Multifunctional BiFeO3/TiO2 nano-heterostructure: Photo-ferroelectricity, rectifying transport, and nonvolatile resistive switching property. Appl. Phys. Lett. 2016, 108, 033112. [Google Scholar] [CrossRef]
- Zhang, Y.; Schultz, A.; Li, L.; Chien, H.; Salvador, P.A.; Rohrer, G. Combinatorial substrate epitaxy: A high-throughput method for determining phase and orientation relationships and its application to BiFeO3/TiO2 heterostructures. Acta Mater. 2012, 60, 6486–6493. [Google Scholar] [CrossRef]
- Xu, Q.; Sheng, Y.; Xue, X.; Yuan, X.; Wen, Z.; Du, J. Exchange bias in BiFeO3/La0.67Sr0.33MnO3 bilayers. Jpn. J. Appl. Phys. 2014, 53, 08NM01. [Google Scholar] [CrossRef]
- Eckertová, L. Mechanism of Film Formation. In Physics of Thin Films; Springer: Boston, MA, USA, 1977; pp. 72–114. [Google Scholar] [CrossRef]
- Chen, C.; Zhao, Y.; Pan, X.; Kuryatkov, V.; Bernussi, A.; Holtz, M.; Fan, Z. Influence of defects on structural and electrical properties of VO2 thin films. J. Appl. Phys. 2011, 110, 023707. [Google Scholar] [CrossRef]
- Lin, T.; Wang, L.; Wang, X.; Zhang, Y.; Yu, Y. Influence of lattice distortion on phase transition properties of polycrystalline VO2 thin film. Appl. Surf. Sci. 2016, 379, 179–185. [Google Scholar] [CrossRef]
- Cox, P.A. The Electronic Structure of Transition Metal Oxides and Chalcogenides. In Physics and Chemistry of Low-Dimensional Inorganic Conductors; Springer: Boston, MA, USA, 1996; pp. 255–270. [Google Scholar] [CrossRef]
- Oura, K.; Katayama, M.; Zotov, A.V.; Lifshits, V.G.; Saranin, A.A. Growth of Thin Films. In Advanced Texts in Physics; Springer: Berlin/Heidelberg, Germany, 2003; pp. 357–387. [Google Scholar] [CrossRef]
- Biesinger, M.C.; Payne, B.P.; Grosvenor, A.P.; Lau, L.W.M.; Gerson, A.R.; Smart, R.S.C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 2011, 257, 2717–2730. [Google Scholar] [CrossRef]
- Théry, V.; Boulle, A.; Crunteanu, A.; Orlianges, J.C.; Beaumont, A.; Mayet, R.; Mennai, A.; Cosset, F.; Bessaudou, A.; Fabert, M. Role of thermal strain in the metal-insulator and structural phase transition of epitaxial VO2 films. Phys. Rev. B 2016, 93, 184106. [Google Scholar] [CrossRef] [Green Version]
- Leroux, C.; Nihoul, G.; Van Tendeloo, G. FromVO2(B) to VO2(R): Theoretical structures of VO2 polymorphs andin situelectron microscopy. Phys. Rev. B 1998, 57, 5111–5121. [Google Scholar] [CrossRef]
- Ding, Z.; Cui, Y.; Wan, D.; Luo, H.; Gao, Y. High-performance thermal sensitive VO2(B) thin films prepared by sputtering with TiO2(A) buffer layer and first-principles calculations study. RSC Adv. 2017, 7, 29496–29504. [Google Scholar] [CrossRef] [Green Version]
- Dou, Y.-K.; Li, J.-B.; Cao, M.-S.; Su, D.-Z.; Rehman, F.; Zhang, J.-S.; Jin, H.-B. Oxidizing annealing effects on VO2 films with different microstructures. Appl. Surf. Sci. 2015, 345, 232–237. [Google Scholar] [CrossRef]
- Brassard, D.; Fourmaux, S.; Jean-Jacques, M.; Kieffer, J.C.; El Khakani, M.A. Grain size effect on the semiconductor-metal phase transition characteristics of magnetron-sputtered VO2 thin films. Appl. Phys. Lett. 2005, 87, 051910. [Google Scholar] [CrossRef]
- Ba, C.; Bah, S.T.; D’Auteuil, M.; Ashrit, P.V.; Vallée, R. Fabrication of High-Quality VO2 Thin Films by Ion-Assisted Dual ac Magnetron Sputtering. ACS Appl. Mater. Interfaces 2013, 5, 12520–12525. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Fan, L.L.; Chen, S.; Liao, G.M.; Chen, Y.L.; Wu, P.; Song, L.; Zou, C.W.; Wu, Z.Y. Control of the Metal–Insulator Transition in VO2 Epitaxial Film by Modifying Carrier Density. ACS Appl. Mater. Interfaces 2015, 7, 6875–6881. [Google Scholar] [CrossRef]
- Morrison, V.R.; Chatelain, R.P.; Tiwari, K.L.; Hendaoui, A.; Bruhács, A.; Chaker, M.; Siwick, B.J. A photoinduced metal-like phase of monoclinic VO2 revealed by ultrafast electron diffraction. Science 2014, 346, 445–448. [Google Scholar] [CrossRef]
- Hu, Z.; Li, Q.; Li, M.; Wang, Q.; Zhu, Y.; Liu, X.; Zhao, X.; Liu, Y.; Dong, S. Ferroelectric memristor based on Pt/BiFeO3/Nb-doped SrTiO3 heterostructure. Appl. Phys. Lett. 2013, 102, 102901. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Luo, Z.; Zhao, L.; Liu, C.; Ma, C.; Lin, Y.; Gao, G.-Y.; Chen, Z.; Bao, Z.; Jin, X.; et al. BiFeO3-Based Flexible Ferroelectric Memristors for Neuromorphic Pattern Recognition. ACS Appl. Electron. Mater. 2020, 2, 1081–1089. [Google Scholar] [CrossRef]
Films | Atomic% Fe | Atomic% O | Atomic% Bi | Atomic% C | Atomic% V |
---|---|---|---|---|---|
BFO 60 nm | 5.28 | 73.46 | 21.26 | 59.49 | -- |
VO2 80 nm | -- | 84.91 | -- | 79.66 | 89.61 |
BFO-VO2 30 nm | 3.25 | 75.98 | 20.77 | 52.24 | -- |
BFO-VO2 60 nm | 1.92 | 72.64 | 25.44 | 42.26 | -- |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez, J.; Mosquera-Vargas, E.; Fuenzalida, V.; Flores, M.; Bolaños, G.; Diosa, J. Surface and Electrical Characterization of Bilayers Based on BiFeO3 and VO2. Nanomaterials 2022, 12, 2578. https://doi.org/10.3390/nano12152578
Martínez J, Mosquera-Vargas E, Fuenzalida V, Flores M, Bolaños G, Diosa J. Surface and Electrical Characterization of Bilayers Based on BiFeO3 and VO2. Nanomaterials. 2022; 12(15):2578. https://doi.org/10.3390/nano12152578
Chicago/Turabian StyleMartínez, Jhonatan, Edgar Mosquera-Vargas, Víctor Fuenzalida, Marcos Flores, Gilberto Bolaños, and Jesús Diosa. 2022. "Surface and Electrical Characterization of Bilayers Based on BiFeO3 and VO2" Nanomaterials 12, no. 15: 2578. https://doi.org/10.3390/nano12152578
APA StyleMartínez, J., Mosquera-Vargas, E., Fuenzalida, V., Flores, M., Bolaños, G., & Diosa, J. (2022). Surface and Electrical Characterization of Bilayers Based on BiFeO3 and VO2. Nanomaterials, 12(15), 2578. https://doi.org/10.3390/nano12152578