Study of Physico-Chemical Properties and Morphology of Phospholipid Composition of Indomethacin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Phospholipid Nanocomposition of Indomethacin Preparation
2.2.2. Particle Size Determination
2.2.3. Determination of the ζ-Potential Value
2.2.4. Determination of Light Transmission
2.2.5. Determination of Indomethacin Content
2.2.6. Determination of Phosphatidylcholine (PC) Content
2.2.7. Determination of Lysophosphatidylcholine (LysoPC) Content
2.2.8. Determination of the Phospholipid Oxidation Index
2.2.9. Determination of the Peroxide Number
2.2.10. Measurements of the Spectra of Small-Angle Neutron Scattering
2.2.11. Statistical Processing
3. Results and Discussion
3.1. The Effect of Lyophilization on Physico-Chemical Properties of Phospholipid Composition of Indomethacin
3.2. Morphology of the Phospholipid Composition of Indomethacin Using Small-Angle Neutron Scattering
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shironin, A.V.; Ipatova, O.M.; Medvedeva, N.V.; Prozorovskiy, V.N.; Tikhonova, E.G.; Torkhovskaya, T.I. Indomethacin injectional formulation in phospholipid nanoparticles. association with plasma low density lipoproteins and antiinflammatory action. Efferent Phys.-Chem. Med. 2012, 1, 21–24. [Google Scholar]
- Froder, J.G.; Dupeyrón, D.; Carvalho, J.C.T.; Maistro, E.L. In vitro study of the cytotoxic and genotoxic effects of indomethacin-loaded Eudragit® L 100 nanocapsules. Genet. Mol. Res. 2016, 15, 1–12. [Google Scholar] [CrossRef]
- Ficker, M.; Theeuwen, M.J.; Janaszewska, A.; Gorzkiewicz, M.; Svenningsen, S.W.; Klajnert-Maculewicz, B.; Christensen, J.B. Complexes of indomethacin with 4-carbomethoxy-pyrrolidone PAMAM dendrimers show improved anti-inflammatory properties and temperature-dependent binding and release profile. Mol. Pharm. 2018, 15, 3573–3582. [Google Scholar] [CrossRef] [PubMed]
- Wersig, T.; Krombholz, R.; Janich, C.; Meister, A.; Kressler, J.; Mäder, K. Indomethacin functionalised poly(glycerol adipate) nanospheres as promising candidates for modified drug release. Eur. J. Pharm. Sci. 2018, 123, 350–361. [Google Scholar] [CrossRef] [PubMed]
- Badri, W.; Miladi, K.; Robin, S.; Viennet, C.; Nazari, Q.A.; Agusti, G.; Fessi, H.; Elaissari, A. Polycaprolactone based nanoparticles loaded with indomethacin for anti-inflammatory therapy: From preparation to ex vivo study. Pharm. Res. 2017, 34, 1773–1783. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Termsarasab, U.; Lee, M.Y.; Kim, D.H.; Lee, S.Y.; Kim, J.S.; Cho, H.J.; Kim, D.D. Chemosensitizing indomethacin-conjugated chitosan oligosaccharide nanoparticles for tumor-targeted drug delivery. Acta Biomater. 2017, 57, 262–273. [Google Scholar] [CrossRef]
- Ji, W.; Wang, B.; Fan, Q.; Xu, C.; He, Y.; Chen, Y. Chemosensitizing indomethacin-conjugated dextran-based micelles for effective delivery of paclitaxel in resistant breast cancer therapy. PLoS ONE 2017, 12, e0180037. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tres, F.; Treacher, K.; Booth, J.; Hughes, L.P.; Wren, S.A.C.; Aylott, J.W.; Burley, J.C. Indomethacin-Kollidon VA64 extrudates: A mechanistic study of pH-dependent controlled release. Mol. Pharm. 2016, 13, 1166–1175. [Google Scholar] [CrossRef]
- Lu, C.; Li, X.; Xia, W.; Lu, S.; Luo, H.; Ye, D.; Zhang, Y.; Liu, D. Poly(ε-benzyloxycarbonyl-L-lysine)-grafted branched polyethylenimine as efficient nanocarriers for indomethacin with enhanced oral bioavailability and anti-inflammatory efficacy. Acta Biomater. 2017, 49, 434–443. [Google Scholar] [CrossRef]
- Sosnov, A.V.; Ivanov, R.V.; Balakin, K.V.; Shobolov, D.L.; Fedotov, Y.A.; Kalmykov, Y.M. Development of drug delivery systems using micro- and nanoparticles. Kachestvennaya Klin. Prakt. 2008, 2, 4–8. [Google Scholar]
- Golan, D.E.; Tashjian, A.H., Jr.; Armstrong, E.A.; Armstrong, A.W. Principles of Pharmacology: The Pathophysiologic Basis of Drug Therapy, 2nd ed.; Lippincott Williams & Wilkins: Baltimore, MD, USA, 2007; p. 985. [Google Scholar]
- Mukherjee, B.; Mondal, L.; Chakraborty, S.; Paul, P.; Choudhury, A.; Bhattacharya, S.; Hossain, M.C. Size dependent variations of phospholipid based vesicular drug carriers in systemic drug activity. Curr. Pharm. Biotechnol. 2015, 16, 380–391. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Gu, F.X.; Chan, J.M.; Wang, A.Z.; Langer, R.S.; Farokhzad, O.C. Nanoparticles in medicine: Therapeutic applications and developments. Clin. Pharmacol. Ther. 2008, 83, 761–769. [Google Scholar] [CrossRef] [PubMed]
- Archakov, A.I.; Guseva, M.K.; Uchaikin, V.F.; Tikhonova, E.G.; Ipatova, O.M. Medicinal Forms of Phospholipids Preparations and Methods for Their Preparations. U.S. Patent 8,680,061 B2, 25 March 2014. [Google Scholar]
- Shironin, A.V.; Ipatova, O.M.; Medvedeva, N.V.; Prozorovskiy, V.N.; Tikhonova, E.G.; Zakharova, T.S.; Sanzhakov, M.A.; Torkhovskaya, T.I. The increase of bioavailability and anti-inflammatory effect of indomethacin included into phospholipid nanoparticles. Biomed. Khim. 2011, 57, 671–676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiselev, M.A.; Zemlyanaya, E.V.; Zhabitskaya, E.I.; Aksenov, V.L. Investigation of structure of the unilamellar DMPC vesicles in the sucrose solutions by the small angle neutron and X-ray. Crystallogr. Rep. 2015, 60, 143–147. [Google Scholar] [CrossRef]
- ISO 3960:2017; Animal and Vegetable Fats and Oils—Determination of Peroxide Value: Iodometric (Visual) Endpoint Determination. International Organization for Standardization: Geneva, Switzerland, 2017.
- Kuklin, A.I.; Ivankov, O.I.; Rogachev, A.V.; Soloviov, D.V.; Islamov, A.K.; Skoi, V.V.; Kovalev, Y.S.; Vlasov, A.V.; Ryzykau, Y.L.; Soloviev, A.G.; et al. Small-angle neutron scattering at the pulsed reactor IBR-2: Current status and prospects. Crystallogr. Rep. 2021, 66, 230–241. [Google Scholar] [CrossRef]
- Feigin, L.A.; Svergun, D.I. Structure Analysis by Small-Angle X-ray and Neutron Scattering; Springer: New York, NY, USA, 1987; p. 335. [Google Scholar] [CrossRef]
- Kiselev, M.A.; Zemlyanaya, E.V.; Aswal, V.K.; Neubert, R.H.H. What can we learn about the lipid vesicle structure from the small angle neutron scattering experiment? Eur. Biophys. J. 2006, 35, 477–493. [Google Scholar] [CrossRef]
- Kiselev, M.A.; Zemlyanaya, E.V.; Ipatova, O.M.; Gruzinov, A.Y.; Ermakova, E.V.; Zabelin, A.V.; Zhabitskaya, E.I.; Druzhilovskaya, O.S.; Aksenov, V.L. Application of small-angle X-ray scattering to the characterization and quantification of the drug transport nanosystem based on the soybean phosphatidylcholine. J. Pharm. Biomed. Anal. 2015, 114, 288–291. [Google Scholar] [CrossRef] [PubMed]
- Kiselev, M.A.; Zbytovska, J.; Matveev, D.; Wartewig, S.; Gapienko, I.V.; Perez, J.; Lesieur, P.; Hoell, A.; Neubert, R. Influence of trehalose on the structure of unilamellar DMPC vesicles. Colloids Surf. A Physicochem. Eng. Asp. 2005, 256, 1–7. [Google Scholar] [CrossRef]
Studied Parameter | Indomethacin in the Composition of Phospholipid Nanoparticles | |
---|---|---|
Before Lyophilization | After Lyophilization | |
Diameter of phospholipid nanoparticles, nm | 20.3 ± 1.3 | 21.9 ± 0.9 |
Light transmission (at 660 nm), % | 73.7 ± 2.3 | 65.0 ± 2.2 |
Studied Parameter | Indomethacin in the Composition of Phospholipid Nanoparticles | Initial PC | |
---|---|---|---|
Before Lyophilization | After Lyophilization | ||
Oxidation index | 0.37 ± 0.02 | 0.41 ± 0.02 | 0.20 ± 0.013 |
Peroxide number, mEq/kg | 3.0 ± 0.7 | 4.3 ± 0.8 | 0 |
lysoPC content, % by weight of phospholipids | 1.9% | 1.9% | 1.1–1.5% |
Sample, w/w Concentration in D2O | 5% of Indolip | 10% of Indolip | 25% of Indolip | 25% of Indolip | ||
---|---|---|---|---|---|---|
Sample temperature | 20 °C | 37 °C | 20 °C | 20 °C | 20 °C | 37 °C |
Structural factor | - | - | - | - | Hard sphere | - |
Vesicle radius, Å | 166 ± 1 | 155 ± 2 | 166 ± 1 | 166 ± 1 | 163 ± 2 | 164 ± 1 |
Polydispersity of radius (Schultz distribution), % | 27.6 | 30.0 | 28.0 | 29.0 | 29.0 | 30.0 |
Thickness of lipid bilayer, Å | 33.8 ± 0.1 | 33.9 ± 0.2 | 33.8 ± 0.1 | 31.6 ± 0.1 | 31.5 ± 0.1 | 31.4 ± 0.1 |
Polydispersity of lipid bilayer thickness (Gaussian distribution), % | 15 | 10 | 16 | 5 | 9 | 4 |
χ2 | 11.9 | 8.8 | 13.7 | 23.5 | 22.6 | 16.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tikhonova, E.G.; Tereshkina, Y.A.; Kostryukova, L.V.; Khudoklinova, Y.Y.; Sanzhakov, M.A.; Tamarovskaya, A.O.; Ivankov, O.I.; Kiselev, M.A. Study of Physico-Chemical Properties and Morphology of Phospholipid Composition of Indomethacin. Nanomaterials 2022, 12, 2553. https://doi.org/10.3390/nano12152553
Tikhonova EG, Tereshkina YA, Kostryukova LV, Khudoklinova YY, Sanzhakov MA, Tamarovskaya AO, Ivankov OI, Kiselev MA. Study of Physico-Chemical Properties and Morphology of Phospholipid Composition of Indomethacin. Nanomaterials. 2022; 12(15):2553. https://doi.org/10.3390/nano12152553
Chicago/Turabian StyleTikhonova, Elena G., Yulia A. Tereshkina, Lyubov V. Kostryukova, Yulia Yu. Khudoklinova, Maxim A. Sanzhakov, Anna O. Tamarovskaya, Oleksandr I. Ivankov, and Mikhail A. Kiselev. 2022. "Study of Physico-Chemical Properties and Morphology of Phospholipid Composition of Indomethacin" Nanomaterials 12, no. 15: 2553. https://doi.org/10.3390/nano12152553
APA StyleTikhonova, E. G., Tereshkina, Y. A., Kostryukova, L. V., Khudoklinova, Y. Y., Sanzhakov, M. A., Tamarovskaya, A. O., Ivankov, O. I., & Kiselev, M. A. (2022). Study of Physico-Chemical Properties and Morphology of Phospholipid Composition of Indomethacin. Nanomaterials, 12(15), 2553. https://doi.org/10.3390/nano12152553