Substrate-Modulated Electric and Magnetic Resonances of Lithium Niobite Nanoparticles Illuminated by White Light
Abstract
:1. Introduction
2. Theoretical Analysis
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kerker, M. The Scattering of Light, and Other Electromagnetic Radiation; Academic Press: Cambridge, MA, USA, 1969; pp. 27–96. [Google Scholar]
- Lei, D.Y.; Fernández-Domínguez, A.I.; Sonnefraud, Y.; Appavoo, K.; Haglund, R.F., Jr.; Pendry, J.B.; Maier, S.A. Revealing plasmonic gap modes in particle-on-film systems using dark-field spectroscopy. ACS Nano 2012, 6, 1380–1386. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Xiang, J.; Jiang, S.; Dai, Q.; Tie, S.; Lan, S. Multipole radiations from large gold nanospheres excited by evanescent wave. Nanomaterials 2019, 9, 175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sobhani, A.; Manjavacas, A.; Cao, Y.; McClain, M.J.; García de Abajo, F.J.; Nordlander, P.; Halas, N.J. Pronounced linewidth narrowing of an aluminum nanoparticle plasmon resonance by interaction with an aluminum metallic film. Nano Lett. 2015, 15, 6946–6951. [Google Scholar] [CrossRef] [PubMed]
- Li, G.C.; Zhang, Y.L.; Jiang, J.; Luo, Y.; Lei, D.Y. Metal-substrate-mediated plasmon hybridization in a nanoparticle dimer for photoluminescence line-width shrinking and intensity enhancement. ACS Nano 2017, 11, 3067–3080. [Google Scholar] [CrossRef]
- Chen, J.; Xiang, J.; Jiang, S.; Dai, Q.F.; Tie, S.L.; Lan, S. Radiation of the high-order plasmonic modes of large gold nanospheres excited by surface plasmon polaritons. Nanoscale 2018, 10, 9153–9163. [Google Scholar] [CrossRef]
- Pendry, J.B. Negative refraction makes a perfect lens. Phys. Rev. Lett. 2000, 85, 3966–3969. [Google Scholar] [CrossRef]
- Fang, N.; Lee, H.; Sun, C.; Zhang, X. Sub-diffraction-limited optical imaging with a silver superlens. Science 2005, 308, 534–537. [Google Scholar] [CrossRef] [Green Version]
- Kneipp, K.; Kneipp, H.; Itzkan, I.; Dasari, R.R.; Feld, M. Ultrasensitive chemical analysis by raman spectroscopy. Chem. Rev. 1999, 99, 2957–2975. [Google Scholar] [CrossRef]
- Chen, J.; Li, X.; Zheng, J.; Ye, X.; Lin, H. Revealing the quadrupole radiation of liquid Gallium nanospheres. Appl. Phys. Express 2022, 15, 022006. [Google Scholar] [CrossRef]
- Garcia-Etxarri, A.; Gomez-Medina, R.; Froufe-Perez, L.S.; Lopez, C.; Chantada, L.; Scheffold, F.; Aizpurua, J.; Nieto-Vesperinas, M.; Saenz, J.J. Strong magnetic response of submicron silicon particles in the infrared. Opt. Express 2011, 19, 4815–4826. [Google Scholar] [CrossRef] [Green Version]
- Kuznetsov, A.I.; Miroshnichenko, A.E.; Fu, Y.H.; Zhang, J.; Luk’Yanchuk, B. Magnetic light. Sci. Rep. 2012, 2, 492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, T.; Xu, Y.; Zhang, W.; Miroshnichenko, A.E. Ideal magnetic dipole scattering. Phys. Rev. Lett. 2017, 118, 173901. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Xu, Y.; Liu, J.; Li, J.; Xiang, J.; Li, H.; Li, J.X.; Dai, Q.; Lan, S.; Miroshnichenko, A.E. Lighting up silicon nanoparticles with Mie resonances. Nat. Commun. 2018, 9, 2964. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, C.; Yan, J.; Huang, Y.; Yang, G. Directional scattering in a germanium nanosphere in the visible light region. Adv. Opt. Mater. 2017, 5, 1700761. [Google Scholar] [CrossRef]
- Ishii, S.; Chen, K.; Okuyama, H.; Nagao, T. Resonant optical absorption and photothermal process in high refractive index germanium nanoparticles. Adv. Opt. Mater. 2017, 5, 1600902. [Google Scholar] [CrossRef]
- Xiang, J.; Jiang, S.; Chen, J.; Li, J.; Dai, Q.; Zhang, C.; Xu, Y.; Tie, S.; Lan, S. Hot-electron intraband luminescence from GaAs nanospheres mediated by magnetic dipole resonances. Nano Lett. 2017, 17, 4853–4859. [Google Scholar] [CrossRef] [PubMed]
- Van de Groep, J.; Polman, A. Designing dielectric resonators on substrates: Combining magnetic and electric resonances. Opt. Express 2013, 21, 26285–26302. [Google Scholar] [CrossRef]
- Van de Haar, M.A.; van de Groep, J.; Brenny, B.J.M.; Polman, A. Controlling magnetic and electric dipole modes in hollow silicon nanocylinders. Opt. Express 2016, 24, 2047–2064. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Z.; Xiang, J.; Chen, B.; Wei, Y.; Liu, W.; Xu, Y.; Lan, S.; Liu, J. Ultraviolet second harmonic generation from Mie-resonant lithium niobate nanospheres. Nanophotonics 2021, 10, 4273–4278. [Google Scholar] [CrossRef]
- Timpu, F.; Sergeyev, A.; Hendricks, N.R.; Grange, R. Second-harmonic enhancement with Mie resonances in perovskite nanoparticles. ACS Photonics 2017, 4, 76–84. [Google Scholar] [CrossRef]
- Li, N.; Wang, H.; Lai, Y.; Chen, H.; Wang, J. Substrate-modulated electromagnetic resonances in colloidal Cu2O nanospheres. Part. Part. Syst. Char. 2020, 37, 2000106. [Google Scholar] [CrossRef]
- Ullah, K.; Habib, M.; Huang, L.; Garcia-Camara, B. Analysis of the substrate effect on the zero-backward scattering condition of a Cu2O nanoparticle under non-normal illumination. Nanomaterials 2019, 9, 536. [Google Scholar] [CrossRef] [Green Version]
- Zhuo, X.; Cheng, X.; Guo, Y.; Jia, H.; Yu, Y.; Wang, J. Chemically synthesized electromagnetic metal oxide nanoresonators. Adv. Opt. Mater. 2019, 7, 1900396. [Google Scholar] [CrossRef]
- Xu, J.; Wu, Y.; Zhang, P.; Wu, Y.; Vallée, R.A.; Wu, S.; Liu, X. Resonant scattering manipulation of dielectric nanoparticles. Adv. Opt. Mater. 2021, 9, 2100112. [Google Scholar] [CrossRef]
- Zhang, S.; Jiang, R.; Xie, Y.M.; Ruan, Q.; Yang, B.; Wang, J.; Lin, H.Q. Colloidal moderate-refractive-index Cu2O nanospheres as visible-region nanoantennas with electromagnetic resonance and directional light-scattering properties. Adv. Mater. 2015, 27, 7432–7439. [Google Scholar] [CrossRef] [PubMed]
- Miroshnichenko, A.E.; Evlyukhin, A.B.; Kivshar, Y.S.; Chichkov, B.N. Substrate-induced resonant magnetoelectric effects for dielectric nanoparticles. ACS Photonics 2015, 2, 1423–1428. [Google Scholar] [CrossRef]
- Deng, F.; Liu, H.; Panmai, M.; Lan, S. Sharp bending and power distribution of a focused radially polarized beam by using silicon nanoparticle dimers. Opt. Express 2018, 26, 20051–20062. [Google Scholar] [CrossRef] [PubMed]
- Xifre-Perez, E.; Shi, L.; Tuzer, U.; Fenollosa, R.; Ramiro-Manzano, F.; Quidant, R.; Meseguer, F. Mirror-image-induced magnetic modes. ACS Nano 2013, 7, 664–668. [Google Scholar] [CrossRef]
- Deng, F.; Liu, H.; Lan, S. Metal substrate-induced line width compression in the magnetic dipole resonance of a silicon nanosphere illuminated by a focused azimuthally polarized beam. Nanoscale Res. Lett. 2018, 13, 395. [Google Scholar] [CrossRef]
- Li, H.; Xu, Y.; Xiang, J.; Li, X.F.; Zhang, C.Y.; Tie, S.L.; Lan, S. Exploiting the interaction between a semiconductor nanosphere and a thin metal film for nanoscale plasmonic devices. Nanoscale 2016, 8, 18963–18971. [Google Scholar] [CrossRef]
- Ding, T.; Zheng, Y.; Chen, X. Integration of cascaded electro-optic and nonlinear processes on a lithium niobate on insulator chip. Opt. Lett. 2019, 44, 1524–1527. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Ding, T.; Zheng, Y.; Chen, X. Cascaded sum-frequency generation and electro-optic polarization coupling in the PPLNOI ridge waveguide. Opt. Express 2019, 27, 15283–15288. [Google Scholar] [CrossRef] [PubMed]
- Jagatpal, N.; Mercante, A.J.; Ahmed, A.N.R.; Prather, D.W. Thin film lithium niobate electro-optic modulator for 1064 nm wavelength. IEEE Photonics Technol. Lett. 2021, 33, 271–274. [Google Scholar] [CrossRef]
- Wu, J.; Huang, Y.; Lu, C.; Ding, T.; Zheng, Y.; Chen, X. Tunable linear polarization-state generator of single photons on a lithium niobate chip. Phys. Rev. Appl. 2020, 13, 064068. [Google Scholar] [CrossRef]
- Liu, H.; Chen, X. Nonlinear moiré superlattice for super-resolution nondestructive detection of nonlinear photonic crystals. Laser Photonics Rev. 2021, 15, 2000596. [Google Scholar] [CrossRef]
- Zhu, B.; Liu, H.; Yan, X.; Chen, Y.; Chen, X. Second-harmonic computer-generated holographic imaging through monolithic lithium niobate crystal by femtosecond laser micromachining. Opt. Lett. 2020, 45, 4132–4135. [Google Scholar] [CrossRef]
- Ren, T.; Zhang, M.; Wang, C.; Shao, L.; Reimer, C.; Zhang, Y.; King, O.; Esman, R.; Cullen, T.; Lončar, M. An integrated low-voltage broadband lithium niobate phase modulator. IEEE Photonics Technol. Lett. 2019, 31, 889–892. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Z.L.; Fröhlich, B.; Lucamarini, M.; Roberts, G.L.; Dynes, J.F.; Shields, A.J. Directly phase-modulated light source. Phys. Rev. X 2016, 6, 031044. [Google Scholar] [CrossRef] [Green Version]
- Brick, D.; Emre, E.; Grossmann, M.; Dekorsy, T.; Hettich, M. Picosecond photoacoustic metrology of SiO2 and LiNbO3 layer systems used for high frequency surface-acoustic-wave filters. Appl. Sci. 2017, 7, 80822. [Google Scholar] [CrossRef] [Green Version]
- Shcherbakov, A.S.; Arellanes, A.O.; Bertone, E. Advanced collinear LiNbO3 acousto-optical filter for astrophysical spectroscopy in the near-ultraviolet: Exploring high-spectral resolution. J. Astron. Telesc. Inst. 2015, 1, 045002. [Google Scholar] [CrossRef]
- Evlyukhin, A.B.; Fischer, T.; Reinhardt, C.; Chichkov, B.N. Optical theorem and multipole scattering of light by arbitrarily shaped nanoparticles. Phys. Rev. B 2016, 94, 205434. [Google Scholar] [CrossRef]
- Zelmon, D.E.; Small, D.L.; Jundt, D. Infrared corrected eellmeier coefficients for congruently grown lithium niobate and 5 mol.% magnesium oxide–doped lithium niobate. J. Opt. Soc. Am. B 1997, 14, 3319–3322. [Google Scholar] [CrossRef]
- Gao, L.; Lemarchand, F.; Lequime, M. Refractive index determination of SiO2 layer in the UV/Vis/NIR range: Spectrophotometric reverse engineering on single and bilayer designs. J. Eur. Opt. Soc.-Rapid 2013, 8, 13010. [Google Scholar] [CrossRef] [Green Version]
- Rakić, A.D.; Djurišić, A.B.; Elazar, J.M.; Majewski, M.L. Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl. Opt. 1998, 37, 5271–5283. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Peng, Y.; Lu, R. Substrate-Modulated Electric and Magnetic Resonances of Lithium Niobite Nanoparticles Illuminated by White Light. Nanomaterials 2022, 12, 2010. https://doi.org/10.3390/nano12122010
Li H, Peng Y, Lu R. Substrate-Modulated Electric and Magnetic Resonances of Lithium Niobite Nanoparticles Illuminated by White Light. Nanomaterials. 2022; 12(12):2010. https://doi.org/10.3390/nano12122010
Chicago/Turabian StyleLi, Hui, Yigeng Peng, and Ruifeng Lu. 2022. "Substrate-Modulated Electric and Magnetic Resonances of Lithium Niobite Nanoparticles Illuminated by White Light" Nanomaterials 12, no. 12: 2010. https://doi.org/10.3390/nano12122010
APA StyleLi, H., Peng, Y., & Lu, R. (2022). Substrate-Modulated Electric and Magnetic Resonances of Lithium Niobite Nanoparticles Illuminated by White Light. Nanomaterials, 12(12), 2010. https://doi.org/10.3390/nano12122010