Assembly and Photocatalytic Degradation Activity of Spherical ZnO/CdSe Heterostructures on Flexible Carbon Cloth Substrates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of ZnO/CdSe–CC
2.2.1. Pretreatment of CC
2.2.2. Preparation of ZnO Seed Layer
2.2.3. Preparation of CdSe
2.2.4. Preparation of ZnO/CdSe–CC
2.3. Electrochemical Testing
2.4. Analysis of the Photocatalytic Activities
2.5. Characterization
3. Results and Discussions
3.1. Structural Characterization
3.2. Morphological Properties
3.3. Optical Properties
3.4. Photoelectrocatalytic Properties
3.5. Photocatalytic Mechanisms
4. Conclusions
- ZnO/CdSe–CC expanded its light absorption range, which was a prerequisite for realizing visible-light photocatalytic activity. The composite of the narrow-bandgap material CdSe significantly shortened the optical bandgap of ZnO/CdSe–CC. Moreover, the use of CC promoted the absorbance in the entire visible region. These synergistic effects enhanced the photon utilization and photocatalytic activity of ZnO/CdSe–CC.
- The close heterojunction between ZnO and CdSe was an important factor for improving photocatalytic efficiency. Since ZnO and CdSe formed an appropriate energy band structure, the system could enhance the separation and migration of the carrier and improve the photocatalytic degradation efficiency.
- As a flexible substrate connecting ZnO and CdSe, CC ensured the recyclability and efficient carrier separation of ZnO/CdSe. Thus, CC not only provided abundant active sites for close interfacial contact between ZnO and CdSe but also facilitated the recovery and utilization of photocatalysts.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Moriya, Y.; Takata, T.; Domen, K. Recent progress in the development of (oxy)nitride photocatalysts for water splitting under visible-light irradiation. Coord. Chem. Rev. 2013, 257, 1957–1969. [Google Scholar] [CrossRef]
- Baruah, S.; Dutta, J. Hydrothermal growth of ZnO nanostructures. Sci. Technol. Adv. Mater. 2009, 10, 013001. [Google Scholar] [CrossRef] [PubMed]
- Mu, J.B.; Shao, C.L.; Guo, Z.C.; Zhang, Z.Y.; Zhang, M.Y.; Zhang, P.; Chen, B.; Liu, Y.C. High Photocatalytic Activity of ZnO-Carbon Nanofiber Heteroarchitectures. Acs Appl. Mater. Interfaces 2011, 3, 590–596. [Google Scholar] [CrossRef] [PubMed]
- Yan, B.X.; Wang, Y.C.; Jiang, X.Y.; Liu, K.F.; Guo, L. Flexible Photocatalytic Composite Film of ZnO-Microrods/Polypyrrole. Acs Appl. Mater. Interfaces 2017, 9, 29113–29119. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.J.; Kumar, M.R.; Chu, Y.; Hao, H.X.; Wu, Q.Y.; Xie, H.D. Photocatalytic Decomposition of RhB by Newly Designed and Highly Effective CF@ZnO/CdS Hierarchical Heterostructures. ACS Sustain. Chem. Eng. 2018, 6, 155–164. [Google Scholar] [CrossRef]
- Di Mauro, A.; Cantarella, M.; Nicotra, G.; Privitera, V.; Impellizzeri, G. Low temperature atomic layer deposition of ZnO: Applications in photocatalysis. Appl. Catal. B-Environ. 2016, 196, 68–76. [Google Scholar] [CrossRef]
- Sudrajat, H. Superior photocatalytic activity of polyester fabrics coated with zinc oxide from waste hot dipping zinc. J. Clean. Prod. 2018, 172, 1722–1729. [Google Scholar] [CrossRef]
- Zhang, Y.; Luo, L.; Shi, Z.; Shen, X.F.; Peng, C.; Liu, J.S.; Chen, Z.G.; Chen, Q.Y.; Zhang, L.S. Synthesis of MoS2/CdS Heterostructures on Carbon-Fiber Cloth as Filter-Membrane-Shaped Photocatalyst for Purifying the Flowing Wastewater under Visible-Light Illumination. Chemcatchem 2019, 11, 2855–2863. [Google Scholar] [CrossRef]
- Li, Z.D.; Yang, H.; Zhang, L.F.; Liu, R.H.; Zhou, Y. Stainless steel mesh-supported three-dimensional hierarchical SnO2/Zn2SnO4 composite for the applications in solar cell, gas sensor, and photocatalysis. Appl. Surf. Sci. 2020, 502, 2855–2863. [Google Scholar] [CrossRef]
- Hatamie, A.; Khan, A.; Golabi, M.; Turner, A.P.F.; Beni, V.; Mak, W.C.; Sadollahkhani, A.; Alnoor, H.; Zargar, B.; Bano, S.; et al. Zinc Oxide Nanostructure-Modified Textile and Its Application to Biosensing, Photocatalysis, and as Antibacterial Material. Langmuir 2015, 31, 10913–10921. [Google Scholar] [CrossRef]
- Hsu, M.H.; Chang, C.J.; Weng, H.T. Efficient H2 Production Using Ag2S-Coupled ZnO@ZnS Core–Shell Nanorods Decorated Metal Wire Mesh as an Immobilized Hierarchical Photocatalyst. Acs Sustain. Chem. Eng. 2016, 4, 1381–1391. [Google Scholar] [CrossRef]
- Yu, J.H.; Chen, R. Optical properties and applications of two-dimensional CdSe nanoplatelets. Infomat 2020, 2, 905–927. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Sun, Y.; Ye, S.; Song, J.; Qu, J.L. Heterostructures in Two-Dimensional CdSe Nanoplatelets: Synthesis, Optical Properties, and Applications. Chem. Mater. 2020, 32, 9490–9507. [Google Scholar] [CrossRef]
- Mahmoodi, N.M.; Karimi, B.; Mazarji, M.; Moghtaderi, H. Cadmium selenide quantum dot-zinc oxide composite: Synthesis, characterization, dye removal ability with UV irradiation, and antibacterial activity as a safe and high-performance photocatalyst. J. Photochem. Photobiol. B-Biol. 2018, 188, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Jin, D.; Wang, Z.H. ZnO/CdSe-diethylenetriamine nanocomposite as a step-scheme photocatalyst for photocatalytic hydrogen evolution. Appl. Surf. Sci. 2020, 529, 147071. [Google Scholar] [CrossRef]
- Zeng, T.-W.; Liu, I.S.; Huang, K.-T.; Liao, H.-C.; Chien, C.-T.; Wong, D.K.-P.; Chen, C.-W.; Wu, J.-J.; Chen, Y.-F.; Su, W.-F. Effects of bifunctional linker on the optical properties of ZnO nanocolumn-linker-CdSe quantum dots heterostructure. J. Colloid Interface Sci. 2011, 358, 323–328. [Google Scholar] [CrossRef]
- Kuang, P.Y.; Su, Y.Z.; Xiao, K.; Liu, Z.Q.; Li, N.; Wang, H.J.; Zhang, J. Double-Shelled CdS- and CdSe-Cosensitized ZnO Porous Nanotube Arrays for Superior Photoelectrocatalytic Applications. ACS Appl. Mater. Interfaces 2015, 7, 16387–16394. [Google Scholar] [CrossRef]
- Wang, X.W.; Zhou, C.X.; Wang, W.Y.; Du, B.; Cai, J.X.; Feng, G.; Zhang, R.B. CdSe nanoparticle-sensitized ZnO sheets for enhanced photocatalytic hydrogen evolution rates. J. Alloy Compd. 2018, 747, 826–833. [Google Scholar] [CrossRef]
- Shen, X.F.; Zhang, T.Y.; Xu, P.F.; Zhang, L.S.; Liu, J.S.; Chen, Z.G. Growth of C3N4 nanosheets on carbon-fiber cloth as flexible and macroscale filter-membrane-shaped photocatalyst for degrading the flowing wastewater. Appl. Catal. B-Environ. 2017, 219, 425–431. [Google Scholar] [CrossRef]
- Luo, S.; Liu, C.W.; Zhou, S.; Li, W.; Ma, C.H.; Liu, S.X.; Yin, W.; Heeres, H.J.; Zheng, W.Q.; Seshan, K.; et al. ZnO nanorod arrays assembled on activated carbon fibers for photocatalytic degradation: Characteristics and synergistic effects. Chemosphere 2020, 261, 127731. [Google Scholar] [CrossRef]
- Lops, C.; Ancona, A.; Di Cesare, K.; Dumontel, B.; Garino, N.; Canavese, G.; Hernandez, S.; Cauda, V. Sonophotocatalytic degradation mechanisms of Rhodamine B dye via radicals generation by micro- and nano-particles of ZnO. Appl. Catal. B-Environ. 2019, 243, 629–640. [Google Scholar] [CrossRef] [PubMed]
- Bokuniaeva, A.O.; Vorokh, A.S. Estimation of particle size using the Debye equation and the Scherrer formula for polyphasic TiO2 powder. J. Phys. 2019, 1410, 012057. [Google Scholar] [CrossRef]
- Wu, J.M.; Tsay, L.Y. ZnO quantum dots-decorated ZnO nanowires for the enhancement of antibacterial and photocatalytic performances. Nanotechnology 2015, 26, 395704. [Google Scholar] [CrossRef] [PubMed]
- Altaf, C.T.; Faraji, M.; Kumtepe, A.; Abdullayeva, N.; Yilmaz, N.; Karagoz, E.; Bozbey, A.; Kurt, H.; Sankir, M.; Sankir, N.D. Highly efficient 3D-ZnO nanosheet photoelectrodes for solar-driven water splitting: Chalcogenide nanoparticle sensitization and mathematical modeling. J. Alloy Compd. 2020, 828, 154472. [Google Scholar] [CrossRef]
- Choi, Y.; Seol, M.; Kim, W.; Yong, K. Chemical Bath Deposition of Stoichiometric CdSe Quantum Dots for Efficient Quantum-Dot-Sensitized Solar Cell Application. J. Phys. Chem. C 2014, 118, 5664–5670. [Google Scholar] [CrossRef]
- Zhao, J.W.; Xie, C.S.; Yang, L.; Zhang, S.P.; Zhang, G.Z.; CaiState, Z.M. Enhanced gas sensing performance of Li-doped ZnO nanoparticle film by the synergistic effect of oxygen interstitials and oxygen vacancies. Appl. Surf. Sci. 2015, 330, 126–133. [Google Scholar] [CrossRef]
- Feng, W.L.; Wang, B.C.; Huang, P.; Wang, X.D.; Yu, J.; Wang, C.W. Wet chemistry synthesis of ZnO crystals with hexamethylenetetramine (HMTA): Understanding the role of HMTA in the formation of ZnO crystals. Mater. Sci. Semicond. Process. 2016, 41, 462–469. [Google Scholar] [CrossRef]
- Van Rijt, M.M.J.; Oosterlaken, B.M.; Joosten, R.R.M.; Wijkhuijs, L.E.A.; Bomans, P.H.H.; Friedrich, H.; de With, G. Counter-ion influence on the mechanism of HMTA-mediated ZnO formation. Crystengcomm 2020, 22, 5854–5861. [Google Scholar] [CrossRef]
- Vayssieres, L. Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions. Adv. Mater. 2003, 15, 464–466. [Google Scholar] [CrossRef]
- van Rijt, M.M.J.; Oosterlaken, B.M.; Friedrich, H.; de With, G. Controlled titration-based ZnO formation. Crystengcomm 2021, 23, 3340–3348. [Google Scholar] [CrossRef]
- Luo, S.; Liu, C.W.; Wan, Y.; Li, W.; Ma, C.H.; Liu, S.X.; Heeres, H.J.; Zheng, W.Q.; Seshan, K.; He, S.B. Self-assembly of single-crystal ZnO nanorod arrays on flexible activated carbon fibers substrates and the superior photocatalytic degradation activity. Appl. Surf. Sci. 2020, 513, 145878. [Google Scholar] [CrossRef]
- Zeng, J.H.; Jin, B.B.; Wang, Y.F. Facet enhanced photocatalytic effect with uniform single-crystalline zinc oxide nanodisks. Chem. Phys. Lett. 2009, 472, 90–95. [Google Scholar] [CrossRef]
- Xu, S.; Wang, Z.L. One-dimensional ZnO nanostructures: Solution growth and functional properties. Nano Res. 2011, 4, 1013–1098. [Google Scholar] [CrossRef] [Green Version]
- She, X.F.; Zhang, Z. Enhanced photoelectrochemical and photocatalytic efficiency of rare earth slag decorated CdSe/ZnO hetero-nanorods. Res. Chem. Intermed. 2017, 43, 5587–5600. [Google Scholar] [CrossRef]
- Yendrapati, T.P.; Gautam, A.; Bojja, S.; Pal, U. Formation of ZnO@CuS nanorods for efficient photocatalytic hydrogen generation. Sol. Energy 2020, 196, 540–548. [Google Scholar] [CrossRef]
- Wang, S.B.; Huang, C.Y.; Pan, L.; Chen, Y.; Zhang, X.W.; Fazal e, A.; Zou, J.J. Controllable fabrication of homogeneous ZnO p-n junction with enhanced charge separation for efficient photocatalysis. Catal. Today 2019, 335, 151–159. [Google Scholar] [CrossRef]
- Chen, Y.L.; Wang, L.J.; Wang, W.Z.; Cao, M.S. Enhanced photoelectrochemical properties of ZnO/ZnSe/CdSe/Cu2-xSe core-shell nanowire arrays fabricated by ion-replacement method. Appl. Catal. B-Environ. 2017, 209, 110–117. [Google Scholar] [CrossRef]
- Zheng, Z.X.; Li, X.K.; Li, L.S.; Tang, Y.M. Photoelectrocatalytic degradation of amoxicillin over quaternary ZnO/ZnSe/CdSe/MoS2 hierarchical nanorods. Int. J. Hydrogen Energy 2019, 44, 20826–20838. [Google Scholar] [CrossRef]
- Chouhan, N.; Yeh, C.L.; Hu, S.F.; Liu, R.S.; Chang, W.S.; Chen, K.H. Photocatalytic CdSe QDs-decorated ZnO nanotubes: An effective photoelectrode for splitting water. Chem. Commun. 2011, 47, 3493–3495. [Google Scholar] [CrossRef]
- Wu, Y.; Xu, F.; Guo, D.F.; Gao, Z.Y.; Wu, D.P.; Jiang, K. Synthesis of ZnO/CdSe hierarchical heterostructure with improved visible photocatalytic efficiency. Appl. Surf. Sci. 2013, 274, 39–44. [Google Scholar] [CrossRef]
Samples | (100) | (002) | (101) |
---|---|---|---|
ZnO–CC | 28.72 nm | 41.45 nm | 30.22 nm |
Z10CdSe–CC | 11.80 nm | 12.72 nm | 12.05 nm |
Z20CdSe–CC | 14.04 nm | 16.79 nm | 15.17 nm |
Z30CdSe–CC | 12.38 nm | 12.98 nm | 13.27 nm |
Samples | Photodegradation Efficiency (%) | k (min−1) |
---|---|---|
ZnO powder | 40% | 0.00245 |
ZnO–CC | 66% | 0.00562 |
Z10CdSe–CC | 76% | 0.00895 |
Z20CdSe–CC | 84% | 0.01075 |
Z30CdSe–CC | 73% | 0.00731 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Li, J. Assembly and Photocatalytic Degradation Activity of Spherical ZnO/CdSe Heterostructures on Flexible Carbon Cloth Substrates. Nanomaterials 2022, 12, 1898. https://doi.org/10.3390/nano12111898
Chen X, Li J. Assembly and Photocatalytic Degradation Activity of Spherical ZnO/CdSe Heterostructures on Flexible Carbon Cloth Substrates. Nanomaterials. 2022; 12(11):1898. https://doi.org/10.3390/nano12111898
Chicago/Turabian StyleChen, Xuan, and Jin Li. 2022. "Assembly and Photocatalytic Degradation Activity of Spherical ZnO/CdSe Heterostructures on Flexible Carbon Cloth Substrates" Nanomaterials 12, no. 11: 1898. https://doi.org/10.3390/nano12111898
APA StyleChen, X., & Li, J. (2022). Assembly and Photocatalytic Degradation Activity of Spherical ZnO/CdSe Heterostructures on Flexible Carbon Cloth Substrates. Nanomaterials, 12(11), 1898. https://doi.org/10.3390/nano12111898