Next Article in Journal
The High-Throughput In Vitro CometChip Assay for the Analysis of Metal Oxide Nanomaterial Induced DNA Damage
Next Article in Special Issue
Recent Progress on Nanocrystalline Metallic Materials for Biomedical Applications
Previous Article in Journal
Anomalous Metallic Phase in Molybdenum Disulphide Induced via Gate-Driven Organic Ion Intercalation
Previous Article in Special Issue
Formulation and Characterization of Doxycycline-Loaded Polymeric Nanoparticles for Testing Antitumor/Antiangiogenic Action in Experimental Colon Cancer in Mice
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

A Critical Review of the Antimicrobial and Antibiofilm Activities of Green-Synthesized Plant-Based Metallic Nanoparticles

by
Miryam M. Luzala
1,†,
Claude K. Muanga
1,†,
Joseph Kyana
2,†,
Justin B. Safari
3,4,
Eunice N. Zola
1,
Grégoire V. Mbusa
5,6,
Yannick B. Nuapia
7,
Jean-Marie I. Liesse
5,6,
Christian I. Nkanga
1,
Rui W. M. Krause
4,8,*,
Aistė Balčiūnaitienė
9 and
Patrick B. Memvanga
1,2,3,10,*
1
Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo
2
Department of Pharmacy, Faculty of Medecine and Pharmacy, University of Kisangani, Kisangani XI B.P. 2012, Democratic Republic of the Congo
3
Department of Pharmacy, Faculty of Pharmaceutical Sciences and Public Health, Official University of Bukavu, Bukavu B.P. 570, Democratic Republic of the Congo
4
Department of Chemistry, Faculty of Science, Rhodes University, P.O. Box 94, Makhana 6140, South Africa
5
Centre Universitaire de Référence de Surveillance de la Résistance aux Antimicrobiens (CURS-RAM), Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo
6
Laboratory of Experimental and Pharmaceutical Microbiology, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo
7
Laboratory of Toxicology, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo
8
Center for Chemico- and Bio-Medicinal Research (CCBR), Faculty of Science, Rhodes University, P.O. Box 94, Makhana 6140, South Africa
9
Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, 54333 Babtai, Lithuania
10
Centre de Recherche et d’Innovation Technologique en Environnement et en Sciences de la Santé (CRITESS), University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo
*
Authors to whom correspondence should be addressed.
These authors contributed equally to this work.
Nanomaterials 2022, 12(11), 1841; https://doi.org/10.3390/nano12111841
Submission received: 21 February 2022 / Revised: 3 April 2022 / Accepted: 5 April 2022 / Published: 27 May 2022

Abstract

:
Metallic nanoparticles (MNPs) produced by green synthesis using plant extracts have attracted huge interest in the scientific community due to their excellent antibacterial, antifungal and antibiofilm activities. To evaluate these pharmacological properties, several methods or protocols have been successfully developed and implemented. Although these protocols were mostly inspired by the guidelines from national and international regulatory bodies, they suffer from a glaring absence of standardization of the experimental conditions. This situation leads to a lack of reproducibility and comparability of data from different study settings. To minimize these problems, guidelines for the antimicrobial and antibiofilm evaluation of MNPs should be developed by specialists in the field. Being aware of the immensity of the workload and the efforts required to achieve this, we set out to undertake a meticulous literature review of different experimental protocols and laboratory conditions used for the antimicrobial and antibiofilm evaluation of MNPs that could be used as a basis for future guidelines. This review also brings together all the discrepancies resulting from the different experimental designs and emphasizes their impact on the biological activities as well as their interpretation. Finally, the paper proposes a general overview that requires extensive experimental investigations to set the stage for the future development of effective antimicrobial MNPs using green synthesis.

Graphical Abstract

1. Introduction

Nanotechnology involves science, engineering and technology that considers matter at atomic, molecular or supramolecular levels to produce nanometric materials and nanosystems with improved properties, such as high surface-to-volume ratios and high dispersion in solution [1]. With sizes typically ranging between 1 and 100 nm in at least one dimension, nanomaterials and nanosystems can be synthesized by chemical, physical and/or biological methods [2,3].
In comparison to chemical and physical methods that can involve costly and toxic chemicals [2,4], the biological synthesis pathway, based on the use of biological sources (e.g., plants, bacteria, fungi and algae) represents an attractive option [5,6]. However, though these biological methods do not involve toxic chemicals in the preparation protocols, the microbial production of metal nanoparticles is highly demanding, time consuming and costly, requiring technology and practical microbiological experience to ensure cell culture and nanoparticle purification under aseptic conditions [7,8].
In contrast, the use of plants (e.g., extracts, fruit juices) for the synthesis of metal nanoparticles (MNPs) involves easy, simple, quick, environmentally friendly, sustainable and cost-effective processes, typically under moderate reaction conditions [9]. Plant-mediated synthesis of nanoparticles is also clinically adaptable and easily scalable for industrial production [10]. Interestingly, the secondary metabolites (e.g., polyphenols, flavonoids, tannins, terpenoids, alkaloids) contained in plant extracts often act as reducing and/or capping agents [11,12]. Depending on their morphological and physical characteristics (e.g., size, zeta potential), as well as their composition, MNPs from plants with medicinal value can exhibit improved antibacterial, antifungal and antibiofilm activities, thus constituting a very promising means of combating antimicrobial resistance [9,13,14,15,16].
Using different sources of metals (salts or oxide) and different plant extracts, the biological reduction method allows the synthesis of a large number of green MNPs, including silver (Ag), gold (Au), zinc oxide (ZnO), platinum (Pt), palladium (Pd), copper (Cu), iron oxide (Fe2O3 and Fe3O4), nickel oxide (NiO), magnesium oxide (MgO), titanium dioxide (TiO2) and indium oxide (In2O3) [8,14].
Investigation of plant systems as potential bio-factories for MNPs has received considerable attention, especially by researchers working in the field of phytonanotechnology, and pharmaceutical and clinical microbiology, as well as medicine [14,17]. Indeed, due to the surging popularity of green methods, more than 1000 research papers and reviews related to antibacterial, antifungal and antibiofilm properties of MNPs have been published to date (Pubmed and Google Scholar database). Most of the reviews published so far have mainly focused on predicting the antimicrobial mechanisms of MNPs and parameters that may influence their antibacterial, antifungal and activities, including: (i) the type (and origin) of plants used as bioreactor sources for biosynthesis, (ii) the reduction process of the metal salts (mainly silver, zinc and gold) used during the fabrication of nanoparticles, (iii) the particulate characteristics of MNPs (e.g., size, zeta potential and shape), as well as the characterization techniques allowing their determination, and (iv) the general protocols applied to evaluate the antimicrobial potential of metal-containing nanoparticles [10,13,14,17,18,19,20,21,22,23,24,25,26].
Unfortunately, it appears from these reviews that the methods used for assessing the antibacterial, antifungal and antibiofilm efficiency of MNPs are only partially elaborated in terms of standardization processes; therefore, it is hard to correlate or compare data from different studies to set out the product quality attributes and boost the development pipeline for high value antimicrobial nanoparticles. Hence, to provide an essential reference for readers, the present review briefly describes different in vitro and in vivo methods used for testing the antimicrobial activities of MNPs against planktonic bacteria, fungi and biofilms. The paper also presents tabular data (from 2010 to date) that summarize different in vitro experimental conditions used for assessing antimicrobial and antibiofilm activities of MNPs, including the major findings based on physicochemical characteristics (e.g., size and shape). We also discuss the discrepancies found in the obtained results. By doing so, this review guides scientists towards the most appropriate experimental settings for MNP evaluation and offers a useful resource for further complementary investigations. Moreover, it may pave the way for research and development of accessible and affordable drug formulations and wound-dressings containing green-synthesized metal and metal oxide nanoparticles.

2. Microbial Origins and Antimicrobial Resistance of Bacterial and Fungal Infections

The human body is not sterile; it is colonized by many microorganisms that are part of the normal microflora and live as harmless commensals [27]. Bacteria living under normal conditions on the skin, nasopharynx and intestine play an important protective role, as they prevent the growth of pathogenic microorganisms in these places. The loss of the protective functions of this barrier for any reason is an important factor in the onset of infections. As the body’s condition changes, immune bacteria that have previously been weakened can become pathogenic and cause infections ranging from minor to life-threatening [28].
Pathogenic microorganisms that are present in almost every location and environment on earth (e.g., air, soil biomass, water, plants and animals) can be sources of infections [29,30]. Contemporary lifestyles (e.g., imported food, air-conditioned environments, travel abroad and visits to hospitals) also contribute to the spread of infections. In other words, infections result from ever-changing interactions between microorganisms, the human as their host, and the environment around them [31].
Antimicrobial agents (antibiotics and antifungals) are used to treat or prevent different types of infections caused by bacteria and fungi (as well as certain parasites). However, most antimicrobials currently face the development and spread of antimicrobial resistance [32]. The scientific literature, and recent observations, show that a growing number of bacterial infections, such as tuberculosis, salmonellosis, pneumonia and gonorrhea are becoming more difficult to treat as the antibiotics used for their treatment become ineffective [33]. These situations lead to increased treatment failures, hospitalization time, economic burden and deaths [34]. The vast majority of antimicrobial drugs currently used promote genetic instability and increased mutagenesis in bacteria and fungi [35]. The spread and accumulation of antibiotic resistance bacteria (ARB) and antibiotic resistance genes (ARGs) in the environment are one of the greatest threats to human health and represent the emergence of a difficult situation in the world [36,37]. As antibiotic resistance is occurring naturally, ARG transmission also appears to be correlated with human activities [38]. ARB and ARGs have been found in various locations, such as ground- and drinking-water [39,40,41], agricultural soil, vegetables, sewage sludge, and agricultural products, such as fish [42,43,44,45]. Therefore, tackling this scourge is becoming a global emergency with an urgent need to overcome the ability of Gram-positive/negative bacteria and fungi to resist antimicrobial drugs [46]. Figure 1 summarizes the antibiotic microbial resistance attained by different micro-organisms through various intrinsic or acquired mechanisms [47].
It should be noted that misuse of antimicrobial drugs in both human and animal health may also represent an important source of antimicrobial resistance. Antimicrobial agents are extensively used in animal husbandry and agriculture for prophylactic and therapeutic purposes [48]. In addition, antimicrobial drugs are used as growth promoters in animal feed, and to increase crop productivity. Such overuse of antimicrobial drugs outside of clinics has contributed tremendously to the rise in antimicrobial resistant strains and led to the growing need for new antimicrobial agents that can effectively treat and prevent infectious diseases worldwide. Therefore, implementing the One Health approach is proving to be a great necessity, even of the utmost urgency [49,50].
In nature, microorganisms rarely live in isolated colonies of the same species. They are characterized by “life” in biocenoses called biofilms [51]. Biofilms are communities of microbes attached to surfaces, which can be found in medical, industrial and natural settings. In fact, life in a biofilm probably represents the predominant mode of growth for microbes in most environments [52,53].
Mature biofilms have a number of distinct characteristics. They are surrounded by an extracellular matrix that contains polysaccharides, nucleic acids, lipids, proteins, water and ions [53,54]. This matrix provides structure and protection to the community of microorganisms. Microbes growing in a biofilm also have a characteristic architecture, generally comprised of macrocolonies (containing thousands of cells) surrounded by fluid-filled channels. Biofilm-grown microbes are notorious for their resistance to various antimicrobial agents, including clinically relevant antibiotics [55,56,57].
Biofilms are formed in five stages (Figure 2; [58]). The first stage (attachment) is related to the primary adhesion and adsorption of bacteria or fungi; this step is a reversible process (stage 1). In the second stage (so-called fixation or colonization), microorganisms secrete polymers that ensure strong and irreversible adhesion (stage 2). In the proliferation stage, the microorganisms attach to the epithelium, facilitate the attachment of new microbial cells, and connect the entire colony to the intercellular filler. With the accumulation of nutrients, microorganisms begin to multiply (stage 3). The following step is the stage of full maturation; the formed biofilms acquire their size and shape, and the intercellular filler protects them from external negative factors (e.g., oxygen, temperature, nutrient) (stage 4). Finally, in the last stage, bacterial spread (dispersion) occurs, during which individual bacterial cells periodically separate, creating new colonies (stage 5) [58,59,60,61]. All surfaces, including medical equipment, irrespective of their nature and the environment in which they are used, are susceptible to the colonization and infection of microorganisms and the formation of biofilms [56].
Overall, biofilms do not only represent a bacterial layer of mucus, but also a biological system composed of bacteria and/or fungi that are organized into a coordinated and functional biocenosis through intercellular chemical communication or quorum sensing [61]. Microorganisms in biofilms form metabolic consortia that are characterized by (i) food exchange between microbial cells (i.e., each microorganism becomes a food source for another), (ii) primitive exchange of genetic information, and (iii) resistance to phagocytosis and antibiotics. Therefore, biofilm-forming bacteria (or fungi) can be 100-fold more resistant to antimicrobial agents and disinfectants than planktonic bacteria [59]. Recurrent biofilm-induced infections are especially dangerous to people with health problems, as they can cause hospital infections. In USA, one out of thirty-one hospitalized patients have at least one healthcare-associated infection [62]. In Europe, approximately 5% of hospitalized patients suffer from hospital infections, i.e., 4.1 million people every year, including about 37 thousand deaths [63,64,65]. The prevalence of healthcare-associated infections can reach 20% in middle- and low-income countries. In addition, 4 to 56% of hospital-born babies die from health care-associated infections in the neonatal period in developing countries. This prevalence can reach 75% in south-east Asia and sub-Saharan Africa [63].

3. General Background on Antimicrobial and Anti-Biofilm Metallic Nanoparticles Green-Synthesized

3.1. Green Synthesis of MNPs

In general, there are two ways of synthesizing MNPs: the “bottom-up” and “top-down” approaches. Both methods of synthesis can be performed either in liquid (e.g., water, ethanol, hexane, toluene, ethylene glycol and others), gas, solid, or supercritical fluids, or in a vacuum [17,66,67].
In bottom-up synthesis, atoms, molecules or clusters are grouped to form nanostructured materials [3,17,68]. A wide variety of physical and chemical methods belong to this category. The physical methods include spinning, physical vapor deposition and molecular-beam epitaxy (Figure 3) [7,69]. The chemical methods comprise sol-gel processes, laser pyrolysis, chemical vapor deposition, aerosol-based processes, atomic or molecular condensation and precipitation, plasma-spraying synthesis and supercritical fluid technology [14,66,67,70]. The green synthesis of MNPs is also a class of bottom-up methods in which reduction and oxidation are the foremost chemical reactions [2,21]. Conversely, in the top-down approach, the bulk materials are broken down gradually (or collapsed little-by-little) to yield nanoparticles. Mechanical milling, sputtering and lithography belong to physical top-down methods, while chemical top-down methods include electro-explosion and chemical etching [14,17,66,68].
In general, chemical and physical methods have the reputation of being expensive and poorly accessible to all scientists across the world, especially in developing countries [2,3]. The chemical methods are also harmful to the environment due to the use of organic solvents and highly reactive toxic chemicals and reducing agents [71]. The latter can generate unwanted by-products that can, in turn, cause potential environmental and biological risks [39,40,67,72,73]. The physical methods are limited by low production rates and high energy consumption, as well as requiring sophisticated equipment and stringent conditions [14].
On the other hand, the synthesis pathways using plant extracts or microorganisms are environmentally benign, non-toxic, cost-effective, simple and easily up-scalable for industrial production [23,67,74,75,76,77,78]. Using renewable materials and mild solvent media, biogenic methods of synthesis of MNPs offer additional benefits, including one-pot synthesis, no need for catalyst use, clean, yet straightforward, reaction conditions, and no toxic waste generation [14,21]. Nevertheless, synthetic microbial methods include several disadvantages, such as microorganism cultivation and the optimization of different growth parameters (e.g., nutrient medium, salt concentration, temperature, pH, incubation time, inoculum quantity, etc.) [79]. A combination of different physical factors, such as light, ultrasonic waves, microwaves, heating, etc., is also required to produce MNPs by synthetic microbial methods [36,42,80,81]. As a result, microbe-mediated synthesis of MNPs requires expertise and is also time-consuming [17]. Moreover, the intrinsic ability of microorganisms to act as reducing and capping agents and contribute to the amalgamation of metal ions into MNPs is lower than that of plant metabolites [82].
MNPs synthesized by chemical (or physical) synthesis can exhibit antibacterial activity, as described previously [83,84,85,86]. However, many researchers have reported that green-produced MNPs showed higher activity than those produced chemically [4,87]. This is in most cases the result of a kind of synergy between the intrinsic activity of the metals and of the plant metabolites themselves.

3.1.1. Plant-Mediated Synthesis of Silver, Gold and Zinc Oxide Nanoparticles

The green synthesis of silver nanoparticles (AgNPs) is typically achieved by combining plant extracts and silver halides, such as silver bromide (AgBr), silver chloride (AgCl), and silver iodide (AgI) [88,89].
During the biosynthesis of green ZnO nanoparticles, zinc nitrate hexahydrate (Zn(NO3)2·6H2O) or zinc acetate (Zn(OOCCH3)2) are typically used as precursors while different plant extracts act as bio-reductants [90,91].
To synthesize gold nanoparticles (AuNPs) using green sources, plant extracts are simply mixed with solutions of gold salts, such as auric chloride (AuCl3) and chloroauric acid (HAuCl4) [92,93].

3.1.2. Synthesis of Platinum and Palladium Nanoparticles Using Plant Extracts

Bio-fabricated PtNPs can be obtained using plant extracts as eco-friendly reducing reagents, along with sodium tetrachloroplatinate (II) (Na2PtCl4) and chloroplatinic acid hexahydrate (H2PtCl6·6H2O) as precursor salts [90,91]. In the process of the bio-fabrication of PdNPs, plant extracts are mixed with palladium chloride (PdCl2) or palladium acetate (Pd(OAc)2). Depending on their intrinsic properties, the phytocomponents from the plant extracts reduce the Pd ions into atoms and then produce metallic Pd nanoparticles [90,91,94].

3.1.3. Biosynthesis of Other Green Metallic Nanoparticles

Nanosized CuO particles can be obtained by reducing cupric salts (e.g., cupric chloride (CuCl2), cupric sulfate (CuSO4) and cupric nitrate (Cu(NO3)2) using phytoconstituents from plant extracts [90,91].
The precursor salts for the green synthesis of Fe2O3 (hematite) and Fe3O4 (magnetite) nanoparticles include ferric chloride hexahydrate (FeCl3·6H2O), ferric nitrate nonahydrate (Fe(NO3)3·9H2O), ferric acetylacetonate (Fe(C5H8O2)3), and ferrous sulfate (FeSO4) [95,96]. Nickel nitrate hexahydrate (Ni(NO3)2·6H2O) and magnesium nitrate hexahydrate (Mg(NO3)2·6H2O) can be used as precursors for the synthesis of NiO and MgO nanoparticles by green process, respectively [90,91,97]. Additionally, nickel chloride (NiCl2) and indium nitrate (In(NO3)3·H2O) can be reduced to form nickel oxide nanoparticles and indium oxide (In2O3), respectively, by plant extracts [98,99]. Lead nanoparticles can be synthesized by green methods using lead oxalate (Pb(COOH)2) or lead nitrate (Pb(NO3)2) as metal precursors [100,101].
Concerning TiO2 NPs, their green synthesis can be successfully achieved by mixing plant extracts as reducing/capping materials with metatitanic acid (TiO(OH)2) or titanium tetraisopropoxide (Ti[OCH(CH3)2]4) as precursors [90,91]. Additionally, numerous bimetallic and trimetallic nanoparticles are currently synthesized by green methods. This is the case for Ag/Pt NPs, Pd/Fe3O4 NPs, Fe3O4/MgO NPs, ZnO/CoO NPs, ZnO/MnO NPs, Au/Pt/Ag NPs and Cu/Cr/Ni NPs obtained by mixture of the corresponding precursors and plant extracts [102,103,104,105].
Over the last decade, other antimicrobial hybrid derivatives, such as nanocellulose/metal and nanocellulose/oxide metal, have attracted the attention of several researchers and industries due to their environmentally friendly status and low cost compared to synthetic polymer- (e.g., polylactic-co-glycolic acid (PLGA), polyvinylalcohol (PVA), poly(ethylene glycol) methyl ether-block-poly(lactide-co-glycolide) (mPEG-PLGA), chitosan, gelatin) encapsulated MNPs [106,107,108,109,110,111,112,113]. Cellulose is a ubiquitous natural polymer which can be produced from a broad range of biomass. It is the key component in natural fibers and an excellent candidate for synthesis of bio-based materials due to its various physicochemical properties, including biodegradability, biocompatibility, environmental friendliness, renewability, affordability and colloidal stability [114,115].
Nanocellulose is defined as cellulose material that has been broken down into particles of less than 100 nm [116]. It is essentially produced through chemical or mechanical action on the plant cellulose or bacterial cellulose. Nanocellulose is classified into cellulose nanocrystals, cellulose nanofibers and bacterial nanocellulose [108,114,115]. Apart from plant materials (e.g., wood, oil palm biomass, bamboo, rice husk, coconut husk), cellulose nanocrystals and cellulose nanofibrils can also be extracted from tunicate, a type of marine invertebrate. In contrast, bacterial nanocellulose is a growing nanoproduct that can be obtained through several kinds of mutual fermentation bacteria, such as Gluconacetobacter xylinus [115,117].
Nanocellulose does not inherently elicit any antimicrobial activity. However, by functionalization with green metal/metal oxide nanoparticles (e.g., Au, Ag, Cu, CuO, MgO, ZnO, Fe3O4 and TiO2), it is possible to endow nanocellulose composites with antimicrobial properties (Figure 4) [118,119]. These biosynthesized metal-based antimicrobial agents may also exhibit good efficacy and resilience towards microbial resistance [114,117]. In this context, Mocanu et al. [120] recently demonstrated the impact of functionalization of bacterial nanocellulose with ZnO NPs, green-synthesized using propolis extract, on antimicrobial activity against Bacillus subtilis and Candida albicans, in comparison to ZnO NPs and the extract alone. Additionally, Razavi et al. [121] prepared antimicrobial bacterial nanocellulose film decorated with silver, copper and palladium MNPs biosynthesized using mulberry fruit (Morus alba L.) extract. Due to their significant activity against Escherichia coli and Listeria monocytogenes, the authors suggested that the fabricated nanocomposite film might be useful as a novel biomedical treatment to combat pathogens on food commodities.
Green-synthesized plant-based MNPs can be characterized using a wide range of physicochemical tools, such as UV-visible absorption spectroscopy (for metal surface plasmon resonance), zeta potential (for surface-charge determination), transmission electron microscopy (for size and shape analysis), X-ray diffraction (for crystallinity assessment), energy-dispersive X-ray spectroscopy (EDX) (for the determination of elemental composition on the surface), Fourier transform infrared spectroscopy (FTIR) (for the detection of organic functional groups of phytoconstituents), thermogravimetric analysis (for thermal stability), and Raman spectroscopy (for surface-capping tracking) [9,68,122,123,124].

3.2. Antimicrobial Activities of Green-Synthesized MNPs

Plant-mediated synthesis imparts several advantages to MNP technology for the development of alternative products against infectious diseases. Indeed, most of the green MNPs from plant-derived materials are highly effective and non-specific antimicrobial agents, showing remarkable activity against the growth of a broad spectrum of bacterial and fungal species, in both planktonic and biofilm forms, including nosocomial and multi-drug-resistant strains (Tables 1–8 and S1–S7) [11,13,14,16,125].
Given their nano-particulate features, biosynthesized MNPs provide a large surface area that increases their interactions with microorganisms, thereby resulting in strong antimicrobial activity. The antimicrobial properties of green MNPs also depend on their particle shape. Moreover, the variety of green reagents (plant extracts or phytoconstituents), metal precursors and synthetic conditions (e.g., physicochemical parameters) used have a significant effect on the antimicrobial activity of MNPs [12,13,126,127].
Biofabricated MNPs may act in different ways, including: (i) destruction of the microbial cell wall, (ii) damage to efflux pump mechanisms, (iii) inhibition of deoxyribonucleic acid (DNA) replication and enzyme functions, (iv) ribosome disintegration, (v) generation of reactive oxygen species (ROS) and induction of oxidative stress; (vi) triggering of both innate and adaptive host immune responses, and (vii) inhibition of biofilm formation (Figure 5) [47,128,129]. The mechanisms of action of MNPs depend on their origin as well as their biological, physical and chemical properties [130].
The antibacterial, antifungal and antibiofilm activities of the most biosynthesized MNPs are briefly summarized in the following paragraphs. In addition, the unique physicochemical characteristics of these MNPs are briefly described since their antimicrobial activities are also attributed to their size, high surface area, zeta potential and shape. For more details, the reader can refer to more specific reviews [10,13,14,17,23,24,25,26,128,131,132,133,134].

3.2.1. Silver Nanoparticles

Elemental silver has been widely used as an antimicrobial agent since ancient times [89]. To improve their antibacterial activity and reduce their toxicity, silver ions can be transformed into metallic silver nanoparticles through biological and biomimetic methods of synthesis [9].
Details of the antimicrobial and anti-biofouling activities of these bioactive nanoparticles are given in Table 1 and Table 2. It is notable that green AgNPs have demonstrated the ability to reduce microbial infections in skin and burn wounds and to prevent bacterial colonization on the surface of various medical devices, such as catheters and prostheses. Acting as capping agents, different multi-functional phytochemicals contribute efficiently to these antimicrobial activities [74,78,82,128]. Moreover, AgNPs can operate synergistically with standard antibiotics, such as gentamycin and streptomycin [129,135,136,137]. Hence, these combinations can be used effectively against antibiotic-resistant pathogens. Additionally, the antifungal activity of AgNPs has been extensively studied and demonstrated in the literature [138,139].
In the context of the fight against antibiotic resistance, green-synthesized AgNPs may be used as vehicles to transport oligonucleotide-based antimicrobials [140,141,142]. AgNPs can also be incorporated in hydrogel beds, cyclodextrins, and lipid-based formulations (e.g., liposomes), creating the potential for controlled release and targeted delivery [143,144,145]. Interestingly, AgNPs are found in a number of commercially available products, including medical devices for healthcare settings, dietary and health supplements, potential additives to animal feed, food packing materials and kitchen appliances [146,147,148].
Table 1. Green silver nanoparticles exhibiting antimicrobial activity.
Table 1. Green silver nanoparticles exhibiting antimicrobial activity.
Plant Type Part UsedOperative Conditions for SynthesisNP Characteristics
(Shape and Size)
Microbiological Analyzes (Operative Conditions)Refs.
Methods,
Incubation Temperature, Incubation Time,
pH,
Inoculum Density,
Positive Control
Tested Bacteria and FungiMIC, ZOI or PI *
Lysiloma acapulcensisRoots Silver nitrate 1 mM/plant extract 2% (1:1 v/v)
Room temperature
2 min
pH NM
Spherical
1.2–62 nm
Diffusion
37 °C
24 h
pH NM
Inoculum NM
No control
E. coli ATCC 25922
P. aeruginosa ATCC 27853
S. aureus ATCC 49476
18
15
16 mm
[87]
Perilla frutescensLeavesSilver nitrate 2 mM/plant extract 10% (9:1 v/v)
50 °C
2 h
pH NM
Spherical, rhombic, triangle, and rod
25.7 nm
Diffusion
37 °C
24 h
pH NM
Inoculum NM
Streptomycin **
E. coli
B. substilis
S. aureus
14
12
10 mm
[149]
Ocimum canumLeaves Silver nitrate 1 mM/plant extract 10% (9:1 v/v)
80 °C
15 min
pH NM
Spherical
6.1–32.1 nm
Diffusion
28 °C
24 h
pH NM
Inoculum NM
No control
E. coli25 mm[150]
Piper longumCatkinSilver nitrate 1 mM/plant extract 10% (5:1 v/v)
Room temperature
2 h
pH NM
Spherical
10–42 nm
Diffusion
37 °C
24 h
pH NM
Inoculum NM
No control
B. cereus MTCC 1272
E. coli MTCC 1687
K. pneumoniae MTCC 530
Proteus mirabilis MTCC 425
P. aeruginosa MTCC 1688
S. typhi MTCC 531
S. aureus MTCC 96
12
13
14
15
11
12
11 mm
[139]
Diospyros malabaricaFruitsSilver nitrate 1 mM/plant extract 20% (9:1 v/v)
25 °C
1 h
pH NM
Spherical
17.4 nm
Diffusion
37 °C
24 h
pH NM
Inoculum NM
Streptomycin 10 µg
Tetracycline 30 µg
Chloramphenicol 30 µg
E. coli
S. aureus
13
12 mm
[151]
Pyrenacantha grandifloraTuber Silver nitrate 1 mM/plant extract 0.1% (1:1 v/v)
Room temperature
Incubation time NM
pH NM
Spherical
3–25 nm
Dilution
37 °C
24 h
pH NM
Inoculum NM
No control
E. coli
K. pneumoniae
S. aureus
0.8
0.8
0.8 µg/mL
[152]
Carissa carandasLeaves Silver nitrate 1 mM/plant extract 10% (9:1 v/v)
60 °C
1 h
pH 7.2
Spherical
30 nm
Diffusion
37 °C
24 h
pH NM
1 × 108 CFU/mL
No control
S. typhi
Enterococcus faecalis
Shigella flexneri
Citrobacter spp.
Gonococci spp.
12
16
24
14
21 mm
[153]
Solanum tricobatumLeaves Silver nitrate 1 mM/plant extract 1.5% (1:10 v/v)
37 °C
24–48 h
pH NM
Irregular
26.5 nm
Diffusion
35 °C
18 h
pH NM
Inoculum NM
No control
S. aureus
P. aeruginosa
E. coli
K. pneumoniae
30
12
14
18 mm
[154]
Melissa officinalisLeaves Silver nitrate 5 mM/plant extract 25% (1:2 v/v)
25 °C
1 h
pH NM
Spherical
12 nm
Diffusion
36 °C
24 h
pH NM
Inoculum NM
No control
E. coli
S. aureus
12
13 mm
[155]
Piper betleLeaves Silver nitrate 1 mM/plant extract 10% (10:1 v/v)
Room temperature
24 h
pH NM
Spherical
Size NM
Diffusion
30 °C
24 h
pH NM
Inoculum NM
No control
B. subtilis
Klebsiella planticola
14
13 mm
[156]
Rosa caninaFruits Silver nitrate 1 mM/plant extract% NM (5:1 v/v)
85 °C
Incubation time NM
pH NM
Spherical
13–21 nm
Dilution
37 °C
24 h
pH NM
2.4 × 107 CFU/mL
No control
Bacillus cereus
E. coli ATCC 10536
S. aureus ATCC 6538
P. aeruginosa ATCC 9027
Enterococcus hirae ATCC 10541
Legionella pneumophila ATCC 33152
32
256
256
128
256
16 µg/mL
[157]
Dilution
25 °C
48 h
pH NM
2.4 × 107 CFU/mL
No control
C. albicans128 μg/mL
Fagonia indicaCallus Silver nitrate 4 mM/plant extract 2% (1:1 v/v)
20 °C
3 h
pH NM
Cubic
Size NM
Diffusion
37 °C
24 h
pH NM
1 × 108 CFU/mL
Ciprofloxacin **
E. coli ATCC 23716
S. typhi ATCC 35664
Shigella sonnei ATCC 29930
Citrobacteramalonaticus ATCC 25405
12
13
13
12 mm
[158]
Barleria longifloraLeaves Silver nitrate 1 mM/plant extract 20% (9:1 v/v)
Temperature NM
Incubation time NM
pH NM
Spherical
2.4 ± 0.5 nm
Diffusion
37 °C
24 h
pH NM
Inoculum NM
Chloramphenicol **
Enterococcus spp.
Streptococcus spp.
Bacillus megaterium
Pseudomonas putida
P. aeruginosa
S. aureus
18
16
15
17
18
14.5 mm
[159]
Ipomoea batatasOuter peels Silver nitrate 1 mM/plant extract 40% (10:1 v/v)
55 °C
24 h
pH NM
Shape NM
Size NM
Diffusion
Temperature NM
Incubation time NM
pH NM
Inoculum NM
No control
Enterococcus feacium DB 01
S. enteritica KCCM 11806
Listeria monocytogenes ATCC 19111
B. cereus KCTC 3624
S. aureus ATCC 13565
10
11
11
11
0 mm
[160]
Oedera genistifoliaLeaves Silver nitrate 0.1 mM/plant extract 20% (9:1 v/v)
Room temperature
1 h
pH NM
Spherical
10–60 nm
Dilution
37 °C
24 h
pH NM
1 × 108 CFU/mL
Ciprofloxacin **
Enterobacter cloacae ATCC 13047
Listeria ivanovic ATCC 19119
Streptococcus uberis ATCC 700407
S. aureus ATCC 29213
Vibrio spp.
Mycobacterium smergatis ATCC 19420
0.5
1
0.5
0.5
0.25
0.25 mg/mL
[161]
Derris trifoliateSeeds Silver nitrate 1 mM/plant extract 20% (20:1 v/v)
Temperature NM
Incubation time NM
pH NM
Spherical
16 ± 5 nm
Diffusion
NM
24 h
pH NM
Inoculum NM
No control
E. coli MTCC 723
K. pneumoniae MTCC 109
P. aeruginosa MTCC 424
S. aureus MTCC 96
19.5
20
36
0 mm
[162]
Ficus krishnaeStem barkSilver nitrate 1 mM/plant extract 5% (1:1 v/v)
37 °C
24 h
pH NM
Spherical
160–260 nm
Diffusion
37 °C
24 h
pH NM
Inoculum NM
No control
E. coli MTCC 45
S. typhimurium MTCC 98
S. aureus ATCC 29122
18
13
12 mm
[163]
Psidium guajavaLeaves Silver nitrate 10 mM/plant extract 2% (10:1 v/v)
70 °C
1 h
pH NM
Spherical
96 ± 4 nm
Diffusion
37 ± 2 °C
48 h
pH NM
1–2 × 105 CFU/mL
No control
C. albicans ATCC 1023114.2 mm[164]
Citrus limonLeaves Silver nitrate 2 mM/plant extract 20% (9:1 v/v)
25 °C
1 h
pH NM
Spherical
8–15 nm
Diffusion
Temperature NM
18–24 h
pH NM
Inoculum size NM
No control
Fusarium oxysporium
Alternaria brassicicola
15
10 mm
[165]
Chaenomeles sinensisFruitsSilver nitrate 1 mM/plant extract 10% (ratio NM)
80 °C
65 min
pH NM
Spherical
5–20 nm
Diffusion
37 °C
24 h
pH NM
Inoculum NM
Neomycin **
E. coli
S. aureus
14
10 mm
[166]
Persicaria odorataLeaves Silver nitrate 1 mM/plant extract 2% (10:1 v/v)
25 °C
24 h
pH NM
Spherical
11 ± 3 nm
Dilution
37 °C
18 h
pH NM
1 × 106 CFU/mL
No control
S. epidermidis ATCC 12228
MRSA ATCC 43300
3-LR ***
6-LR
[167]
Citrus reticulataPeels Silver nitrate 1 mM/plant extract 21.8% (1:1 v/v)
Temperature NM
Incubation time NM
pH NM
Spherical
45 nm
Dilution
37 °C
48 h
pH NM
1 × 105 CFU/mL
No control
Desulfovibrio spp. 3-LR[168]
Cuccuma longaRhizome Silver nitrate 1 mM/plant extract 6.8% (4:1 v/v)
Temperature NM
24 h
pH NM
Spherical
18 nm
Dilution
37 °C
24 h
pH NM
1 × 108–109 CFU/mL
No control
E. coli
Listeria monocytogenes
4-LR
4-LR
[169]
* MIC = minimal inhibition concentration; ZOI = zone of inhibition; PI = percentage of inhibition. ** The quantity or concentration is not mentioned. *** LR = log reduction. A 1-log, 2-log, 3-log, 4-log, 5-log and 6-log reduction in living microorganisms or CFUs by MNPs corresponds to their inactivation or inhibition of 90, 99, 99.9, 99.99, 99.999 and 99.9999%, respectively. NM = not mentioned.
Table 2. Green silver nanoparticles with antibiofilm activity.
Table 2. Green silver nanoparticles with antibiofilm activity.
Plant Type Part UsedOperative Conditions for SynthesisNP Characteristics
(Shape and Size)
Microbiological Analyzes (Operative Conditions)Refs.
Methods,
Incubation Temperature, Incubation Time,
pH,
Inoculum Density,
Positive Control
Tested Bacteria and FungiMIC, ZOI or PI *
Punica granatumPeel Silver nitrate */plant extract 5% (ratioNM)
Temperature NM
Incubation time NM
pH NM
Spherical
32–85 nm
Microtiter plate
37 °C
24 h
pH NM
1.5 × 108 CFU/mL
No control
P. aeruginosa ATCC 1066289.6%[170]
Artemisia scoporiaNMSilver nitrate 1000 mM/plant extract 10% (20:1 v/v)
Temperature NM
24 h
pH NM
Spherical
10–80 nm
Microtiter plate
37 °C
24 h
pH NM
1.5 × 108 CFU/mL
No control
S. aureus6.25 µg/mL[171]
Prosopis julifloraLeaves Silver nitrate 1 mM/plant extract 10% (9.5:0.5 v/v)
25 °C
40 min
pH NM
Spherical
10–20 nm
Congo red agar plate
37 °C
24–48 h
pH NM
Inoculum size NM
No control
B. substilis
P. aeruginosa
NM
NM
[172]
Malva sylvestrisLeaves Silver nitrate 1 mM/plant extract 20% (10:0.4 v/v)
Temperature NM
Incubation time NM
pH NM
Spherical
10–50 nm
Dilution
37 °C
40 h
pH NM
1 × 108 CFU/mL
No control
P. aeruginosa 48
P. aeruginosa B 52
62.5
62.5 μg/mL
[173]
Cannabis sativaStem Silver nitrate 1 mM/plant extract 10% (1:1 v/v)
Temperature NM
Incubation time NM
pH NM
Spherical
20–40 nm
Microtriter plate
37 °C
24 h
pH NM
2–5 × 106 CFU/mL
No control
P. aeruginosa PA01
E. coli UTI89
S. epidermidis
6.25
12.5
50 µg/mL
[174]
Rhodiola roseaRhizome Silver nitrate 5 mM/plant extract 10% (2:8 v/v)
90 °C
10 min
pH NM
Spherical
15–30 nm
Dilution
37 °C
24 h
pH NM
1–2 × 106 CFU/mLNo control
P. aeruginosa
E. coli
50
100 µg/mL
[131]
Flacourtia indicaLeaves Silver nitrate 1 mM/plant extract 10% (1:1 v/v)
70 °C
Incubation time NM
pH NM
Spherical
45.9–64.9 nm
Congo red
37 °C
24 h
pH NM
Inoculum size NM
No control
Acinetobacter baumannii SAB5
P. aeruginosa ETPS11
K. pneumoniae SKP7
P. mirabilis PPM8
E. coli ETEC12
80
80
80
80
80 μg/mL
[116]
Dodonaea viscosaLeaves Silver nitrate 1 mM/plant extract 10% (ratio NM)
Temperature NM
18 h
pH NM
Spherical
40–55 nm
Crystal violet assay
37 °C
24 h
pH NM
1 × 107 CFU/mL
No control
C. albicans
Candida tropicalis
Candida glabrata
80
80
80%
[175]
Piper betleLeaves Silver nitrate 1 mM/plant extract 5% (19:1 v/v)
37 °C
6 h
pH NM
Spherical
156.4 nm
Microtiter plate
18 °C
Temperature NM
pH NM
Inoculum size NM
No control
Serratia marcescens
Proteus mirabilis
71
69%
[176]
Pedalium murexSeed Silver nitrate 1 mM/plant extract 5% (49:1 v/v)
Temperature NM
20 min
pH NM
Hexagonal
20–30 nm
Microtiter plate
37 °C
24 h
pH NM
Inoculum size NM
No control
Enterococcus faecalis
S. aureus
Shigella sonnei
P. aeruginosa
64
62
50
54%
[177]
Solanum nigrumFruit Silver nitrate 1 mM/plant extract 10% (50:1 v/v)
Temperature NM10 min
pH NM
Spherical
10–20 nm
Microtiter plate
37 °C
24 h
pH 7.2
1 × 108 CFU/mL
No control
Bacillus pumulis
Enterococcus faecalis
Proteus vulgaris
Vibrio parahaemolyticus
92
84
74
62%
[178]
Eucalyptus globulusLeaves Silver nitrate 1 mM/plant extract 20% (4:1 v/v)
60 °C
30 min
pH 8
Spherical
18 nm
Microtitre plate
37 °C
24 h
pH NM
1 × 107 CFU/mL
No control
P. aeruginosa
S. aureus
95
90%
[179]
Allophylus cobbeLeaves Silver nitrate 5 mM/plant extract 20% (10:1 v/v)
60 °C
6 h
pH 8
Spherical
2–10 nm
Microtitre plate
37 °C
4 h
pH NM
1 × 106 CFU/mL
No control
P. aeruginosa
Shigella flexneri
S. aureus
Streptococcus pneumoniae
90
90
60
75%
[180]
Cinnamomum aromaticumNMNM
NM
NM
NM
Spherical
15–50 nm
Dilution
Temperature NM
24 h
pH NM
1 × 106 CFU/mL
No control
Streptococcus agalactiae ATCC 27956 4 μg/mL[181]
Prunica granatumLeaves Silver nitrate 1.5 mM/plant extract 5% (1:1 v/v)
31.4 °C
20 min
pH NM
Spherical
37.5 nm
Congo red agar
37 °C
24 h
pH NM
Inoculum size NM
No control
P. aeruginosa
S. aureus
45
28%
[182]
Terminalia catappaLeaves Silver nitrate 10 mM/plant extract 5% (1:1 v/v)
30 °C
20 min
pH NM
Spherical
3.5–10.1 nm
Microtiter plate
37 °C
24 h
pH NM
1 × 107 CFU/mL
No control
P. aeruginosa
S. aureus
73.7
69.6%
[183]
Microtiter plate
37 °C
24 h
pH NM
5 × 106 CFU/mL
No control
C. albicans63.6%
* MIC = minimal inhibition concentration; ZOI = zone of inhibition; PI = percentage of inhibition. The quantity or concentration is not mentioned. NM = not mentioned.

3.2.2. Gold Nanoparticles

Due to their outstanding antimicrobial and antibiofilm properties, biosynthesized AuNPs are considered one of the most attractive MNPs. Indeed, as shown in Table 3, green AuNPs significantly inhibit the growth of medically important pathogenic bacteria and fungi.
The antimicrobial and antibiofilm properties of AuNPs extend their application to the cosmetic and agricultural fields [184,185]. The applications of antibacterial AuNPs are increasing day-by-day in environmental scenarios, as well as in the impregnation of filters [186,187]. Additionally, AuNPs can bind covalently and non-covalently with secondary coating molecules (e.g., PEG), or other materials, through surface modification. This is to minimize non-specific targeting on other tissues and for the purpose of imaging.
It is of note that previous studies have demonstrated that AuNPs obtained by chemical synthesis are generally not bactericidal, or only weakly so at high concentrations [188,189,190,191]. The reason why these AuNPs may appear to be bactericidal may, inter alia, be due to the bactericidal activity of co-existing organic complexes of Au (I and III) ions that are in the surrounding environment of the AuNPs, and which are not completely removed during centrifugation. The bactericidal properties of AuNPs can be tailored during green synthesis by considering the exposure time required for reduction of Au (III), as well as the speed and number of rounds of centrifugation needed to remove gold ions in excess. This may avoid the observed discrepancies in the antibacterial effects of green AuNPs.
Table 3. Green gold nanoparticles exhibiting antibacterial and antifungal activities.
Table 3. Green gold nanoparticles exhibiting antibacterial and antifungal activities.
Plant TypePart UsedOperative Conditions for SynthesisNP Characteristics
(Shape and Size)
Microbiological Analyzes (Operative Conditions)Refs.
Methods,
Incubation Temperature, Incubation Time,
pH,
Inoculum Density,
Positive Control
Tested Bacteria and FungiMIC, DOI or PI *
Piper betleLeavesGold (III) chloride 1 mM/plant extract 1% (10:1 v/v)
30 °C
24 h
pH NM
Spherical
Size NM
Diffusion
30 °C
24 h
pH NM
Inoculum size NM
No control
B. subtilis
Klebsiella planticola
13
14 mm
[156]
Musa acuminataFlowersChloroauric acid 1 mM/plant extract 25% (9:1 v/v)
Room temperature
30 min
pH NM
Spherical
10–16 nm
Diffusion
Temperature NM
24 h
pH NMInoculum size NM
Streptomycin 10 μg
S. aureus
Enterococcus faecalis
E. coli
S. typhi
P. aeruginosa
Proteus mirabilis
0
11
7
9
9
8 mm
[192]
Zingiber officinaleRootsChloroauric acid 1 mM/plant extract 1% (2:1 v/v)
50 °C
24 h
pH NM
Hexagonal
10–20 nm
Diffusion
37 °C
24 h
pH NM
1.5 × 108 CFU/mL
No control
S. aureus
E. coli
K. pneumoniae
14
11
17 mm
[193]
Areca catechuNutChloroauric acid 1 mM/plant extract 5% (10:1 v/v)
80 °C
1 h
pH NM
Spherical
14 nm
Diffusion
37 °C
24 h
pH NM
Inoculum size NM
No control
S. aureus
E. coli
12
14 mm
[194]
Momordica cochinchinensisRhizomeChloroauric acid 0.01 mM/plant extract 10% (2:1 v/v)
Room temperature
24 h
pH NM
Spherical
16 ± 2 nm
Diffusion
37 ± 1 °C
24 h
pH NM
1 × 108 CFU/mL
Streptomycin 100 µg/mL
S. aureus
E. coli
B. subtilis
P. aeruginosa
19
22
19
24 mm
[195]
Plumeria albaFlowersChloroauric acid 1 mM/plant extract 5% (5:2 v/v)
Room temperature
4 h
pH NM
Spherical
15 nm
Diffusion
37 °C
24 h
pH NM
Inoculum size NM
No control
E. coli16 mm [196]
Coleus forskohliiRootChloroauric acid 0.1 mM/plant extract 8% (1:1 v/v)
Room temperature
2 h
pH 13
Spherical
5 nm
Diffusion
37 °C
24–48 h
pH NM
Inoculum size NM
Tetracyclin 30 μg/mL
Proteus vulgaris
Micrococcus luteus
18
14 mm
[197]
Euphorbia wallichiiLeavesChloroauric acid 1 mM/plant extract 5% (1:10 v/v)
30 °C
24 h
pH NM
Hexagonal
8 nm
Dilution
34 °C
24 h
pH NM
Inoculum size NM
Streptomycin **
E. coli
S. aureus
Bacillus pumilus
P. aeruginosa
K. pneumonia
21
15
21
17
17 mm
[198]
Coleus aromaticusLeavesChloroauric acid 1 mM/plant extract 30% (1:1 v/v)
100 °C
30 min
pH NM
Triangular
20 nm
Diffusion
37 °C
24 h
pH NM
1 × 108 CFU/mL
No control
S. epidermidis
E. coli
22
27 mm
[199]
Origanum vulgareLeavesChloroauric acid 1 mM/plant extract 10% (10:1 v/v)
85 °C
1 min
pH NM
Spherical
52 nm
Diffusion
37 °C
24 h
pH NM
1 × 108 CFU/mL
No control
Salmonella enteritidis ATCC 13076
E. coli ATCC 25922
Listeria monocytogenes ATCC 13932
S. aureus ATCC 6538
C. albicans ATCC 10231
10
8
10
21
28 mm
[200]
Perilla frutescensLeavesChloroauric acid 1 mM/plant extract 10% (1:10 v/v)
30 °C
10 min
pH NM
Triangular
50 nm
Diffusion
37 °C
24 h
pH NM
Inoculum size NM
No control
E. coli
B. subtilis
S. aureus
14
10
10 mm
[201]
Parkia roxburghiiLeavesChloroauric acid 1 mM/plant extract 1% (1:1 v/v)
30 °C
12 h
pH NM
Quasi-spherical
5–25 nm
Diffusion
37 °C
24 h
pH NM
Inoculum size NM
No control
S. aureus
E. coli
NM
NM
[202]
Cibotium barometzRootsChloroauric acid 1 mM/plant extract 5% (20:1 v/v)
80 °C
Incubation time NM
pH NM
Spherical
23 nm
Diffusion
37 °C
24 h
pH NM
Inoculum size NM
Neomycin 30 µg
E. coli ATCC 10798
S. aureus ATCC 6538
Salmonella enterica ATCC 13076
P. aeruginosa ATCC 10145
16
17
13
12 mm
[203]
Mangifera indicaSeedChloroauric acid 1 mM/plant extract 10% (6:4 v/v)
80 °C
1 h
pH NM
Spherical
50 nm
Diffusion
37 °C
24–48 h
pH NM
1 × 108 CFU/mL
No control
E. coli
S. aureus
25
25 μg/mL
[204]
Rhodiola roseaRhizome Chloroauric acid 1 mM/plant extract 10% (10:1 v/v)
80 °C
30 min
pH NM
Spherical
13–17 nm
Diffusion
37 °C
24 h
pH NM
Inoculum size NM
No control
S. aureus ATCC 29213
E. coli ATCC 25922
15
12 mm
[131]
Amomum villosumFruit Chloroauric acid 1 mM/plant extract 10% (10:1 v/v)
100 °C
60 min
pH NM
Spherical
5–10 nm
Diffusion
37 °C
24 h
pH NM
Inoculum size NM
Neomycin **
S. aureus
E. coli
15
15 mm
[205]
Syzygium cuminiSeedChloroauric acid 1 mM/plant extract 2% (1:2 v/v)
90 °C
1 h
pH NM
Spherical
13–30 nm
Diffusion
32 °C
24 h
pH NM1 × 104 CFU/mL
Gentamicin **
E. coli
B. subtilis
S. aureus
30
33
29 mm
[206]
Hovenia dulcisFruit Chloroauric acid 1 mM/plant extract 2.5% (5:1 v/v)
80 °C
10 min
pH NM
Spherical and hexagonal
20 nm
Diffusion
37 °C
24 h
pH NM
Inoculum size NM
Ciprofloxacin 100 µg
E. coli
S. aureus
18
19 mm
[207]
Inonotus obliquusLeavesChloroauric acid 1 mM/plant extract 5% (19:1 v/v)
Room temperature
30 min
pH NM
Spherical
23 nm
Diffusion
37 °C
24 h
pH NM
Inoculum size NM
No control
B. subtilis
S. aureus
E. coli
12
16
14 mm
[208]
Gloriosa superbaLeavesChloroauric acid 1 mM/plant extract 10% (20:1 v/v)
50–60 °C
10 min
pH 5.2
Triangular and spherical
20 nm
Diffusion
37 °C
24 h
pH NM
1.5 × 108 CFU/mL
Ampicillin 30 µg
B. subtilis ATCC 6633
E. coli MTCC 40
6.3
5.3 mm
[209]
* MIC = minimal inhibition concentration; ZOI = zone of inhibition; PI = percentage of inhibition. ** The quantity or concentration is not mentioned; NM = not mentioned.

3.2.3. Zinc Oxide Nanoparticles

Zinc is an essential trace element known to have antimicrobial properties against a broad spectrum of microorganisms [210]. The metal zinc is widely present in nature as zinc oxide (ZnO), which is largely used as an antibacterial, antifungal and antibiofilm agent in drug and cosmetic products (e.g., antiseptic powders, shampoos and ointments) [210,211]. To reduce the toxicity of ZnO produced synthetically, a green and eco-friendly synthetic route has been developed to prepare biocompatible ZnO nanoparticles. Table 4 summarizes some green sources alongside the physicochemical characteristics (e.g., size, shape), and the antimicrobial activity of the developed ZnO nanoparticles.

3.2.4. Platinum Nanoparticles

Platinum is an inert, biocompatible, nonporous and hypoallergenic metal that is used as an antimicrobial agent for catheters, hip and knee replacement implants, surgical and cardiac stents, implantable cardiovascular defibrillators, etc. [221,222,223]. This metallic chemical element does not corrode into harmful or potentially allergenic substances when kept with soft tissue or bone. Additionally, platinum is not prone to bacterial adhesion and infection since it forms a uniformly smooth surface when plated onto another material, thereby significantly benefiting biomedical applications [221,222,223]. According to the literature, green-synthesized platinum nanoparticles (PtNPs) are found to improve the antibacterial, antifungal and antibiofilm activity of Pt ions (see Table 5).

3.2.5. Palladium Nanoparticles

Palladium (Pd) is a noble metal widely used as a platinum substitute due to its similar attributes and functionalities [203]. Indeed, Pd’s inherent biocompatibility, hypoallergenicity, chemical inertness, non-porosity and antimicrobial potential make it valuable for the manufacture of medical devices, thereby preventing corrosion and disease infections. Biogenic PdNPs also show outstanding antimicrobial properties (see Table 6); for this reason, they are widely applied in dental and surgical implants as well as prostheses [221].

3.2.6. Other Green Metallic Nanoparticles

Green CuO, Fe2O3, Fe3O4, NiO, MgO, MnO, Mn5O8 and TiO2 nanoparticles are also found to be effective against bacteria and fungi (see Table 7 and Table 8) [25,250]. The inorganic nanoparticles conjugated with nanocellulose-based antimicrobial materials may have huge potential applications in the area of drug delivery, (bio)pharmaceuticals, (dermo)cosmetology, wound dressing, tissue engineering, food packaging, water treatment, air filtration, coating, mask cartridges, etc. [107,115,119]. Nevertheless, microbiological studies remain scarce for this type of nanoparticle, and further investigations are needed.
Considering the above, it is clear that green MNPs are promising as antimicrobials. They can solve many problems in medicine, human health, nanomedicine and other fields (Figure 6).

4. Methods for Testing Antibacterial and Antifungal Activities of Green MNPs

Planktonic bacterial and fungal cells are free-living or free-floating bacteria and fungi that are responsible for several infectious diseases. The biological properties of green-synthesized MNPs against bacteria and fungi are well-documented in the literature [285,286,287,288,289,290,291,292]. To assess these antimicrobial potentials, different physical and analytical characterization techniques can be used [293,294]. Physical characterization techniques (e.g., atomic force microscopy, fluorescence spectroscopy, ultra-microtome-based transmission electron microscopy, inductively coupled plasma mass spectroscopy) have been developed to ascertain different information related to the interactions between MNPs and microorganisms [295]. They also provide information about the microbial killing mechanisms of green MNPs [296,297]. However, these physical techniques are beyond the scope of the present review.
Analytical techniques (e.g., colony-forming-unit (CFU) assay, live-dead staining assay, disk diffusion assay, minimum inhibitory concentration assay, capillary electrophoresis, enzyme-linked immunoassay, and polymerase chain reaction) constitute the most common methods used for testing the antimicrobial activity of MNPs [298]. As shown in Table 1, Table 2, Table 3, Table 4, Table 5, Table 6, Table 7 and Table 8 and S1–S7, diffusion and dilution susceptibility testing represent the main analytical techniques for the assessment of the antimicrobial activity of MNPs [199,247,299,300,301,302]. Both these analytical techniques are described below.

4.1. Analytical Techniques: Diffusion and Dilution Susceptibility Testing Methods

In diffusion susceptibility testing methods (also known as disk diffusion assay), green-synthesized MNPs impregnated in discs diffuse in an agar medium (which contains the tested bacterium) and surround the discs. This diffusion (or spread) phenomenon leads to inhibition of the growth of bacteria and fungi in an area around the discs [303]. The diameter of this inhibition zone is determined by the distance that the inhibitory concentration of the green-synthesized MNPs may travel before a certain microbial density [304]. Antibiograms and antifungiograms obtained by this method are widely used because of their simplicity, low-cost, ability to test a large number of microorganisms and antimicrobial agents, and readily interpretable results [305]. However, this method is not suitable for determining the minimum inhibitory concentration (MIC), i.e., the minimum concentration of biofabricated MNPs that inhibit the visible growth of microorganisms after a given time (18–24 h) of incubation at a predefined temperature [306]. To determine the MIC by diffusion methods, some researchers impregnate sterile paper discs with a volume of MNP solutions, while others cut wells of a certain diameter (generally 6 mm) in fungi- or bacteria-containing plates using a sterile corkborer, and then add a volume of nanoparticle solutions into each well [307,308,309].
In dilution susceptibility testing methods (so-called dilution methods), the evaluation of antimicrobial activity of eco-friendly MNPs can be performed using either agar culture medium (e.g., Mueller–Hinton agar (MHA)) (agar dilution method) or liquid culture medium (e.g., Mueller–Hinton broth (MHB)) (broth or liquid dilution method) [310,311,312,313]. Dilution methods are more suitable for determining the MIC than diffusion methods, as they provide a better quantitative estimate of the antibacterial and antifungal activity of MNPs [314,315]. The agar dilution method requires mixing of different concentrations of nanoparticle solutions in the molten MHA medium. After pouring and solidifying the obtained mixture into Petri dishes on a level surface to a specific agar depth, a quantity of standardized bacterial or fungal suspension is inoculated on the agar surface by multiple streaks [316]. The agar plates are then incubated according to validated procedures and/or practice guidelines of accredited organisms, such as the European Committee on Antimicrobial Susceptibility Testing (EUCAST) and the Clinical and Laboratory Standards Institute (CLSI) [317,318].
On the other hand, the MHB dilution method can be performed in tubes (macromethod or macrodilution method) or in microtiter plates (micromethod or microdilution method) [319]. The broth microdilution method is preferred over the broth macrodilution method for the development of antibiograms because it is easy to handle, cost-effective and can be automated for the preparation of nanoparticle dilutions and the reading of the MIC [303,316,320,321].
Although all the results presented in Table 1, Table 2, Table 3, Table 4, Table 5, Table 6, Table 7 and Table 8 and S1–S7 confirm the reliability of the diffusion and dilution methods for the MNP susceptibility testing of different microbes, only a very limited number of studies have compared the MIC values resulting from the dilution method with the MIC values (or DOIs) obtained by the diffusion method, or other methods, such as the E-test. The objective would be to identify the most feasible, quantitative and cost-effective methods for high-throughput MNP susceptibility testing that can be used in any laboratory setting and for any clinical bacteria and fungi. With respect to future studies, the comparison of data from dilution versus diffusion methods will likely guide the reader in choosing which is most appropriate for particular microorganisms, experimental conditions or biomedical applications.

4.2. Factors Influencing the Evaluation of Antimicrobial Activities of Metallic Nanoparticles

Factors that can influence either the diameter of the inhibition zone or the MIC, and modify the antibacterial and antifungal activities of MNPs include: (i) the types and species of bacteria and fungi, (ii) the diversity of strains within bacterial and fungal species, (iii) the inoculum density, (iv) the composition and pH of the culture medium, (v) the disc application timing, (vi) the temperature and time of incubation, (vii) the depth of the agar medium, (viii) the spacing of the antibiotic discs, (ix) the nature and concentration of the capping and stabilizing agents, (x) the size, shape and zeta potential of nanoparticles, (xi) the type, content and quality control of antibiotic discs, (xii) the impregnation of nanoparticles in sterile blank discs, and (xiii) the additive and synergistic effects of antimicrobial nanoparticles in combination with conventional or non-traditional antibiotics [303,321,322,323]. The impact of some of these parameters on the antimicrobial assessment of MNPs is discussed in the following paragraphs.

4.2.1. Types of Bacterial and Fungal Species and Strains

The human body hosts a whole community of commensal, saprophytic and pathogenic microorganisms grouped under the term “microbiota” [324,325].
The skin or flora microbiota can be resident or transient. The resident bacteria are dominated by commensal bacteria (e.g., Staphylococcus epidermidis, Staphylococcus warneri) and coryneform bacteria (e.g., Brevibacterium epidermidis, Arthrobacter globiformis, Corynebacterium spp.). In contrast, the transient microbiota are composed of saprophytic microorganisms (e.g., Propionibacterium acnes) and opportunistic pathogenic bacteria (e.g., Staphylococcus aureus, Pseudomonas aeruginosa, Bacillus spp., Treponema pallidum, Acinetobacter johnsonii and Acinetobacter baumannii) [326,327]. Primary cutaneous mold infections are predominantly caused by Aspergillus flavus, Aspergillus niger, Fusarium spp., Mucor spp., Rhizopus stolonifer, Malassezia globosa, Trichosporon cutaneum, Alternaria alternata, Candida albicans, Torulopsis spp., Trichosporon cutaneum, Penicillium spp., etc. [326,327,328,329].
The oral flora is largely dominated by anaerobic bacterial genera, such as Actinomyces, Bacteroides, Lactobacillus, Leptotrichia, Treponema, Streptococcus and Peptococcus. Several kinds of microfungi, such as Aspergillus, Candida, Cladosporium, Cryptococcus, Fusarium and Penicillium are also found in the mouth [330].
In the small intestine and the colon, the intestinal microbiota is mostly represented by Escherichia coli, Helicobacter pylori, Pseudomonas aeruginosa (bacteria), Candida albicans and Saccharomyces boulardii (fungi) [331].
Despite the high number of (opportunistic) pathogenic microorganisms, most research papers are limited to assessing the antimicrobial susceptibility of three bacterial species (Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa) and three fungal isolates (Aspergillus flavus, Aspergillus niger and Candida albicans) (Table 1, Table 2, Table 3, Table 4, Table 5, Table 6, Table 7 and Table 8 and S1–S7; Figure 7) [9,192,332,333,334,335,336,337]. However, testing the antibacterial and antifungal susceptibility of a large number of pathogenic microorganisms from cutaneous, oral and intestinal microbiota would help to expand the spectrum of activity of biosynthesized MNPs. Additionally, although most studies attest that Gram-negative bacteria are more sensitive to antimicrobial nanoparticles than Gram-positive bacteria [338,339,340,341,342], it is important to always confirm this rule with a broader range of green MNPs, as well as bacterial and fungal species and strains. By doing so, the chances of detecting certain exceptions increases, as previously reported [9].
Most of the microbiological strains that have been tested for their susceptibility against green-synthesized metallic nanoparticles were procured from the American Type Culture Collection (ATCC) [121,343,344,345], the Microbial Type Culture Collection (MTCC) [274,346,347,348], or the National Collection of Industrial Microorganisms (NCIB) [274,334,348] (Table 1, Table 2, Table 3, Table 4, Table 5, Table 6, Table 7 and Table 8 and S1–S7, Figure 8). However, laboratory strains of the same bacterial and fungal species may show differences in sensitivity against MNPs [349]. This is particularly the case for β-lactamase-negative and β-lactamase-positive laboratory strains (e.g., E. coli ATCC 25922 vs. 35218, and S. aureus ATCC 25923 vs. 38591). Therefore, it is recommended that the ATCC, MTCC or NCIB strain numbers of all microorganisms are recorded. Moreover, it would be desirable to assess and compare the antimicrobial activities of green MNPs on these different strains of bacterial and fungal species.
It is worth noting that microbial strains from laboratory and environmental sources generally have lower virulence than their corresponding clinical strains [350,351,352,353]. Consequently, discrepancies may be observed in the antimicrobial activity of MNPs against both clinical and laboratory strains. Hence, to better fight nosocomial infections and prevent the emergence of newly emerging clinical strains and multi-drug-resistant bacteria (e.g., methicillin-resistant S. aureus, multi-drug-resistant P. aeruginosa, etc.), pharmaceutical strategies based on the development of MNPs, and the evaluation of their antimicrobial activity, should include an even greater number of bacterial and fungal pathogens.

4.2.2. Inoculum Density

CLSI and EUCAST consider inoculum density to be an important variable in susceptibility testing [354,355]. Indeed, if the inoculum is too large, the chances of reducing the diameter of inhibition zones (or enhancing the MIC) of the studied microorganisms by MNPs increases [354,355,356,357,358,359]. The consequence is that sensitive strains can be considered to be relatively resistant when they are not. Conversely, if the inoculum is too small, the zone of inhibition can be enhanced and the MIC reduced, thereby relatively resistant strains can be considered to be sensitive or susceptible [360].
According to American, European and Japanese pharmacopeias [361,362,363], pleasing results can be obtained with an inoculum size of ca. 108 CFU/mL. In contrast, the CLSI states that inoculum size ranging from 2 × 105 to 8 × 105 CFU per mL (or 2 × 103 to 10 × 103 viable cells per spot of 10 µL) can produce confluent growth, thereby leading to optimal results (Table 9) [364,365]. However, referring to most published data related to the microbiological analysis of green MNPs, the initial inoculum sizes of tested microorganisms varies from 104 to 1.5 × 108 CFU/mL [195,235,301,366,367]. Regrettably, we note that some research groups do not mention this density at all (Table 1, Table 2, Table 3, Table 4, Table 5, Table 6, Table 7 and Table 8 and S1–S7 and Figure 8).
Hence, to avoid false-positive or false-negative test results (also known as the inoculum effect) [364], the inoculum density must be standardized. To carefully determine the size of the inoculum and to perform colony counts, McFarland standards or calibrators should be used; 0.5 McFarland standards correspond to approximately 1–2 × 108 CFU/mL [358]. The obtained inoculums need to be used within 15 min of preparation in order to avoid the premature growth of microorganisms [358,365].

4.2.3. Agar Depth and Spacing of Impregnated Discs

Among the parameters that can affect the antimicrobial activity of MNPs, the depth of the agar medium and the spacing of discs impregnated with nanoparticles can also be cited. Indeed, a reduced inhibition zone may be obtained on very thick media, while the reverse is true for media that are too thin [373]. To counteract these phenomena, the depth of the agar medium should be between 4 and 10 mm [374,375]. However, it is difficult to know if this recommendation is always applied or not, especially since the agar depth is not mentioned in most of the studies pertaining to MNPs with antimicrobial properties. To ensure a better comparison of data from one study to another, subsequent research should respect recommendations based on the depth of the agar medium.
It is suggested to place a maximum of seven discs (of 10 mm) on 90–100 mm diameter plates to avoid the overlap of different inhibition zones and/or their deformation near the edge of the plates [358,376,377,378]. This reduces artifacts and the difficulty of comparing microbiological data from one study to another. Once again, very little information on agar depth and the spacing of discs can be obtained from the literature related to MNPs with antimicrobial properties. Nevertheless, based on some data available in the literature, it appears that this provision is not respected in many studies.

4.2.4. Timing of Disc Application

The timing for application of discs impregnated with MNPs on the agar medium (diffusion method) and the dilution of nanoparticle solutions in the microorganism suspensions in glass test tube dilution (macrodilution method), or microtiter plastic plates containing 96 wells (microdilution method), are also considered as major variables that can influence the antibacterial and antifungal activities of MNPs [358].
Based on CLSI and EUCAST guidelines, disc application and dilution operations should be performed within 15 min following inoculum preparation [359]. Indeed, if the plates, tubes and microplates seeded with the tested microorganisms are left at room temperature for periods longer than the standard time, microorganisms can start growing before the application of discs or dilutions of nanoparticle solutions. By reducing the diameter of the inhibition zone and/or increasing the MIC values, these phenomena may result in a susceptible strain being wrongly reported as resistant [360].

4.2.5. Temperature and Time of Incubation

As recommended by CLSI and EUCAST, antimicrobial susceptibility testing of MNPs should be performed from 16 to 20 h at 35 ± 2 °C against bacteria, and from 48 to 72 h at 25–30 °C against fungi (Table 9) [379,380]. However, most studies related to the evaluation of antimicrobial activity of MNPs have adopted an incubation period of 12–24 h at 30–37 °C for bacteria, and of 48–72 h at 37 °C for fungi (Table 1, Table 2, Table 3, Table 4, Table 5, Table 6, Table 7 and Table 8 and S1–S7). If the temperature is lowered, the time required for achieving the growth of microbes can be extended, resulting in a “false” larger diameter of inhibition (or lower MIC) [379,380]. On the other hand, high temperatures can negate the results by inhibiting the antimicrobial properties of the biofabricated MNPs [360].
With the aim of determining the bactericidal and fungicidal effects of nanoparticles as a function of incubation time, a time-kill test can be performed by incorporating a bacterial or fungal suspension and different concentrations of MNPs (e.g., 0.25 MIC, 0.5 MIC, 1 MIC, etc.) in different tubes or microplates containing the broth culture medium [319,381]. The percentage of dead cells at various time intervals (0.5 h, 1 h, 6 h, 12 h, etc.) can then be calculated relative to the growth control by determining the number of living cells present in each tube or microplate according to validated count methods [318,381]. Generally, the bactericidal effect is obtained with a lethality percentage of 90% for six hours, which is equivalent to 99.9% of lethality for 24 h. Additionally, survivor counts from collecting sequential samples are generally plotted to obtain a “time-kill curve” after an incubation period at a predetermined temperature [382,383]. Therefore, standardization of temperature and time of incubation is required to ensure the comparison of results from one study to another.

4.2.6. Size and Shape of Nanoparticles

The antibacterial and antifungal properties of MNPs depend strongly on their sizes and shapes. Small nanoparticles (diameter sizes ˂ 30 nm) show better antimicrobial activity than large nanoparticles (diameter sizes ˃ 30 nm) [384,385,386], since smaller particles offer a greater surface area for contact, favoring MNP-microbial cell interactions, as well as, more importantly, physical damage to microbial membranes. A number of nanoparticles per bacterium is required to induce cell death [387,388]. Additionally, the ability of small nanoparticles to freely permeate inside the microbial membrane is higher than that of large nanoparticles [387,388].
It has been observed that needle-shaped metal oxide nanoparticles generally exhibit significantly greater antimicrobial activity than those with a cube shape [389]. Additionally, truncated triangular silver nanoparticles were found to be more effective against E. coli than rod-shaped silver nanoparticles, while rod-shaped particles were much more effective than spherical nanoparticles [390,391].
Therefore, the size and shape of antimicrobial MNPs must be considered when comparing their MIC values and the diameter sizes of inhibition. However, a small number of authors omit to provide information relating to these physicochemical characteristics (see Table 1, Table 2, Table 3, Table 4, Table 5, Table 6, Table 7 and Table 8 and S1–S7).
The ratio between the metal salts and plant extracts used during biosynthesis must also be taken into account, since the amount of capping agents (phytoconstituents) on the surface of MNPs, as well as the size, shape and antimicrobial activities of the nanoparticles, depends on it [392,393]. The seasonal and geographical variability of plant compositions should also be considered. Hence, the collection periods and sites should be referred to in all studies, although this has not always been the case to date.

4.2.7. Zeta Potential of Nanoparticles

The zeta potential (or charge surface) is one of the critical properties of nanoparticles that can affect their stability and cell adhesion [18,394]. Balanced by oppositely charged counter ions present in the surrounding media, the surface charge of bacterial and fungal membranes is generally negative [395]. Hence, upon interaction with these membranes, green MNPs with positive surface charges may impede the growth of bacteria and fungi by preventing their attachment [385,388,396,397,398]. Moreover, the capacity of cationic nanoparticles to improve the production of reactive oxygen species, and the exertion of mechanical stress on the microbial membrane, appear to be greater than that of anionic and neutral nanoparticles [280,281].
The presence, or addition, of certain cationic agents (e.g., polymyxin, cetyltrimethyl ammonium bromide (CTAB), benzalkonium chloride and chlorhexidine digluconate) to the culture media can modify the zeta potential of bacterial and fungal cell membranes through electrostatic interactions. This may subsequently alter cell surface permeability, leading to the death of bacteria and fungi [399]. In addition, aminoglycoside antibiotics (e.g., gentamicin, neomycin, paromomycin) that are positively charged at physiological pH can synergize with all kinds of MNPs [400,401]. On the other hand, depending on their zeta potential, phytocomponents that act as stabilizing and capping agents can reduce the propensity of biosynthesized nanoparticles to aggregate, which influences their size, shape, stability and biological activity [392,402].
It should be remembered that MHB is a culture medium recommended by the US Food and Drug Administration, World Health Organization, EUCAST and CLSI for testing the susceptibility of aerobic and facultative anaerobic bacteria to antimicrobial agents [356,403]. In addition, cation-adjusted MHB 2 (CAMHB) broth, which corresponds to MHB in which divalent ions (e.g., calcium and magnesium) have been adjusted, can greatly reduce the MIC of several antibiotics (e.g., daptomycin, quinolones, aminoglycosides, and tetracycline) by affecting their mode of action and stability [356]. It is not ruled out that this phenomenon may also be observed with greenly biosynthesized MNPs, although, to the best of our knowledge, there is no study of this to date.
It is advisable to measure and indicate the zeta potential of dispersions containing MNPs and other components. As well as the effects of the interfacial potential on the antimicrobial propensity of MNPs, all the phenomena that affect the zeta potential should be studied more extensively, particularly when evaluating the efficacy of MNPs in combination with cationic antimicrobial agents.

4.2.8. pH of Culture Media

As mentioned earlier, phytoconstituents (e.g., flavonoids, tannins, alkaloids, etc.) from plant extracts used in green synthesis can cap the surface of biogenic MNPs through highly complex mechanisms of reduction of metal ions and nucleation/stabilization of reduced metal atoms [393]. All these phytochemical metabolites contribute to the antibacterial and antifungal activity of MNPs, and reduce toxicity by passivation of the surface [393,404].
Notably, if the pH of the culture medium is too low, some phytoconstituents (e.g., amino acids, proteins), and antimicrobial agents used as positive controls (e.g., quinolones, macrolides, aminoglycosides), may lose their potency, while other antibacterial drugs, such as tetracyclines, may show enhanced efficacy [405,406,407]. On the other hand, certain phytocomponents, such as caffeic, chlorogenic and gallic acids, as well as antimicrobial proteins, become unstable at high pH values, thereby losing their biological and pharmacological activity [408]. Additionally, the pH of the culture media can impinge on or modify the surface charge density and distribution of both metals and phytoconstituents capped on the surface of MNPs. This phenomenon could explain why green-synthesized silver nanoparticles and zinc nanoparticles become less active in acidic and basic media, respectively [409,410,411,412,413,414].
Therefore, the pH (and ionic strength) of culture media should be standardized to maintain the physical and biological properties of the metallic and phytochemical components of biogenic MNPs. The pH values of the culture media should range between 6.8 and 7.4, irrespective of the temperature [359].

4.2.9. Antibiotic and Antifungal Reference Standards

To assess the antimicrobial activity of MNPs, a good and common practice consists of testing them side-by-side with well-known antibiotic and antifungal references, and comparing the resultant antimicrobial activity [301,415,416]. Biosynthesized MNPs would be considered more active than a standard antimicrobial agent if the latter has a higher MIC (or lower diameter of inhibition zone) than the nanoparticles.
Depending on the MICs and the diameters of the inhibition zone, microorganisms can be considered “sensitive” or “resistant”. These values are generally compared with those mentioned in local microbiology guidelines and/or the “antibiotic and antifungal disc interpretative criteria and quality control table” proposed by EUCAST and CLSI [368,379,417,418]. The susceptibility of microorganisms to MNPs improves with decreasing MICs (or increasing diameters of inhibition) [419].
To select the most suitable antimicrobial reference test and compare its in vitro activity to MNPs, investigators can use breakpoint tables or performance standards for antimicrobial susceptibility testing [358,418,420]. Nevertheless, drug purity and disc potency (i.e., amount of drug per disc) should be considered for a more in-depth comparison of activities. Indeed, these two parameters can be reduced owing to deterioration during storage, thereby decreasing the antimicrobial efficacy of the standard test [418].
It would be interesting to simultaneously evaluate MNPs, antimicrobial standards, and test microorganisms alongside a standard microorganism having known MIC or inhibition diameter values. This strategy would enable confirmation of the reliability of the experimental conditions and the obtained results [360].
Representative (nano)antimicrobial agents can be dissolved in a suitable solvent (dilution method) or impregnated in discs (diffusion method) [303,309]. However, homogenous and reproducible disc impregnation of MNPs that are manufactured in solid (powder) or semi-solid (cream or ointment) form constitutes a bottleneck that hampers the reliable correlation of the diameter of inhibition with antimicrobial activity. To remedy this problem, the agar dilution method can be used as an alternative [307,308]. For this purpose, a volume or weight of varying concentrations of metallic nanoparticle preparations can be incorporated in different wells. Nevertheless, to obtain more comparable results, it would be necessary to standardize the volume of the wells and the quantity of the tested samples.

4.2.10. Synergistic Activity of Nanoparticles with Antimicrobial Substances

In exploring alternative approaches to improving the therapeutic management of infectious diseases, the combination of MNPs with antimicrobials (e.g., amoxicillin, azithromycin, cefotaxime, cefuroxime, chloramphenicol, clindamycin, erythromycin, fosfomycin, penicillin G, vancomycin, etc.) can be effective [400,421,422,423,424]. This strategy exhibits enhanced antibacterial and antifungal effects against different types of microbes in comparison with MNPs and antimicrobial agents alone [400,421,422,423,424].
To better evaluate this approach and ensure appropriate comparison of results from one study to another, several parameters must be considered and standardized. This particularly concerns the composition of the culture media, in terms, for example, of cationic substances (e.g., CAMHB), the spectrum of activity, and the efficacy of the selected antimicrobials, as well as the concentration ratio of the latter with MNPs.

5. Methods for Testing Anti-Biofilm Activities of Green Metallic Nanoparticles

To quantify cells in biofilm-grown microbes, many direct and indirect counting methods have been developed [425]. Direct measurement methods include viable cell enumeration using plate counts, microscopic cell counts, Coulter cell counting, flow-based cell counting and fluorescence microscopy. In addition, indirect counting methods comprise microplate assays, dry mass determination, total organic carbon, total protein, ATP bioluminescence and quartz crystal microbalance, Calgary biofilm device, biofilm ring test, etc. Of all these methods, microplate plate models are the most commonly used for the evaluation and measurement of the antibiofilm activity of green MNPs [57,425,426,427,428].
Quantitative methods of biofilm characterization are often accompanied and assisted by qualitative methods (e.g., scanning electron microscopy, scanning electrochemical microscopy) for imaging the surface roughness, morphology and spatial organization of biofilms, as well as their interaction with the environment [425,427].

5.1. Microplate Assays

As stated above, microplate plate assays remain among the most frequently used methods for evaluating the antibiofilm activities of green MNPs. Microtiter plate methods are relatively inexpensive, easy to perform, rapid and reproducible. Additionally, these methods have great flexibility due to their many variations or modifications, such as the tetrazolium salt assay and the crystal violet assay [426].
Among the most widely used tools in biology for real-time evaluation of cellular viability and metabolism in vitro, tetrazolium salt assays allow direct and indirect measures of biofilm growth via UV-visible and fluorescence spectroscopy [426]. The different tetrazolium salts are metabolically converted to formazan derivative crystals which are solubilized in dimethyl sulfoxide (DMSO) before being quantified by spectrophotometry [426]. In the crystal violet assay, biofilm cells are stained with crystal violet dyes and then infused with decoloring solution (e.g., pure ethanol, acetic acid, methanol, etc.). The resulting solution is generally transferred to clean 96-well plates to assess the optical density (OD) or absorbance at 530–600 nm using a microtiter plate reader. Homogenous resolubilization of crystals and dyes according to recommended protocols enables precise measurement of biofilm production since microplate readers measure the optical density only at one point in the middle of the well [57,429,430,431,432,433,434,435,436,437,438].

5.2. Factors Influencing the Evaluation of Antibiofilm Activities of Metallic Nanoparticles

Various static and batch-growth conditions may influence biofilm formation by different species and strains of bacteria and fungi in microtiter plates. These testing conditions include the storage of microorganisms, inoculum density, culture medium, microtiter plate, cultivation of biofilm, washing, fixation and staining. All these factors are discussed below.

5.2.1. Storage Conditions

When stored by freezing at −70 °C or by lyophilization, microorganisms generally maintain their virulence properties once thawed from storage. However, this is not the case with some fastidious bacteria and fungi (e.g., Staphylococcus spp.) which can produce mixtures of phenotypes differing in their ability to form biofilms [426]. The influence of storage conditions should be considered during the evaluation of antibiofilm activities. However, most studies relating to the evaluation of the activity of MNPs against staphylococcal-based biofilms do not mention it.

5.2.2. Type of Microorganisms

Biofilm formation depends on the type of microorganisms selected for the experiment [439]. According to the literature, MNPs are mainly evaluated against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans. Other microorganisms include Staphylococcus epidermidis, Enterococcus faecium, Enterococcus faecalis, and Klebsiella pneumoniae. For all these microorganisms, the strain numbers assigned in international culture collections should be reported (e.g., Staphylococcus epidermidis ATCC 35984 (high slime producer) vs. Staphylococcus epidermidis ATCC 1228 (non-slime producer), or Staphylococcus aureus ATCC 29213 (methicillin-sensible) vs. Staphylococcus aureus ATCC 43300 (methicillin-resistant)). For clinical or environmental isolates, all available and relevant background and ethical information should be reported [426,440].

5.2.3. Inoculum Density

Biofilm density increases with increasing initial inoculum. The inoculum size can vary between 103 and 108 CFU/mL [57,429,430,431,432,433,434,435,436,437,438]. Nevertheless, several authors consider that a microbial cell size of 1 × 108 CFU/mL is suitable for studies dealing with the evaluation of antibiofilm activities of MNPs [51,429]. As a result, the inoculum density should be carefully standardized when evaluating antibiofilm properties, as when determining the antibacterial and antifungal activities of MNPs. However, we regret to note that the inoculum density is not given in some studies, and that it is not determined with precision in other studies.
The inoculation preparation (e.g., culturing methods) can affect the ability of microorganisms to attach to a surface [441,442]. However, information concerning inoculation preparation (e.g., concentration, temperature, time, temperature, growth phase, shaking conditions, growth media, humidity, CO2) is often not reported in published papers related to MNPs.
Cell density can also affect the spreading and clustering of certain microorganisms [443]. The percentages of clusters and of total clustered cells increase linearly with the density of inoculum (but are not time-dependent). Indeed, in the presence of biofilm-associated clusters, preexisting cell clusters that can form in cell suspension may lead to false-positive results [429]. Hence, to avoid inoculation of these preexisting clusters, cell suspensions should be broken up with a syringe fitted with a 23-gauge needle and then with a vortex [443]. These issues are of great importance and must be taken into account by researchers who are interested in evaluating the antibiofilm activities of MNPs.

5.2.4. Culture Medium

The ability of bacteria and fungi to produce biofilms under in vitro conditions depends strongly on the composition of the medium, which itself varies from one supplier to another [426]. The agar media closely resemble the surfaces (catheters, prostheses, etc.) found in in vivo situations. Hence, during biofilm formation, surface-associated bacteria and fungi can adhere better to solid growth media than to liquid culture media [444,445]. Nevertheless, in the absence of a clear-cut recommendation on the medium to be used for testing bacteria-based biofilm formation, some authors use Trytic soy broth (TSB) and brain heart infusion (BHI) broth, supplemented with glucose, sodium chloride or ethanol [429,430,431,437,446,447,448,449,450].
For fungi, yeast nitrogen base (YNB), yeast peptone dextrose (YPD), Roswell Park Memorial Institute–1640 (RPMI-1640) medium, artificial saliva medium (ASM), Sabauraund dextrose broth (SDB) or phosphate-buffered saline (PBS) can also be used, with or without supplement [429,436,438,450,451,452,453,454,455,456].
Therefore, the choice of medium for biofilm cultivation is an essential element in the process aimed at standardizing the analytical methods of antibiofilm activities of MNPs. Many efforts must be made in this direction.

5.2.5. Type of Microplates

To mimic the surfaces to which microorganisms can adhere to form biofilms, both tissue and non-tissue culture microtiter plates can be used [429]. However, cell attachment and proliferation were better on surface-treated tissue culture plates than on non-tissue culture plates [457,458]. Nevertheless, tissue-culture-treated plates from different manufacturers may provide different conditions for the cultivation and proliferation of biofilms. On the other hand, flat-bottomed microtiter plates allow better biofilm quantification than U-shaped and V-shaped microtiter plates [426,457,459]. Hence, for more transposable and comparable results, all these differences should be noted and considered by research groups. All the microplate characteristics (e.g., color of plate, number of wells, material, pre-coating conditions, etc.) should also be taken into account as part of an overall standardization process for microplate assays [426].

5.2.6. Time and Temperature of Incubation

The duration and temperature of incubation are important parameters for the cultivation of biofilms; indeed, the density of biofilms is dependent on these two parameters [443,460]. Covered with a lid, the inoculated plate should be incubated aerobically for 24 ± 0.5 h at 36 ± 1 °C under static conditions [426,429]. However, some authors incubate microtiter plates for 18 h or 20–24 h, while others incubate overnight [461,462,463]. In addition, literature reports suggest that some investigators prolong their incubation time for 48 h [426,464].
All this indicates a lack of standardization in the operating conditions of incubation. This situation can generate both false-positive and false-negative results. Even more so, it can negatively impact on the possibility of comparing the results from one study to another.

5.2.7. Washing, Fixation and Staining Steps

The washing steps aim to remove non-adherent cells and unbound dye on biofilm-containing microplates after the formation of biofilms. However, excessive washing may lead to false-negative results. In contrast, false-positive results can be obtained from insufficient washing. To avoid this, three- and four-step washing protocols are advisable [429].
A variety of methodologies and techniques can be applied during the washing step. However, some can lead to false-positive results (e.g., washing robots), while others can cause disruption of biofilm layers (e.g., mechanical plate washers). As a result, washing using micropipettes followed by emptying by flicking is considered to be a simple and effective method which is applied by several investigators [429].
Colorimetric methods have also been used to quantify metabolic activity in biofilms. For this purpose, tetrazolium salts and resazurin can be used. Compared to tetrazolium salt assay, resazurin-based quantification is inexpensive and less time-consuming. Moreover, it offers a good correlation with CFU counts. Nevertheless, one of the drawbacks of the colorimetric method using resazurin is the high lower limit of quantification (˃106–107 CFU/biofilm). An alternative approach for this method is currently available, decreasing the lower limit of quantification to 103 CFU/biofilm [429].
Extensive detachment and removal of sessile bacterial cells can result from the stringency of washing [426,429]. To prevent this generating artifacts or false results, washing must be followed by a fixation step with absolute ethanol, methanol or heat fixation at 60 °C for 1 h. After this last step, the adherent biofilm layers present in microtiter plates must be stained with dyes, such as crystal violet and alcian blue. Alcian blue stains both live and dead cells, as well as other components found in the matrix of the biofilm matrix, and is, therefore, well suited to the quantification of total biofilm biomass. However, unlike alcian blue, the crystal violet dye does not color slimy material. Other limitations of crystal violet include a lack of reproducibility, its non-specific nature in poly-microbial communities, and the absence of standardized protocols. Nevertheless, crystal violet remains the most frequently used strain for biofilm quantification [425,426,427,429].

6. Conclusions and Perspective

When searching the literature on green MNPs from 2010 to date, it appears that most of the published data are related to MNP synthesis (e.g., methods, mechanisms, influence of parameters), physicochemical characterization (e.g., size, zeta potential), and the evaluation of antimicrobial and antibiofilm properties and mechanisms of action. Of the 600 articles dedicated to antimicrobial metal nanoparticles that we have presented in this review, very few were focused on factors that affect the pharmacological properties of these MNPs and the outcomes of their in vitro evaluation.
Based on this, we set out to critically examine the experimental conditions and essential factors that can affect the antimicrobial performance of MNPs, enabling pinpointing of important MNP quality attributes for the effective development of design rules in the field of biogenic nanotechnology for tackling infectious diseases.
The present review provides, firstly, an understanding of what is commonly reported in scientific articles related to antimicrobial and antibiofilm MNPs. Secondly, this review highlights the critical procedures and parameters that influence the antimicrobial and antibiofilm evaluation of MNPs.
In addition to the lack of detailed information regarding the chemical and biological materials, as well as the laboratory equipment used, insufficient knowledge and the non-standardization of experimental protocols and laboratory conditions make it difficult to produce reproducible and reliable data or to gain detailed insights into comparative studies. This situation has been made worse by the progressive limitation in the number of words in several journals.
To address the issues arising from these multifaceted problems, the elaboration and use of minimal information guidelines or reporting standards related to the evaluation of antimicrobial and antibiofilm activities would constitute an effective strategy and approach. Minimal information guidelines should provide a guide for researchers on the necessary information that a manuscript should include for specific experiments. However, the elaboration of these guidelines requires a variety of studies, a dialog among experts and a consensus by the research community. In the interim, we have presented this draft which includes the minimum operating conditions required which would facilitate reproducibility and the reliable comparison of research data. By applying a standardized approach to experimental conditions for the evaluation of antimicrobial and antibiofilm activity, researchers will push the field of biogenic nanotechnology to new frontiers towards the development of high-value antimicrobial MNPs that can attack both existing and emerging antimicrobial resistant strains.

Supplementary Materials

The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/nano12111841/s1, Table S1. Green silver nanoparticles exhibiting antimicrobial activity; Table S2. Green gold nanoparticles exhibiting antibacterial and antifungal activities; Table S3. Antimicrobial green synthesized zinc (oxide) nanoparticles; Table S4. Green platinum nanoparticles exhibiting antimicrobial activity; Table S5. Green palladium nanoparticles with antimicrobial activity; Table S6. Green copper nanoparticles exhibiting antimicrobial activity; Table S7. Antimicrobial green-synthesized iron nanoparticles [465,466,467,468,469,470,471,472,473,474,475,476,477,478,479,480,481,482,483,484,485,486,487,488,489,490,491,492,493,494,495,496,497,498,499,500,501,502,503,504,505,506,507,508,509,510,511,512,513,514,515,516,517,518,519,520,521,522,523,524,525,526,527,528,529,530,531,532,533,534,535,536,537,538,539,540,541,542,543,544,545,546,547,548,549,550,551,552,553,554,555,556,557,558,559,560,561,562,563,564,565,566,567,568,569,570,571,572,573,574,575,576,577,578,579,580,581,582,583,584,585,586,587,588,589,590,591,592,593,594,595,596,597,598,599,600,601,602,603,604,605,606,607,608,609,610,611,612,613,614,615,616,617,618,619,620,621,622,623,624,625,626,627,628,629,630,631,632,633,634,635,636,637,638,639,640,641,642,643,644,645,646,647,648,649,650,651,652,653,654,655,656,657,658,659,660,661,662,663,664,665,666,667,668,669,670,671,672,673,674,675,676,677,678,679,680,681,682,683,684,685,686,687,688,689,690,691,692,693,694,695,696,697,698,699,700,701,702,703,704,705,706,707,708,709,710,711,712,713,714,715,716,717,718,719,720,721,722,723,724,725,726,727,728,729,730,731,732,733,734,735,736,737,738,739,740,741,742,743,744,745,746,747,748,749,750,751,752,753,754,755,756,757,758,759,760,761,762,763,764,765,766,767,768,769,770,771,772,773,774,775,776,777,778,779,780,781,782,783,784,785,786,787,788,789,790,791,792,793,794,795,796,797,798,799,800,801,802,803,804,805,806,807,808,809,810,811,812,813,814,815,816,817,818,819,820,821,822,823,824,825,826,827,828,829,830,831,832,833,834,835,836,837,838,839,840,841,842,843,844,845,846,847,848,849,850,851,852,853,854].

Author Contributions

M.M.L., C.K.M. and J.K.: formal analysis, investigation, methodology, resources, validation, visualization, writing—original draft. J.B.S.: formal analysis, resources, validation, visualization, writing—original draft. E.N.Z. and G.V.M.: formal analysis, resources, validation, visualization. Y.B.N., J.-M.I.L., C.I.N., R.W.M.K. and A.B.: investigation, methodology, writing—review and editing. P.B.M.: conceptualization, formal analysis, investigation, methodology, resources, supervision, validation, writing—original draft; writing—review and editing. All authors have read and agreed to the published version of the manuscript.

Funding

This work was partially funded by Rhodes University (South Africa) and supported by the National Research Foundation (NRF, South Africa).

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

The data presented in this study are available on request from the corresponding authors.

Conflicts of Interest

The authors declare that they have no competing interest.

References

  1. National Nanotechnology Initiative. What Is Nanotechnology? National Nanotechnology Initiative: Alexandria, VA, USA, 2000.
  2. Ijaz, I.; Gilani, E.; Nazir, A.; Bukhari, A. Detail Review on Chemical, Physical and Green Synthesis, Classification, Characterizations and Applications of Nanoparticles. Green Chem. Lett. Rev. 2020, 13, 59–81. [Google Scholar] [CrossRef]
  3. Iravani, S.; Korbekandi, H.; Mirmohammadi, S.V.; Zolfaghari, B. Synthesis of Silver Nanoparticles: Chemical, Physical and Biological Methods. Res. Pharm. Sci. 2014, 9, 385–406. [Google Scholar] [PubMed]
  4. Gudikandula, K.; Charya Maringanti, S. Synthesis of Silver Nanoparticles by Chemical and Biological Methods and Their Antimicrobial Properties. J. Exp. Nanosci. 2016, 11, 714–721. [Google Scholar] [CrossRef]
  5. De Marco, B.A.; Rechelo, B.S.; Tótoli, E.G.; Kogawa, A.C.; Salgado, H.R.N. Evolution of Green Chemistry and Its Multidimensional Impacts: A Review. Saudi Pharm. J. 2019, 27, 1–8. [Google Scholar] [CrossRef] [PubMed]
  6. Hurst, G.A. Systems Thinking Approaches for International Green Chemistry Education. Curr. Opin. Green Sustain. Chem. 2020, 21, 93–97. [Google Scholar] [CrossRef]
  7. Iravani, S. Bacteria in Nanoparticle Synthesis: Current Status and Future Prospects. Int. Sch. Res. Not. 2014, 2014, 359316. [Google Scholar] [CrossRef] [Green Version]
  8. Shah, M.; Fawcett, D.; Sharma, S.; Tripathy, S.K.; Poinern, G.E.J. Green Synthesis of Metallic Nanoparticles via Biological Entities. Materials 2015, 8, 7278–7308. [Google Scholar] [CrossRef] [Green Version]
  9. Kambale, E.K.; Nkanga, C.I.; Mutonkole, B.I.; Bapolisi, A.M.; Tassa, D.O.; Liesse, J.I.; Krause, R.W.M.; Memvanga, P.B. Green Synthesis of Antimicrobial Silver Nanoparticles Using Aqueous Leaf Extracts from Three Congolese Plant Species (Brillantaisia patula, Crossopteryx febrifuga and Senna siamea). Heliyon 2020, 6, e04493. [Google Scholar] [CrossRef]
  10. Vanlalveni, C.; Lallianrawna, S.; Biswas, A.; Selvaraj, M.; Changmai, B.; Rokhum, S.L. Green Synthesis of Silver Nanoparticles Using Plant Extracts and their Antimicrobial Activities: A Review of Recent Literature. RSC Adv. 2021, 11, 2804–2837. [Google Scholar] [CrossRef]
  11. Rónavári, A.; Igaz, N.; Adamecz, D.I.; Szerencsés, B.; Molnar, C.; Kónya, Z.; Pfeiffer, I.; Kiricsi, M. Green Silver and Gold Nanoparticles: Biological Synthesis Approaches and Potentials for Biomedical Applications. Molecules 2021, 26, 844. [Google Scholar] [CrossRef]
  12. Roy, A.; Bulut, O.; Some, S.; Mandal, A.K.; Yilmaz, M.D. Green Synthesis of Silver Nanoparticles: Biomolecule-Nanoparticle Organizations Targeting Antimicrobial Activity. RSC Adv. 2019, 9, 2673–2702. [Google Scholar] [CrossRef] [Green Version]
  13. Singh, A.; Gautam, P.K.; Verma, A.; Singh, V.; Shivapriya, P.M.; Shivalkar, S.; Sahoo, A.K.; Samanta, S.K. Green Synthesis of Metallic Nanoparticles as Effective Alternatives to Treat Antibiotics Resistant Bacterial Infections: A Review. Biotechnol. Rep. 2020, 25, e00427. [Google Scholar] [CrossRef] [PubMed]
  14. Dikshit, P.K.; Kumar, J.; Das, A.K.; Sadhu, S.; Sharma, S.; Singh, S.; Gupta, P.K.; Kim, B.S. Green Synthesis of Metallic Nanoparticles: Applications and Limitations. Catalysts 2021, 11, 902. [Google Scholar] [CrossRef]
  15. Mohanta, Y.K.; Biswas, K.; Jena, S.K.; Hashem, A.; Abd_Allah, E.F.; Mohanta, T.K. Anti-Biofilm and Antibacterial Activities of Silver Nanoparticles Synthesized by the Reducing Activity of Phytoconstituents Present in the Indian Medicinal Plants. Front. Microbiol. 2020, 11, 1143. [Google Scholar] [CrossRef]
  16. Shkodenko, L.; Kassirov, I. Metal Oxide Nanoparticles Against Bacterial Biofilms: Perspectives and Limitations. Microorganisms 2020, 8, 1545. [Google Scholar] [CrossRef]
  17. Ahmed, S.; Ahmad, M.; Swami, B.L.; Ikram, S. A Review on Plants Extract Mediated Synthesis of Silver Nanoparticles for Antimicrobial Applications: A Green Expertise. J. Adv. Res. 2016, 7, 17–28. [Google Scholar] [CrossRef] [Green Version]
  18. Singh, J.; Dutta, T.; Kim, K.H.; Rawat, M.; Samddar, P.; Kumar, P. ‘Green’ Synthesis of Metals and Their Oxide Nanoparticles: Applications for Environmental Remediation. J. Nanobiotechnol. 2018, 16, 84. [Google Scholar] [CrossRef]
  19. Khan, Z.U.H.; Sadiq, H.M.; Shah, N.S.; Khan, A.U.; Muhammad, N.; Hassan, S.U.; Tahir, K.; Safi, S.Z.; Khan, F.U.; Imran, M.; et al. Greener Synthesis of Zinc Oxide Nanoparticles Using Trianthema Portulacastrum Extract and Evaluation of Its Photocatalytic and Biological Applications. J. Photochem. Photobiol. B Biol. 2019, 192, 147–157. [Google Scholar] [CrossRef]
  20. Perugu, S.; Nagati, V.; Bhanoori, M. Green Synthesis of Silver Nanoparticles Using Leaf Extract of Medicinally Potent Plant Saraca Indica: A Novel Study. Appl. Nanosci. 2016, 6, 747–753. [Google Scholar] [CrossRef] [Green Version]
  21. Das, R.K.; Pachapur, V.L.; Lonappan, L.; Naghdi, M.; Pulicharla, R.; Maiti, S.; Cledon, M.; Dalila, L.M.A.; Sarma, S.J.; Brar, S.K. Biological Synthesis of Metallic Nanoparticles: Plants, Animals and Microbial Aspects. Nanotechnol. Environ. Eng. 2017, 2, 18. [Google Scholar] [CrossRef] [Green Version]
  22. Shaikh, S.; Nazam, N.; Rizvi, S.M.D.; Ahmad, K.; Baig, M.H.; Lee, E.J.; Choi, I. Mechanistic Insights into the Antimicrobial Actions of Metallic Nanoparticles and Their Implications for Multidrug Resistance. Int. J. Mol. Sci. 2019, 20, 2468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  23. Rana, A.; Yadav, K.; Jagadevan, S. A Comprehensive Review on Green Synthesis of Nature-Inspired Metal Nanoparticles: Mechanism, Application and Toxicity. J. Clean. Prod. 2020, 272, 122880. [Google Scholar] [CrossRef]
  24. Naikoo, G.A.; Mustaqeem, M.; Hassan, I.U.; Awan, T.; Arshad, F.; Salim, H.; Qurashi, A. Bioinspired and Green Synthesis of Nanoparticles from Plant Extracts with Antiviral and Antimicrobial Properties: A Critical Review. J. Saudi Chem. Soc. 2021, 25, 101304. [Google Scholar] [CrossRef]
  25. Kamran, U.; Bhatti, H.N.; Iqbal, M.; Nazir, A. Green Synthesis of Metal Nanoparticles and Their Applications in Different Fields: A Review. Z. Phys. Chem. 2019, 233, 1325–1349. [Google Scholar] [CrossRef]
  26. Shyam, A.; Chandran, S.S.; George, B.; E, S. Plant Mediated Synthesis of AgNPs and Its Applications: An Overview. Inorg. Nano-Met. Chem. 2021, 51, 1646–1662. [Google Scholar] [CrossRef]
  27. Martín, R.; Miquel, S.; Ulmer, J.; Kechaou, N.; Langella, P.; Bermúdez-Humarán, L.G. Role of Commensal and Probiotic Bacteria in Human Health: A Focus on Inflammatory Bowel Disease. Microb. Cell Fact. 2013, 12, 71. [Google Scholar] [CrossRef] [Green Version]
  28. Proença, J.T.; Barral, D.C.; Gordo, I. Commensal-to-Pathogen Transition: One-Single Transposon Insertion Results in Two Pathoadaptive Traits in Escherichia Coli-Macrophage Interaction. Sci. Rep. 2017, 7, 4504. [Google Scholar] [CrossRef]
  29. Dueker, M.E.; French, S.; O’Mullan, G.D. Comparison of Bacterial Diversity in Air and Water of a Major Urban Center. Front. Microbiol. 2018, 9, 2868. [Google Scholar] [CrossRef]
  30. Marinari, S.; Mancinelli, R.; Campiglia, E.; Grego, S. Chemical and Biological Indicators of Soil Quality in Organic and Conventional Farming Systems in Central Italy. Ecol. Indic. 2006, 6, 701–711. [Google Scholar] [CrossRef]
  31. Casadevall, A.; Pirofski, L.A. Host-Pathogen Interactions: Basic Concepts of Microbial Commensalism, Colonization, Infection, and Disease. Infect. Immun. 2000, 68, 6511–6518. [Google Scholar] [CrossRef] [Green Version]
  32. World Health Organization. Antimicrobial Resistance. 2021. Available online: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance (accessed on 30 December 2021).
  33. Gao, L.; Wang, H.; Zheng, B.; Huang, F. Combating Antibiotic Resistance: Current Strategies for the Discovery of Novel Antibacterial Materials Based on Macrocycle Supramolecular Chemistry. Giant 2021, 7, 100066. [Google Scholar] [CrossRef]
  34. Friedman, N.D.; Temkin, E.; Carmeli, Y. The Negative Impact of Antibiotic Resistance. Clin. Microbiol. Infect. 2016, 22, 416–422. [Google Scholar] [CrossRef] [PubMed]
  35. Singh, K.; Panghal, M.; Kadyan, S.; Chaudhary, U.; Yadav, J.P. Green Silver Nanoparticles of Phyllanthus amarus: As an Antibacterial Agent against Multi Drug Resistant Clinical Isolates of Pseudomonas aeruginosa. J. Nanobiotechnol. 2014, 12, 40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  36. He, L.Y.; Ying, G.G.; Liu, Y.S.; Su, H.C.; Chen, J.; Liu, S.S.; Zhao, J.L. Discharge of Swine Wastes Risks Water Quality and Food Safety: Antibiotics and Antibiotic Resistance Genes from Swine Sources to the Receiving Environments. Environ. Int. 2016, 92–93, 210–219. [Google Scholar] [CrossRef]
  37. Zhu, Y.G.; Zhao, Y.; Li, B.; Huang, C.L.; Zhang, S.Y.; Yu, S.; Chen, Y.S.; Zhang, T.; Gillings, M.R.; Su, J.Q. Continental-Scale Pollution of Estuaries with Antibiotic Resistance Genes. Nat. Microbiol. 2017, 2, 270. [Google Scholar] [CrossRef]
  38. Zhuang, M.; Achmon, Y.; Cao, Y.; Liang, X.; Chen, L.; Wang, H.; Siame, B.A.; Leung, K.Y. Distribution of Antibiotic Resistance Genes in the Environment. Environ. Pollut. 2021, 285, 117402. [Google Scholar] [CrossRef]
  39. Su, H.C.; Liu, Y.S.; Pan, C.G.; Chen, J.; He, L.Y.; Ying, G.G. Persistence of Antibiotic Resistance Genes and Bacterial Community Changes in Drinking Water Treatment System: From Drinking Water Source to Tap Water. Sci. Total Environ. 2018, 616–617, 453–461. [Google Scholar] [CrossRef]
  40. Szekeres, E.; Chiriac, C.M.; Baricz, A.; Szőke-Nagy, T.; Lung, I.; Soran, M.L.; Rudi, K.; Dragos, N.; Coman, C. Investigating Antibiotics, Antibiotic Resistance Genes, and Microbial Contaminants in Groundwater in Relation to the Proximity of Urban Areas. Environ. Pollut. 2018, 236, 734–744. [Google Scholar] [CrossRef]
  41. Wang, Y.; Lu, S.; Liu, X.; Chen, J.; Han, M.; Wang, Z.; Guo, W. Profiles of Antibiotic Resistance Genes in an Inland Salt-Lake Ebinur Lake, Xinjiang, China: The Relationship with Antibiotics, Environmental Factors, and Microbial Communities. Ecotoxicol. Environ. Saf. 2021, 221, 112427. [Google Scholar] [CrossRef]
  42. Urra, J.; Alkorta, I.; Mijangos, I.; Epelde, L.; Garbisu, C. Application of Sewage Sludge to Agricultural Soil Increases the Abundance of Antibiotic Resistance Genes without Altering the Composition of Prokaryotic Communities. Sci. Total Environ. 2019, 647, 1410–1420. [Google Scholar] [CrossRef]
  43. Hu, J.; Zhao, F.; Zhang, X.X.; Li, K.; Li, C.; Ye, L.; Li, M. Metagenomic Profiling of ARGs in Airborne Particulate Matters during a Severe Smog Event. Sci. Total Environ. 2018, 615, 1332–1340. [Google Scholar] [CrossRef] [PubMed]
  44. Liao, H.; Lu, X.; Rensing, C.; Friman, V.P.; Geisen, S.; Chen, Z.; Yu, Z.; Wei, Z.; Zhou, S.; Zhu, Y. Hyperthermophilic Composting Accelerates the Removal of Antibiotic Resistance Genes and Mobile Genetic Elements in Sewage Sludge. Environ. Sci. Technol. 2018, 52, 266–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  45. Wimalasena, S.H.P.; Pathirana, H.N.K.; De Silvia, S.H.; Sugaya, E.; Nakai, T.; Heo, G.-J. Antibiotic Resistance and Virulence- Associated Gene Profile of Edwardsiella Tarda Isolated from Cultured Fish in Japan. Turk. J. Fish. Aquat. Sci. 2011, 19, 51–57. [Google Scholar] [CrossRef]
  46. Yakimov, A.; Bakhlanova, I.; Baitin, D. Targeting Evolution of Antibiotic Resistance by SOS Response Inhibition. Comput. Struct. Biotechnol. J. 2021, 19, 777–783. [Google Scholar] [CrossRef] [PubMed]
  47. Singh, R.; Smitha, M.S.; Singh, S.P. The Role of Nanotechnology in Combating Multi-Drug Resistant Bacteria. J. Nanosci. Nanotechnol. 2014, 14, 4745–4756. [Google Scholar] [CrossRef] [PubMed]
  48. Ventola, C.L. The Antibiotic Resistance Crisis: Causes and Threats: Part 1: Causes and Threats. Pharm. Ther. 2015, 40, 277–283. [Google Scholar]
  49. World Health Organization. Tripartite and UNEP Support OHHLEP’s Definition of “One Health”. 2021. Available online: https://www.who.int/news/item/01-12-2021-tripartite-and-unep-support-ohhlep-s-definition-of-one-health (accessed on 30 December 2021).
  50. Centers for Disease Control and Prevention. One Health, One Health Basics. 2018. Available online: https://www.cdc.gov/onehealth/basics/index.html (accessed on 30 December 2021).
  51. Iyamba, J.M.L.; Seil, M.; Devleeschouwer, M.; Kikuni, N.B.T.; Dehaye, J.P. Study of the Formation of a Biofilm by Clinical Strains of Staphylococcus Aureus. Biofouling 2011, 27, 811–821. [Google Scholar] [CrossRef]
  52. Watnick, P.; Kolter, R. Biofilm, City of Microbes. J. Bacteriol. 2000, 182, 2675–2679. [Google Scholar] [CrossRef] [Green Version]
  53. Flemming, H.C.; Wingender, J. The Biofilm Matrix. Nat. Rev. Microbiol. 2010, 8, 623–633. [Google Scholar] [CrossRef]
  54. Kassinger, S.J.; van Hoek, M.L. Biofilm Architecture: An Emerging Synthetic Biology Target. Synth. Syst. Biotechnol. 2020, 5, 1–10. [Google Scholar] [CrossRef]
  55. Ciofu, O.; Tolker-Nielsen, T. Tolerance and Resistance of Pseudomonas Aeruginosa biofilms to Antimicrobial Agents—How P. Aeruginosa Can Escape Antibiotics. Front. Microbiol. 2019, 10, 913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  56. Khatoon, Z.; McTiernan, C.D.; Suuronen, E.J.; Mah, T.F.; Alarcon, E.I. Bacterial Biofilm Formation on Implantable Devices and Approaches to Its Treatment and Prevention. Heliyon 2018, 4, e01067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  57. O’Toole, G.A. Microtiter Dish Biofilm Formation Assay. J. Vis. Exp. 2010, 47, 2437. [Google Scholar] [CrossRef] [PubMed]
  58. Srinivasan, R.; Santhakumari, S.; Poonguzhali, P.; Geetha, M.; Dyavaiah, M.; Xiangmin, L. Bacterial Biofilm Inhibition: A Focused Review on Recent Therapeutic Strategies for Combating the Biofilm Mediated Infections. Front. Microbiol. 2021, 12, 676458. [Google Scholar] [CrossRef]
  59. Zhang, C.; Li, B.; Tang, J.Y.; Wang, X.L.; Qin, Z.; Feng, X.Q. Experimental and Theoretical Studies on the Morphogenesis of Bacterial Biofilms. Soft Matter 2017, 13, 7389–7397. [Google Scholar] [CrossRef]
  60. Toyofuku, M.; Inaba, T.; Kiyokawa, T.; Obana, N.; Yawata, Y.; Nomura, N. Environmental Factors That Shape Biofilm Formation. Biosci. Biotechnol. Biochem. 2016, 80, 7–12. [Google Scholar] [CrossRef]
  61. Van den Driessche, F.; Brackman, G.; Swimberghe, R.; Rigole, P.; Coenye, T. Screening a Repurposing Library for Potentiators of Antibiotics against Staphylococcus Aureus Biofilms. Int. J. Antimicrob. Agents 2017, 49, 315–320. [Google Scholar] [CrossRef]
  62. Centers for Disease Control and Prevention. Healthcare-Associated Infections (HAIs), HAI Data. 2018. Available online: https://www.cdc.gov/hai/data/index.html (accessed on 30 December 2021).
  63. World Health Organization. Establishment of National Laboratory-Based Surveillance of Antimicrobial Resistance; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
  64. European Centre for Disease Prevention and Control. Healthcare-Associated Infections. 2021. Available online: https://www.ecdc.europa.eu/en/healthcare-associated-infections (accessed on 30 December 2021).
  65. World Health Organization. Newborns: Improving Survival and Well-Being. 2020. Available online: https://www.who.int/news-room/fact-sheets/detail/newborns-reducing-mortality (accessed on 30 December 2021).
  66. Iravani, S. Green Synthesis of Metal Nanoparticles Using Plants. Green Chem. 2011, 13, 2638–2650. [Google Scholar] [CrossRef]
  67. Khan, S.; Singh, S.; Gaikwad, S.; Nawani, N.; Junnarkar, M.; Pawar, S.V. Optimization of Process Parameters for the Synthesis of Silver Nanoparticles from Piper Betle Leaf Aqueous Extract, and Evaluation of Their Antiphytofungal Activity. Environ. Sci. Pollut. Res. Int. 2020, 27, 27221–27233. [Google Scholar] [CrossRef]
  68. Patra, J.K.; Baek, K.H. Green Nanobiotechnology: Factors Affecting Synthesis and Characterization Techniques. J. Nanomater. 2014, 2014, 417305. [Google Scholar] [CrossRef] [Green Version]
  69. Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, Applications and Toxicities. Arab. J. Chem. 2019, 12, 908–931. [Google Scholar] [CrossRef]
  70. Al-Shabib, N.A.; Husain, F.M.; Ahmed, F.; Khan, R.A.; Ahmad, I.; Alsharaeh, E.; Khan, M.S.; Hussain, A.; Rehman, M.T.; Yusuf, M.; et al. Biogenic Synthesis of Zinc Oxide Nanostructures from Nigella sativa Seed: Prospective Role as Food Packaging Material Inhibiting Broad-Spectrum Quorum Sensing and Biofilm. Sci. Rep. 2016, 6, srep36761. [Google Scholar] [CrossRef] [Green Version]
  71. Sulaiman, G.M.; Mohammed, W.H.; Marzoog, T.R.; Al-Amiery, A.A.A.; Kadhum, A.A.H.; Mohamad, A.B. Green Synthesis, Antimicrobial and Cytotoxic Effects of Silver Nanoparticles Using Eucalyptus Chapmaniana Leaves Extract. Asian Pac. J. Trop. Biomed. 2013, 3, 58–63. [Google Scholar] [CrossRef] [Green Version]
  72. Sukhanova, A.; Bozrova, S.; Sokolov, P.; Berestovoy, M.; Karaulov, A.; Nabiev, I. Dependence of Nanoparticle Toxicity on Their Physical and Chemical Properties. Nanoscale Res. Lett. 2018, 13, 44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  73. De Lima, R.; Seabra, A.B.; Durán, N. Silver Nanoparticles: A Brief Review of Cytotoxicity and Genotoxicity of Chemically and Biogenically Synthesized Nanoparticles. J. Appl. Toxicol. 2012, 32, 867–879. [Google Scholar] [CrossRef] [PubMed]
  74. Khan, A.U.; Yuan, Q.; Ul, Z.; Khan, H.; Ahmad, A.; Khan, F.U.; Tahir, K.; Shakeel, M.; Ullah, S. An Eco-Benign Synthesis of AgNPs Using Aqueous Extract of Longan Fruit Peel: Antiproliferative Response against Human Breast Cancer Cell Line MCF-7, Antioxidant and Photocatalytic Deprivation of Methylene Blue. J. Photochem. Photobiol. B Biol. 2018, 183, 367–373. [Google Scholar] [CrossRef]
  75. Dobrucka, R. Biofabrication of Platinum Nanoparticles Using Fumariae Herba Extract and Their Catalytic Properties. Saudi J. Biol. Sci. 2019, 26, 31–37. [Google Scholar] [CrossRef]
  76. Roy, N.; Gaur, A.; Jain, A.; Bhattacharya, S.; Rani, V. Green Synthesis of Silver Nanoparticles: An Approach to Overcome Toxicity. Environ. Toxicol. Pharmacol. 2013, 36, 807–812. [Google Scholar] [CrossRef]
  77. Akhtar, M.S.; Panwar, J.; Yun, Y.S. Biogenic Synthesis of Metallic Nanoparticles by Plant Extracts. ACS Sustain. Chem. Eng. 2013, 1, 591–602. [Google Scholar] [CrossRef]
  78. Raji, P.; Samrot, A.V.; Keerthana, D.; Karishma, S. Antibacterial Activity of Alkaloids, Flavonoids, Saponins and Tannins Mediated Green Synthesised Silver Nanoparticles Against Pseudomonas Aeruginosa and Bacillus Subtilis. J. Clust. Sci. 2019, 30, 881–895. [Google Scholar] [CrossRef]
  79. Koul, B.; Poonia, A.K.; Yadav, D.; Jin, J.O. Microbe-Mediated Biosynthesis of Nanoparticles: Applications and Future Prospects. Biomolecules 2021, 11, 886. [Google Scholar] [CrossRef] [PubMed]
  80. Li, X.; Xu, H.; Chen, Z.S.; Chen, G. Biosynthesis of Nanoparticles by Microorganisms and Their Applications. J. Nanomater. 2011, 2011, 1–16. [Google Scholar] [CrossRef] [Green Version]
  81. Gericke, M.; Pinches, A. Microbial Production of Gold Nanoparticles. Gold Bull. 2006, 39, 22–28. [Google Scholar] [CrossRef] [Green Version]
  82. Makarov, V.V.; Makarova, S.S.; Love, A.J.; Sinitsyna, O.V.; Dudnik, A.O.; Yaminsky, I.V.; Taliansky, M.E.; Kalinina, N.O. Biosynthesis of Stable Iron Oxide Nanoparticles in Aqueous Extracts of Hordeum Vulgare and Rumex Acetosa Plants. Langmuir 2014, 30, 5982–5988. [Google Scholar] [CrossRef] [PubMed]
  83. Quintero-quiroz, C.; Acevedo, N.; Zapata-giraldo, J.; Botero, L.E.; Quintero, J.; Zárate-triviño, D.; Saldarriaga, J.; Pérez, V.Z. Optimization of Silver Nanoparticle Synthesis by Chemical Reduction and Evaluation of Its Antimicrobial and Toxic Activity. Biomater. Res. 2019, 23, 27. [Google Scholar] [CrossRef] [PubMed]
  84. Bhadra, P.; Mitra, M.K.; Das, G.C.; Dey, R.; Mukherjee, S. Interaction of Chitosan Capped ZnO Nanorods with Escherichia Coli. Mater. Sci. Eng. C 2011, 31, 929–937. [Google Scholar] [CrossRef]
  85. Jalal, R.; Goharshadi, E.K.; Abareshi, M.; Moosavi, M.; Yousefi, A.; Nancarrow, P. ZnO Nanofluids: Green Synthesis, Characterization, and Antibacterial Activity. Mater. Chem. Phys. 2010, 121, 198–201. [Google Scholar] [CrossRef]
  86. Premanathan, M.; Karthikeyan, K.; Jeyasubramanian, K.; Manivannan, G. Selective Toxicity of ZnO Nanoparticles toward Gram-Positive Bacteria and Cancer Cells by Apoptosis through Lipid Peroxidation. Nanomedecine 2011, 7, 184–192. [Google Scholar] [CrossRef]
  87. Garibo, D.; Borbón-Nuñez, H.; De León, D.J.N.; Mendoa, E.G.; Estrada, I. Green Synthesis of Silver Nanoparticles Using Lysiloma Acapulcensis Exhibit High-Antimicrobial Activity. Sci. Rep. 2020, 10, 7. [Google Scholar] [CrossRef]
  88. Griffith, M.; Udekwu, K.I.; Gkotzis, S.; Mah, T.-F.; Alarcon, E.I. Anti-Microbiological and Anti-Infective Activities of Silver. In Silver Nanoparticle Applications; Engineering Materials; Springer Nature: Cham, Switzerland, 2015; pp. 127–146. [Google Scholar]
  89. Chernousova, S.; Epple, M. Silver as Antibacterial Agent: Ion, Nanoparticle, and Metal. Angew. Chem. Int. Ed. 2013, 52, 1636–1653. [Google Scholar] [CrossRef]
  90. El-Sherbiny, I.M.; Salih, E. Green Synthesis of Metallic Nanoparticles Using Biopolymers and Plant Extracts: Synthesis, Characterization and Their Applications. In Green Metal Nanoparticles; Scrivener Publishing LLC: Beverly, MA, USA, 2018; pp. 293–319. [Google Scholar] [CrossRef]
  91. Abdel-Shafy, H.I.; Mansour, M.S.M. Green Synthesis of Metallic Nanoparticles from Natural Resources and Food Waste and Their Environmental Application. In Green Metal Nanoparticles; Scrivener Publishing LLC: Beverly, MA, USA, 2018; pp. 321–386. [Google Scholar] [CrossRef]
  92. Ganesh Kumar, V.; Dinesh Gokavarapu, S.; Rajeswari, A.; Stalin Dhas, T.; Karthick, V.; Kapadia, Z.; Shrestha, T.; Barathy, I.A.; Roy, A.; Sinha, S. Facile Green Synthesis of Gold Nanoparticles Using Leaf Extract of Antidiabetic Potent Cassia auriculata. Colloids Surf. B Biointerfaces 2011, 87, 159–163. [Google Scholar] [CrossRef] [PubMed]
  93. Abdel-Raouf, N.; Al-Enazi, N.M.; Ibraheem, I.B.M. Green Biosynthesis of Gold Nanoparticles Using Galaxaura elongata and Characterization of Their Antibacterial Activity. Arab. J. Chem. 2017, 10, S3029–S3039. [Google Scholar] [CrossRef] [Green Version]
  94. Siddiqi, K.S.; Husen, A. Green Synthesis, Characterization and Uses of Palladium/Platinum Nanoparticles. Nanoscale Res. Lett. 2016, 11, 482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  95. Saif, S.; Tahir, A.; Chen, Y. Green Synthesis of Iron Nanoparticles and Their Environmental Applications and Implications. Nanomaterials 2016, 6, 209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  96. Bharath, B.; Sasidharan, S.; Bhamidipati, S.K.; Saudagar, P. Green-Synthesized FeSO4 Nanoparticles Exhibit Antibacterial and Cytotoxic Activity by DNA Degradation. Curr. Pharm. Biotechnol. 2020, 21, 587–595. [Google Scholar] [CrossRef] [PubMed]
  97. Sabouri, Z.; Akbari, A.; Hosseini, H.A.; Darroudi, M. Facile Green Synthesis of NiO Nanoparticles and Investigation of Dye Degradation and Cytotoxicity Effects. J. Mol. Struct. 2018, 1173, 931–936. [Google Scholar] [CrossRef]
  98. Chen, G.; Li, J. Synthesis of In2O3 Nanoparticles via a Green and Solvent-Free Method. Green Process. Synth. 2016, 5, 389–394. [Google Scholar] [CrossRef]
  99. Sudhasree, S.; Banu, A.S.; Brindha, P.; Kurian, G.A. Synthesis of Nickel Nanoparticles by Chemical and Green Route and Their Comparison in Respect to Biological Effect and Toxicity. Toxicol. Environ. Chem. 2014, 96, 743–754. [Google Scholar] [CrossRef]
  100. Elango, G.; Roopan, S.M.; Al-dhabi, N.A.; Arasu, V.; Damodharan, K.I.; Elumalai, K. Cocos Nucifera Coir-Mediated Green Synthesis of Pd NPs and Its Investigation against Larvae and Agricultural Pest. Artif. Cells Nanomed. Biotechnol. 2017, 45, 1581–1587. [Google Scholar] [CrossRef] [Green Version]
  101. Miri, A.; Sarani, M.; Hashemzadeh, A.; Mardani, Z.; Darroudi, M. Biosynthesis and Cytotoxic Activity of Lead Oxide Nanoparticles. Green Chem. Lett. Rev. 2018, 11, 567–572. [Google Scholar] [CrossRef]
  102. Unuofin, J.O.; Oladipo, A.O.; Msagati, T.A.M.; Lebelo, S.L.; Meddows-Taylor, S.; More, G.K. Novel Silver-Platinum Bimetallic Nanoalloy Synthesized from Vernonia mespilifolia Extract: Antioxidant, Antimicrobial, and Cytotoxic Activities. Arab. J. Chem. 2020, 13, 6639–6648. [Google Scholar] [CrossRef]
  103. Nasrollahzadeh, M.; Sajjadi, M.; Dadashi, J.; Ghafuri, H. Pd-Based Nanoparticles: Plant-Assisted Biosynthesis, Characterization, Mechanism, Stability, Catalytic and Antimicrobial Activities. Adv. Colloid Interface Sci. 2020, 276, 102103. [Google Scholar] [CrossRef] [PubMed]
  104. Veisi, H.; Zohrabi, A.; Kamangar, S.A.; Karmakar, B.; Saremi, S.G.; Varmira, K.; Hamelian, M. Green Synthesis of Pd/Fe3O4 Nanoparticles Using Chamomile Extract as Highly Active and Recyclable Catalyst for Suzuki Coupling Reaction. J. Organomet. Chem. 2021, 951, 122005. [Google Scholar] [CrossRef]
  105. Sofalgar, P.; Sabbaghan, M.; Naimi-Jamal, M.R. Green Fabrication of 2D Fe3SO4/Mg(OH)2 and 2D Fe3O4/MgO Nanocomposites Using [OMIM] Br Ionic Liquid and Comparing Catalytic Activity with Green Metrics. Polycycl. Aromat. Compd. 2021, 41, 1180–1199. [Google Scholar] [CrossRef]
  106. Virkutyte, J.; Varma, R.S. Green Synthesis of Metal Nanoparticles: Biodegradable Polymers and Enzymes in Stabilization and Surface Functionalization. Chem. Sci. 2011, 2, 837–846. [Google Scholar] [CrossRef]
  107. Norrrahim, M.N.F.; Nurazzi, N.M.; Jenol, M.A.; Farid, M.A.A.; Janudin, N.; Ujang, F.A.; Yasim-Anuar, T.A.T.; Syed Najmuddin, S.U.F.; Ilyas, R.A. Emerging Development of Nanocellulose as an Antimicrobial Material: An Overview. Mater. Adv. 2021, 2, 3538–3551. [Google Scholar] [CrossRef]
  108. Nehra, P.; Chauhan, R.P. Eco-Friendly Nanocellulose and Its Biomedical Applications: Current Status and Future Prospect. J. Biomater. Sci. Polym. Ed. 2021, 32, 112–149. [Google Scholar] [CrossRef]
  109. Medina-Ramirez, I.; Bashir, S.; Luo, Z.; Liu, J.L. Green Synthesis and Characterization of Polymer-Stabilized Silver Nanoparticles. Colloids Surf. B Biointerfaces 2009, 73, 185–191. [Google Scholar] [CrossRef]
  110. Phan, T.T.V.; Phan, D.T.; Cao, X.T.; Huynh, T.C.; Oh, J. Roles of Chitosan in Green Synthesis of Metal Nanoparticles for Biomedical Applications. Nanomaterials 2021, 11, 273. [Google Scholar] [CrossRef]
  111. Parmar, A.; Kaur, G.; Kapil, S.; Sharma, V.; Sharma, S. Biogenic PLGA-Zinc Oxide Nanocomposite as Versatile Tool for Enhanced Photocatalytic and Antibacterial Activity. Appl. Nanosci. 2019, 9, 2001–2016. [Google Scholar] [CrossRef]
  112. Chandran, S.; Ravichandran, V.; Chandran, S.; Chemmanda, J.; Chandarshekar, B. Biosynthesis of PVA Encapsulated Silver Nanoparticles. J. Appl. Res. Technol. 2016, 14, 319–324. [Google Scholar] [CrossRef] [Green Version]
  113. Darroudi, M.; Ahmad, M.B.; Abdullah, A.H.; Ibrahim, N.A. Green Synthesis and Characterization of Gelatin-Based and Sugar-Reduced Silver Nanoparticles. Int. J. Nanomed. 2011, 6, 569–574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  114. Garcia, R.; Stevanovic, T.; Berthier, J.; Njamen, G.; Tolnai, B.; Achim, A. Cellulose, Nanocellulose, and Antimicrobial Materials for the Manufacture of Disposable Face Masks: A Review. BioResources 2021, 16, 4321–4353. [Google Scholar] [CrossRef]
  115. Kupnik, K.; Primožič, M.; Kokol, V.; Leitgeb, M. Nanocellulose in Drug Delivery and Antimicrobially Active Materials. Polymers 2020, 12, 2825. [Google Scholar] [CrossRef]
  116. Ahmad, F.; Taj, M.B.; Ramzan, M.; Raheel, A.; Shabbir, S. Flacourtia indica Based Biogenic Nanoparticles: Development, Characterization, and Bioactivity Flacourtia Indica Based Biogenic Nanoparticles: Development, Characterization, and Bioactivity against Wound Associated Pathogens. Mater. Res. Express 2020, 7, 015026. [Google Scholar] [CrossRef]
  117. Tortorella, S.; Buratti, V.V.; Maturi, M.; Sambri, L.; Franchini, M.C.; Locatelli, E. Surface-Modified Nanocellulose for Application in Biomedical Engineering and Nanomedicine: A Review. Int. J. Nanomed. 2020, 15, 9909–9937. [Google Scholar] [CrossRef]
  118. Garza-Cervantes, J.A.; Mendiola-Garza, G.; de Melo, E.M.; Dugmore, T.I.J.; Matharu, A.S.; Morones-Ramirez, J.R. Antimicrobial Activity of a Silver-Microfibrillated Cellulose Biocomposite against Susceptible and Resistant Bacteria. Sci. Rep. 2020, 10, 9. [Google Scholar] [CrossRef]
  119. Oun, A.A.; Shankar, S.; Rhim, J.W. Multifunctional Nanocellulose/Metal and Metal Oxide Nanoparticle Hybrid Nanomaterials. Crit. Rev. Food Sci. Nutr. 2020, 60, 435–460. [Google Scholar] [CrossRef]
  120. Mocanu, A.; Isopencu, G.; Busuioc, C.; Popa, O.M.; Dietrich, P.; Socaciu-Siebert, L. Bacterial Cellulose Films with ZnO Nanoparticles and Propolis Extracts: Synergistic Antimicrobial Effect. Sci. Rep. 2019, 9, 17687. [Google Scholar] [CrossRef]
  121. Razavi, R.; Molaei, R.; Moradi, M.; Tajik, H.; Ezati, P.; Shafipour, A. Biosynthesis of Metallic Nanoparticles Using Mulberry Fruit (Morus Alba L.) Extract for the Preparation of Antimicrobial Nanocellulose Film. Appl. Nanosci. 2020, 10, 465–476. [Google Scholar] [CrossRef]
  122. Mourdikoudis, S.; Pallares, R.M.; Thanh, N.T.K. Characterization Techniques for Nanoparticles: Comparison and Complementarity upon Studying Nanoparticle Properties. Nanoscale 2018, 10, 12871–12934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  123. Thema, F.T.; Manikandan, E.; Dhlamini, M.S.; Maaza, M. Green Synthesis of ZnO Nanoparticles via Agathosma Betulina Natural Extract. Mater. Lett. 2015, 161, 124–127. [Google Scholar] [CrossRef]
  124. Matinise, N.; Fuku, X.G.; Kaviyarasu, K.; Mayedwa, N.; Maaza, M. ZnO Nanoparticles via Moringa Oleifera Green Synthesis: Physical Properties & Mechanism of Formation. Appl. Surf. Sci. 2017, 406, 339–347. [Google Scholar] [CrossRef]
  125. Lomelí-Rosales, D.A.; Zamudio-Ojeda, K.; Reyes-Maldonado, O.K.; López-Reyes, M.E.; Basulto-Padilla, G.C.; Lopez-Naranjo, E.J.; Zuñiga-Mayo, V.M.; Velázquez-Juarez, G. Green Synthesis of Gold and Silver Nanoparticles Using Leaf Extract of Capsicum chinense Plant. Molecules 2022, 27, 1692. [Google Scholar] [CrossRef] [PubMed]
  126. Castillo-Henríquez, L.; Alfaro-Aguilar, K.; Ugalde-álvarez, J.; Vega-Fernández, L.; de Oca-Vásquez, G.M.; Vega-Baudrit, J.R. Green Synthesis of Gold and Silver Nanoparticles from Plant Extracts and Their Possible Applications as Antimicrobial Agents in the Agricultural Area. Nanomaterials 2020, 10, 1763. [Google Scholar] [CrossRef]
  127. Zhang, T.; Dang, M.; Zhang, W.; Lin, X. Gold Nanoparticles Synthesized from Euphorbia Fischeriana Root by Green Route Method Alleviates the Isoprenaline Hydrochloride Induced Myocardial Infarction in Rats. J. Photochem. Photobiol. B 2020, 202, 111705. [Google Scholar] [CrossRef]
  128. Siddiqi, K.S.; Rahman, A.; Husen, A. Properties of Zinc Oxide Nanoparticles and Their Activity Against Microbes. Nanoscale Reseach Lett. 2018, 13, 141. [Google Scholar] [CrossRef]
  129. Baptista, P.V.; McCusker, M.P.; Carvalho, A.; Ferreira, D.A.; Mohan, N.M.; Martins, M.; Fernandes, A.R. Nano-Strategies to Fight Multidrug Resistant Bacteria—“A Battle of the Titans”. Front. Microbiol. 2018, 9, 1441. [Google Scholar] [CrossRef] [Green Version]
  130. Rudramurthy, G.R.; Swamy, M.K.; Sinniah, U.R.; Ghasemzadeh, A. Nanoparticles: Alternatives against Drug-Resistant Pathogenic Microbes. Molecules 2016, 21, 836. [Google Scholar] [CrossRef]
  131. Singh, P.; Pandit, S.; Beshay, M.; Mokkapati, V.R.S.S.; Olsson, M.E.; Sultan, A.; Mackevica, A.; Mateiu, V.; Lütken, H.; Daugaard, A.E.; et al. Anti-Biofilm Effects of Gold and Silver Nanoparticles Synthesized by the Rhodiola Rosea Rhizome Extracts. Artif. Cells Nanomed. Biotechnol. 2018, 46 (Suppl. 3), 5886–5899. [Google Scholar] [CrossRef] [Green Version]
  132. Majeed, M.; Hakeem, K.R.; Rehman, R.U. Synergistic Effect of Plant Extract Coupled Silver Nanoparticles in Various Therapeutic Applications—Present Insights and Bottlenecks. Chemosphere 2022, 288, 132527. [Google Scholar] [CrossRef] [PubMed]
  133. Akintelu, S.A.; Folorunso, A.S.; Folorunso, F.A.; Oyebamiji, A.K. Green Synthesis of Copper Oxide Nanoparticles for Biomedical Application and Environmental Remediation. Heliyon 2020, 6, e04508. [Google Scholar] [CrossRef] [PubMed]
  134. Arif, R.; Uddin, R. A Review on Recent Developments in the Biosynthesis of Silver Nanoparticles and Its Biomedical Applications. Med. Devices Sens. 2021, 4, e10158. [Google Scholar] [CrossRef]
  135. Naqvi, S.Z.H.; Kiran, U.; Ali, M.I.; Jamal, A.; Hameed, A.; Ahmed, S.; Ali, N. Combined Efficacy of Biologically Synthesized Silver Nanoparticles and Different Antibiotics against Multidrug-Resistant Bacteria. Int. J. Nanomed. 2013, 8, 3187–3195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  136. Salar, R.K.; Sharma, P.; Kumar, N. Enhanced Antibacterial Activity of Streptomycin against Some Human Pathogens Using Green Synthesized Silver Nanoparticles. Resour. Technol. 2015, 1, 106–115. [Google Scholar] [CrossRef] [Green Version]
  137. Nag, S.; Biswas, A.; Chattopadhyay, D.; Bhattacharyya, M. Protein-Stabilized Silver Nanoparticles Encapsulating Gentamycin for the Therapy of Bacterial Biofilm Infections. Nanomedicine 2021, 16, 801–818. [Google Scholar] [CrossRef]
  138. Krishnaraj, C.; Ramachandran, R.; Mohan, K.; Kalaichelvan, P.T. Optimization for Rapid Synthesis of Silver Nanoparticles and Its Effect on Phytopathogenic Fungi. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2012, 93, 95–99. [Google Scholar] [CrossRef]
  139. Huang, W.; Yan, M.; Duan, H.; Bi, Y.; Cheng, X.; Yu, H. Synergistic Antifungal Activity of Green Synthesized Silver Nanoparticles and Epoxiconazole against Setosphaeria turcica. J. Nanomater. 2020, 2020, 9535432. [Google Scholar] [CrossRef] [Green Version]
  140. Lee, J.S.; Lytton-Jean, A.K.R.; Hurst, S.J.; Mirkin, C.A. Silver Nanoparticle—Oligonucleotide Conjugates Based on DNA with Triple Cyclic Disulfide Moieties. Nano Lett. 2007, 7, 2112–2115. [Google Scholar] [CrossRef] [Green Version]
  141. Tokareva, I.; Hutter, E. Hybridization of Oligonucleotide-Modified Silver and Gold Nanoparticles in Aqueous Dispersions and on Gold Films. J. Am. Chem. Soc. 2004, 126, 15784–15789. [Google Scholar] [CrossRef]
  142. Vidal, B.C.; Deivaraj, T.C.; Yang, J.; Too, H.P.; Chow, G.M.; Gan, L.M.; Lee, J.Y. Stability and Hybridization-Driven Aggregation of Silver Nanoparticle-Oligonucleotide Conjugates. New J. Chem. 2005, 29, 812–816. [Google Scholar] [CrossRef]
  143. Barbinta-Patrascu, M.E.; Bunghez, I.R.; Iordache, S.M.; Badea, N.; Fierascu, R.C.; Ion, R.M. Antioxidant Properties of Biohybrids Based on Liposomes and Sage Silver Nanoparticles. J. Nanosci. Nanotechnol. 2013, 13, 2051–2060. [Google Scholar] [CrossRef] [PubMed]
  144. Celebioglu, A.; Topuz, F.; Yildiz, Z.I.; Uyar, T. One-Step Green Synthesis of Antibacterial Silver Nanoparticles Embedded in Electrospun Cyclodextrin Nanofibers. Carbohydr. Polym. 2019, 207, 471–479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  145. Gupta, A.; Briffa, S.M.; Swingler, S.; Gibson, H.; Kannappan, V.; Adamus, G.; Kowalczuk, M.; Martin, C.; Radecka, I. Synthesis of Silver Nanoparticles Using Curcumin-Cyclodextrins Loaded into Bacterial Cellulose-Based Hydrogels for Wound Dressing Applications. Biomacromolecules 2020, 21, 1802–1811. [Google Scholar] [CrossRef]
  146. Rafique, M.; Sadaf, I.; Rafique, M.S.; Tahir, M.B. A Review on Green Synthesis of Silver Nanoparticles and Their Applications. Artif. Cells Nanomed. Biotechnol. 2017, 45, 1272–1291. [Google Scholar] [CrossRef]
  147. Ameta, R.K.; Shankar, K.R.; Man, S. Plant Extract: An Effective Medium for Synthesis of Metal Nanoparticles. SF J. Nanochem. Nanotechnol. 2018, 1, 1008. [Google Scholar]
  148. Deshmukh, A.R.; Gupta, A.; Kim, B.S. Ultrasound Assisted Green Synthesis of Silver and Iron Oxide Nanoparticles Using Fenugreek Seed Extract and Their Enhanced Antibacterial and Antioxidant Activities. Biomed Res. Int. 2019, 2019, 1714358. [Google Scholar] [CrossRef]
  149. Reddy, N.V.; Li, H.; Hou, T.; Bethu, M.S.; Ren, Z.; Zhang, Z. Phytosynthesis of Silver Nanoparticles Using Perilla Frutescens Leaf Extract: Characterization and Evaluation of Antibacterial, Antioxidant, and Anticancer Activities. Int. J. Nanomed. 2021, 16, 15–29. [Google Scholar] [CrossRef]
  150. Tailor, G.; Yadav, B.L.; Chaudhary, J.; Joshi, M.; Suvalka, C. Green Synthesis of Silver Nanoparticles Using Ocimum Canum and Their Anti-Bacterial Activity. Biochem. Biophys. Rep. 2020, 24, 100848. [Google Scholar] [CrossRef]
  151. Bharadwaj, K.K.; Rabha, B.; Sarkar, T.; Gogoi, S.K.; Kakati, N.; Baishya, D. Green Synthesis of Silver Nanoparticles Using Diospyros Malabarica Fruit Extract and Assessments of Their Antimicrobial, Anticancer and Catalytic Reduction of 4-Nitrophenol (4-NP). Nanomaterials 2021, 11, 1999. [Google Scholar] [CrossRef]
  152. Murei, A.; Pillay, K.; Govender, P.; Thovhogi, N.; Gitari, W.M.; Samie, A. Synthesis, Characterization and in Vitro Antibacterial Evaluation of Pyrenacantha Grandiflora Conjugated Silver Nanoparticles. Nanomaterials 2021, 11, 1568. [Google Scholar] [CrossRef] [PubMed]
  153. Singh, R.; Hano, C.; Nath, G.; Sharma, B. Green Biosynthesis of Silver Nanoparticles Using Leaf Extract of Carissa carandas L. and Their Antioxidant and Antimicrobial Activity against Human Pathogenic Bacteria. Biomolecules 2021, 11, 299. [Google Scholar] [CrossRef] [PubMed]
  154. Ravindran, D.; Ramanathan, S.; Arunachalam, K.; Jeyaraj, G.P.; Shunmugiah, K.P. Phytosynthesized Silver Nanoparticles as Antiquorum Sensing and Antibiofilm Agent against the Nosocomial Pathogen Serratia Marcescens: An in Vitro Study. J Appl Microbiol. 2018, 124, 1425–1440. [Google Scholar] [CrossRef] [PubMed]
  155. Ruíz-Baltazar, Á.D.J.; Reyes-López, S.Y.; Larrañaga, D.; Estévez, M.; Pérez, R. Green Synthesis of Silver Nanoparticles Using a Melissa Officinalis Leaf Extract with Antibacterial Properties. Results Phys. 2017, 7, 2639–2643. [Google Scholar] [CrossRef]
  156. Lagashetty, A.; Ganiger, S.K. Synthesis, Characterization and Antibacterial Study of Ag–Au Bi-Metallic Nanocomposite by Bioreduction Using Piper Betle Leaf Extract. Heliyon 2019, 5, e02794. [Google Scholar] [CrossRef] [Green Version]
  157. Gulbagca, F.; Ozdemir, S.; Gulcan, M.; Sen, F. Synthesis and Characterization of Rosa canina-Mediated Biogenic Silver Nanoparticles for Anti-Oxidant, Antibacterial, Antifungal, and DNA Cleavage Activities. Heliyon 2019, 5, e02980. [Google Scholar] [CrossRef] [Green Version]
  158. Adil, M.; Khan, T.; Aasim, M.; Khan, A.A.; Ashraf, M. Evaluation of the Antibacterial Potential of Silver Nanoparticles Synthesized through the Interaction of Antibiotic and Aqueous Callus Extract of Fagonia indica. AMB Express 2019, 9, 75. [Google Scholar] [CrossRef]
  159. Cittrarasu, V.; Balasubramanian, B.; Park, S.; Maluventhan, V.; Kaul, T.; Liu, W.C. Biological Mediated Ag Nanoparticles from Barleria longiflora for Antimicrobial Activity and Photocatalytic Degradation Using Methylene Blue Biological Mediated Ag Nanoparticles from Barleria longiflora for Antimicrobial Activity and Photocatalytic Degrad. Artif. Cells Nanomed. Biotechnol. 2019, 47, 2424–2430. [Google Scholar] [CrossRef] [Green Version]
  160. Das, G.; Patra, J.K.; Basavegowda, N.; Vishnuprasad, C.N.; Shin, H. Comparative Study on Antidiabetic, Cytotoxicity, Antioxidant and Antibacterial Properties of Biosynthesized Silver Nanoparticles Using Outer Peels of Two Varieties of Ipomoea Batatas (L.) Lam. Int. J. Nanomed. 2019, 14, 4741–4754. [Google Scholar] [CrossRef] [Green Version]
  161. Okaiyeto, K.; Ojemaye, M.O.; Hoppe, H.; Mabinya, L.V.; Okoh, A.I. Phytofabrication of Silver/Silver Chloride Oedera genistifolia: Characterization and Antibacterial Potential. Molecules 2019, 24, 4382. [Google Scholar] [CrossRef] [Green Version]
  162. Cyril, N.; George, J.B.; Joseph, L.; Raghavamenon, A.C.; Sylas, V.P. Assessment of Antioxidant, Antibacterial and Anti-Proliferative (Lung Cancer Cell Line Akan549) Activities of Green Synthesized Silver Nanoparticles from Derris trifoliata. Toxicol. Res. 2019, 8, 297–308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  163. Kanjikar, A.P.; Hugar, A.L.; Londonkar, R.L. Characterization of Phyto-Nanoparticles from Ficus Krishnae for Their Antibacterial and Anticancer Activities. Drug Dev. Ind. Pharm. 2018, 44, 377–384. [Google Scholar] [CrossRef] [PubMed]
  164. Suwan, T.; Khongkhunthian, S.; Okonogi, S. Antifungal Activity of Polymeric Micelles of Silver Nanoparticles Prepared from Psidium guajava aqueous Extract. Drug Disc. Ther. 2019, 13, 62–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  165. Vankar, P.S.; Shukla, D.; Silk, Á.C.Á. Biosynthesis of Silver Nanoparticles Using Lemon Leaves Extract and Its Application for Antimicrobial Finish on Fabric. Appl. Nanosci. 2012, 2, 163–168. [Google Scholar] [CrossRef] [Green Version]
  166. Oh, K.H.; Soshnikova, V.; Markus, J.; Kim, Y.J.; Chul, S.; Singh, P.; Castro-Aceituno, V.; Ahn, S.; Hyun, D.; Shim, Y.J.; et al. Biosynthesized Gold and Silver Nanoparticles by Aqueous Fruit Extract of Chaenomeles Sinensis and Screening of Their Biomedical Activities. Artif. Cells Nanomed. Biotechnol. 2018, 46, 599–606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  167. Lubis, A.F.; Malek, N.A.N.N.; Sani, S.N.; Jemon, K. Biogenic Synthesis of Silver Nanoparticles Using Persicaria Odorata Leaf Extract: Antibacterial, Cytocompatibility, and in Vitro Wound Healing Evaluation. Particuology 2022, 70, 10–19. [Google Scholar] [CrossRef]
  168. Ituen, E.; Ekemini, E.; Yuanhua, L.; Singh, A. Green Synthesis of Citrus Reticulata Peels Extract Silver Nanoparticles and Characterization of Structural, Biocide and Anticorrosion Properties. J. Mol. Struct. 2020, 1207, 127819. [Google Scholar] [CrossRef]
  169. Alsammarraie, F.K.; Wang, W.; Zhou, P.; Mustapha, A.; Lin, M. Green Synthesis of Silver Nanoparticles Using Turmeric Extracts and Investigation of Their Antibacterial Activities. Colloids Surf. B Biointerfaces 2018, 171, 398–405. [Google Scholar] [CrossRef]
  170. Habibipour, R.; Moradi-Haghgou, L.; Farmany, A. Green Synthesis of AgNPs@PPE and Its Pseudomonas Aeruginosa Biofilm Formation Activity Compared to Pomegranate Peel Extract. Int. J. Nanomed. 2019, 14, 6891–6899. [Google Scholar] [CrossRef] [Green Version]
  171. Moulavi, P.; Noorbazargan, H. Antibiofilm Effect of Green Engineered Silver Nanoparticles Fabricated from Artemisia scoporia Extract on the Expression of IcaA and IcaR Genes against Multidrug-Resistant Staphylococcus aureus Bacterial Isolates. J. Basic Microbiol. 2019, 59, 701–712. [Google Scholar] [CrossRef]
  172. Arya, G.; Kumari, R.M.; Gupta, N.; Kumar, A.; Chandra, R.; Nimesh, S. Green Synthesis of Silver Nanoparticles Using Prosopis Juliflora Bark Extract: Reaction Optimization, Antimicrobial and Catalytic Activities. Artif. Cells Nanomed. Biotechnol. 2018, 46, 985–993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  173. Feizi, S.; Taghipour, E.; Ghadam, P.; Mohammadi, P. Antifungal, Antibacterial, Antibiofilm and Colorimetric Sensing of Toxic Metals Activities of Eco Friendly, Economical Synthesized Ag/AgCl Nanoparticles Using Malva Sylvestris Leaf Extracts. Microb. Pathog. 2018, 125, 33–42. [Google Scholar] [CrossRef] [PubMed]
  174. Singh, P.; Pandit, S.; Garnæs, J.; Tunjic, S.; Mokkapati, V.R.S.S.; Sultan, A.; Thygesen, A.; Mackevica, A.; Mateiu, R.V.; Daugaard, A.E.; et al. Green Synthesis of Gold and Silver Nanoparticles from Cannabis sativa (Industrial Hemp) and Their Capacity for Biofilm Inhibition. Int. J. Nanomed. 2018, 13, 3571–3591. [Google Scholar] [CrossRef] [PubMed]
  175. Muthamil, S.; Amsa, V.; Boopathi, D.; Pandian, S.K.; Balamurugan, K.; Pandian, S.K. Green Synthesized Silver Nanoparticles Demonstrating Enhanced in Vitro and in Vivo Antibiofilm Activity against Candida spp. J. Basic Microbiol. 2018, 58, 343–357. [Google Scholar] [CrossRef] [PubMed]
  176. Srinivasan, R.; Vigneshwari, L.; Rajavel, T.; Durgadevi, R.; Kannappan, A.; Balamurugan, K.; Pandima Devi, K.; Veera Ravi, A. Biogenic Synthesis of Silver Nanoparticles Using Piper Betle Aqueous Extract and Evaluation of Its Anti-Quorum Sensing and Antibiofilm Potential against Uropathogens with Cytotoxic Effects: An In Vitro and In Vivo Approach. Environ. Sci. Pollut. Res. 2018, 25, 10538–10554. [Google Scholar] [CrossRef]
  177. Ishwarya, R.; Vaseeharan, B.; Anuradha, R.; Rekha, R.; Govindarajan, M.; Alharbi, N.S.; Kadaikunnan, S.; Khaled, J.M.; Benelli, G. Eco-Friendly Fabrication of Ag Nanostructures Using the Seed Extract of Pedalium murex, an Ancient Indian Medicinal Plant: Histopathological Effects on the Zika Virus Vector Aedes Aegypti and Inhibition of Biofilm-Forming Pathogenic Bacteria. J. Photochem. Photobiol. B Biol. 2017, 174, 133–143. [Google Scholar] [CrossRef]
  178. Malaikozhundan, B.; Vijayakumar, S.; Vaseeharan, B.; Jenifer, A.A.; Chitra, P.; Prabhu, N.M.; Kannapiran, E. Two Potential Uses for Silver Nanoparticles Coated with Solanum nigrum Unripe Fruit Extract: Biofilm Inhibition and Photodegradation of Dye Effluent. Microb. Pathog. 2017, 111, 316–324. [Google Scholar] [CrossRef]
  179. Ali, K.; Ahmed, B.; Dwivedi, S.; Saquib, Q.; Al-Khedhairy, A.A. Microwave Accelerated Green Synthesis of Stable Silver Nanoparticles with Eucalyptus Globulus Leaf Extract and Their Antibacterial and Antibiofilm Activity on Clinical Isolates. PLoS ONE 2015, 10, e0131178. [Google Scholar] [CrossRef]
  180. Gurunathan, S.; Han, J.W.; Kwon, D.; Kim, J. Enhanced Antibacterial and Anti-Biofilm Activities of Silver Nanoparticles against Gram-Negative and Gram-Positive Bacteria. Nanoscale Res. Lett. 2014, 9, 373. [Google Scholar] [CrossRef] [Green Version]
  181. Abdel-aziz, M.S.; Shaheen, M.S.; El-nekeety, A.A. Antioxidant and Antibacterial Activity of Silver Nanoparticles Biosynthesized Using Chenopodium murale Leaf Extract. J. Saudi Chem. Soc. 2013, 18, 356–363. [Google Scholar] [CrossRef] [Green Version]
  182. Singhal, M.; Chatterjee, S.; Kumar, A.; Syed, A.; Bahkali, A.H.; Gupta, N.; Nimesh, S. Molecules Exploring the Antibacterial and Antibiofilm Efficacy of Silver Nanoparticles Biosynthesized Using Punica granatum Leaves. Molecules 2021, 26, 5762. [Google Scholar] [CrossRef] [PubMed]
  183. Ansari, M.A.; Kalam, A.; Al-Sehemi, A.G.; Alomary, M.N.; Alyahya, S.; Kashif Aziz, M.; Srivastava, S.; Alghamdi, S.; Almalki, H.D.; Adil, S.F.; et al. Counteraction of Biofilm Formation and Antimicrobial Potential of Terminalia catappa Functionalized Silver Nanoparticles against Candida albicans and Multidrug-Resistant Gram-Negative and Gram-Positive Bacteria. Antibiotics 2021, 10, 725. [Google Scholar] [CrossRef] [PubMed]
  184. Ben Haddada, M.; Gerometta, E.; Chawech, R.; Sorres, J.; Bialecki, A.; Pesnel, S.; Spadavecchia, J.; Morel, A.L. Assessment of Antioxidant and Dermoprotective Activities of Gold Nanoparticles as Safe Cosmetic Ingredient. Colloids Surf. B Biointerfaces 2020, 189, 110855. [Google Scholar] [CrossRef] [PubMed]
  185. Bahrulolum, H.; Nooraei, S.; Javanshir, N.; Tarrahimofrad, H.; Mirbagheri, V.S.; Easton, A.J.; Ahmadian, G. Green Synthesis of Metal Nanoparticles Using Microorganisms and Their Application in the Agrifood Sector. J. Nanobiotechnol. 2021, 19, 1–26. [Google Scholar] [CrossRef] [PubMed]
  186. Lahtinen, E.; Kukkonen, E.; Kinnunen, V.; Lahtinen, M.; Kinnunen, K.; Suvanto, S.; Vaïsänen, A.; Haukka, M. Gold Nanoparticles on 3D-Printed Filters: From Waste to Catalysts. ACS Omega 2019, 4, 16891–16898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  187. Anwar, Y.; Ullah, I.; Ul-Islam, M.; Alghamdi, K.M.; Khalil, A.; Kamal, T. Adopting a Green Method for the Synthesis of Gold Nanoparticles on Cotton Cloth for Antimicrobial and Environmental Applications. Arab. J. Chem. 2021, 14, 103327. [Google Scholar] [CrossRef]
  188. Zhang, Y.; Shareena Dasari, T.P.; Deng, H.; Yu, H. Antimicrobial Activity of Gold Nanoparticles and Ionic Gold. J. Environ. Sci. Health Part C Environ. Carcinog. Ecotoxicol. Rev. 2015, 33, 286–327. [Google Scholar] [CrossRef]
  189. Dasari, S.T.; Zhang, Y.; Yu, H. Antibacterial Activity and Cytotoxicity of Gold (I) and (III) Ions and Gold Nanoparticles. Biochem. Pharmacol. 2015, 4, 199. [Google Scholar] [CrossRef] [Green Version]
  190. Amin, R.M.; Mohamed, M.B.; Ramadan, M.A.; Verwanger, T.; Krammer, B. Rapid and Sensitive Microplate Assay for Screening the Effect of Silver and Gold Nanoparticles on Bacteria. Nanomedecine 2009, 4, 637–643. [Google Scholar] [CrossRef]
  191. Chatterjee, S.; Bandyopadhyay, A.; Sarkar, K. Effect of Iron Oxide and Gold Nanoparticles on Bacterial Growth Leading towards Biological Application. J. Nanobiotechnol. 2011, 9, 34. [Google Scholar] [CrossRef] [Green Version]
  192. Valsalam, S.; Agastian, P.; Esmai, G.A.; Ghilan, M.; Al-dhabi, N.A.; Valan, M. Biosynthesis of Silver and Gold Nanoparticles Using Musa acuminata colla Flower and Its Pharmaceutical Activity against Bacteria and Anticancer Efficacy. J. Photochem. Photobiol. B Biol. 2019, 201, 111670. [Google Scholar] [CrossRef] [PubMed]
  193. Velmurugan, P.; Lee, K.; Cho, M. Green Synthesis of Silver and Gold Nanoparticles Using Zingiber Officinale Root Extract and Antibacterial Activity of Silver Nanoparticles against Food Pathogens Green Synthesis of Silver and Gold Nanoparticles Using Zingiber Officinale Root Extract and A. Bioprocess Biosyst. Eng. 2014, 37, 1935–1943. [Google Scholar] [CrossRef] [PubMed]
  194. Rajan, A.; Vilas, V.; Philip, D. Studies on Catalytic, Antioxidant, Antibacterial and Anticancer Activities of Biogenic Gold Nanoparticles. J. Mol. Liq. 2015, 212, 331–339. [Google Scholar] [CrossRef]
  195. Lakshmanan, A.; Umamaheswari, C.; Nagarajan, N.S. A Facile Phyto-Mediated Synthesis of Gold Nanoparticles Using Aqueous Extract of Momordica cochinchinensis Rhizome and Their Biological Activities. J. Nanosci. Technol. 2016, 2, 76–80. [Google Scholar]
  196. Mata, R.; Bhaskaran, A.; Sadras, S.R. Green-Synthesized Gold Nanoparticles from Plumeria Alba Flower Extract to Augment Catalytic Degradation of Organic Dyes and Inhibit Bacterial Growth. Particuology 2015, 24, 78–86. [Google Scholar] [CrossRef]
  197. Dhayalan, M.; Immanuel, M.; Denison, J.; Ayyar, M.; Gandhi, N.N.; Krishnan, K. Biogenic Synthesis, Characterization of Gold and Silver Nanoparticles from Coleus forskohlii and Their Clinical Importance. J. Photochem. Photobiol. B Biol. 2018, 183, 251–257. [Google Scholar] [CrossRef]
  198. Ullah, R.; Bakht, J.; Shah, M.R.; Shafi, M. Bioinspired Synthesis and Characterization of Gold Nano-Particles from Medicinally Important Periploca Hydaspidis and Their in Vitro Antioxidant and Antimicrobial Activity. Pak. J. Pharm. Sci. 2019, 32, 1069–1080. [Google Scholar]
  199. Boomi, P.; Ganesan, R.M.; Poorani, G.; Gurumallesh Prabu, H.; Ravikumar, S.; Jeyakanthan, J. Biological Synergy of Greener Gold Nanoparticles by Using Coleus aromaticus Leaf Extract. Mater. Sci. Eng. C 2019, 99, 202–210. [Google Scholar] [CrossRef]
  200. Benedec, D.; Oniga, I.; Cuibus, F.; Sevastre, B.; Stiufiuc, G.; Duma, M.; Hanganu, D.; Iacovita, C.; Stiufiuc, R.; Lucaciu, C.M. Origanum vulgare Mediated Green Synthesis of Biocompatible Gold Nanoparticles Simultaneously Possessing Plasmonic, Antioxidant and Antimicrobial Properties. Int. J. Nanomed. 2018, 13, 1041–1058. [Google Scholar] [CrossRef] [Green Version]
  201. Basavegowda, N.; Lee, Y.R. Synthesis of Gold and Silver Nanoparticles Using Leaf Extract of Perilla Frutescens—A Biogenic Approach. J. Nanosci. Nanotechnol. 2014, 14, 4377–4382. [Google Scholar] [CrossRef]
  202. Paul, B.; Bhuyan, B.; Purkayastha, D.D.; Dhar, S.S. Photocatalytic and Antibacterial Activities of Gold and Silver Nanoparticles Synthesized Using Biomass of Parkia roxburghii Leaf. J. Photochem. Photobiol. B Biol. 2016, 154, 1–7. [Google Scholar] [CrossRef] [PubMed]
  203. Wang, D.; Liu, S.; Wang, J.; Lin, R.; Kawasaki, M.; Rus, E.; Silberstein, K.E.; Lowe, M.A.; Lin, F.; Nordlund, D.; et al. Spontaneous Incorporation of Gold in Palladium-Based Ternary Nanoparticles Makes Durable Electrocatalysts for Oxygen Reduction Reaction. Nat. Commun. 2016, 7, 11941. [Google Scholar] [CrossRef] [PubMed]
  204. Vimalraj, S.; Ashokkumar, T.; Saravanan, S. Biogenic Gold Nanoparticles Synthesis Mediated by Mangifera indica Seed Aqueous Extracts Exhibits Antibacterial, Anticancer and Anti-Angiogenic Properties. Biomed. Pharmacother. 2018, 105, 440–448. [Google Scholar] [CrossRef] [PubMed]
  205. Soshnikova, V.; Kim, Y.J.; Singh, P.; Huo, Y.; Markus, J.; Ahn, S.; Castro-Aceituno, V.; Kang, J.; Chokkalingam, M.; Mathiyalagan, R.; et al. Cardamom Fruits as a Green Resource for Facile Synthesis of Gold and Silver Nanoparticles and Their Biological Applications. Artif. Cells Nanomed. Biotechnol. 2018, 46, 108–117. [Google Scholar] [CrossRef] [Green Version]
  206. Kadiyala, N.K.; Mandal, B.K.; Ranjan, S.; Dasgupta, N. Bioinspired Gold Nanoparticles Decorated Reduced Graphene Oxide Nanocomposite Using Syzygium cumini Seed Extract: Evaluation of Its Biological Applications. Mater. Sci. Eng. C 2018, 93, 191–205. [Google Scholar] [CrossRef]
  207. Basavegowda, N.; Idhayadhulla, A.; Lee, Y.R. Phyto-Synthesis of Gold Nanoparticles Using Fruit Extract of Hovenia dulcis and Their Biological Activities. Ind. Crop. Prod. 2014, 52, 745–751. [Google Scholar] [CrossRef]
  208. Lee, K.D.; Nagajyothi, P.C.; Sreekanth, T.V.M.; Park, S. Eco-Friendly Synthesis of Gold Nanoparticles (AuNPs) Using Inonotus obliquus and Their Antibacterial, Antioxidant and Cytotoxic Activities. J. Ind. Eng. Chem. 2015, 26, 67–72. [Google Scholar] [CrossRef]
  209. Gopinath, K.; Kumaraguru, S.; Bhakyaraj, K.; Mohan, S.; Venkatesh, K.S.; Esakkirajan, M.; Kaleeswarran, P.R.; Naiyf, S.A.; Kadaikunnan, S.; Govindarajan, M.; et al. Green Synthesis of Silver, Gold and Silver/Gold Bimetallic Nanoparticles Using the Gloriosa superba Leaf Extract and Their Antibacterial and Antibiofilm Activities. Microb. Pathog. 2016, 101, 1–11. [Google Scholar] [CrossRef]
  210. Pasquet, J.; Chevalier, Y.; Pelletier, J.; Couval, E.; Bouvier, D.; Bolzinger, M.A. The Contribution of Zinc Ions to the Antimicrobial Activity of Zinc Oxide. Colloids Surf. A Physicochem. Eng. Asp. 2014, 457, 263–274. [Google Scholar] [CrossRef]
  211. Abendrot, M.; Kalinowska-Lis, U. Zinc-Containing Compounds for Personal Care Applications. Int. J. Cosmet. Sci. 2018, 40, 319–327. [Google Scholar] [CrossRef] [Green Version]
  212. Happy, A.; Soumya, M.; Kumar, S.V.; Rajeshkumar, S.; Sheba, R.D.; Lakshmi, T.; Nallaswamy, V.D. Phyto-Assisted Synthesis of Zinc Oxide Nanoparticles Using Cassia Alata and Its Antibacterial Activity against Escherichia coli. Biochem. Biophys. Rep. 2019, 17, 208–211. [Google Scholar] [CrossRef] [PubMed]
  213. Dobrucka, R.; Długaszewska, J. Biosynthesis and Antibacterial Activity of Zno Nanoparticles Using Trifolium pratense Flower Extract. Saudi J. Biol. Sci. 2016, 23, 517–523. [Google Scholar] [CrossRef] [Green Version]
  214. Malaikozhundan, B.; Vaseeharan, B.; Vijayakumar, S.; Pandiselvi, K.; Kalanjiam, R.; Murugan, K.; Benelli, G. Biological Therapeutics of Pongamia pinnata Coated Zinc Oxide Nanoparticles against Clinically Important Pathogenic Bacteria, Fungi and MCF-7 Breast Cancer Cells. Microb. Pathog. 2017, 104, 268–277. [Google Scholar] [CrossRef]
  215. Vijayakumar, S.; Vinoj, G.; Malaikozhundan, B.; Shanthi, S.; Vaseeharan, B. Plectranthus amboinicus Leaf Extract Mediated Synthesis of Zinc Oxide Nanoparticles and Its Control of Methicillin Resistant Staphylococcus aureus Biofilm and Blood Sucking Mosquito Larvae. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 137, 886–891. [Google Scholar] [CrossRef] [PubMed]
  216. Khatami, M.; Alijani, H.Q.; Heli, H.; Sharifi, I. Rectangular Shaped Zinc Oxide Nanoparticles: Green Synthesis by Stevia and Its Biomedical Effiency. Ceram. Int. 2018, 44, 15596–15602. [Google Scholar] [CrossRef]
  217. Nazir, S.; Zaka, M.; Adil, M.; Abbasi, B.H.; Hano, C. Synthesis, Characterisation and Bactericidal Effect of ZnO Nanoparticles via Chemical and Bio-Assisted (Silybum marianum in Vitro Plantlets and Callus Extract) Methods: A Comparative Study. IET Nanobiotechnol. 2018, 12, 604–608. [Google Scholar] [CrossRef]
  218. Abbasi, B.H.; Zahir, A.; Ahmad, W.; Nadeem, M.; Giglioli-guivarc, N.; Hano, C. Biogenic Zinc Oxide Nanoparticles-Enhanced Biosynthesis of Lignans and Neolignans in Cell Suspension Cultures of Linum usitatissimum L Biogenic Zinc Oxide Nanoparticles-Enhanced Biosynthesis of Lignans And. Artif. Cells Nanomed. Biotechnol. 2019, 47, 1367–1373. [Google Scholar] [CrossRef] [Green Version]
  219. Azizi, S.; Mohamad, R.; Bahadoran, A.; Bayat, S.; Rahim, R.A.; Ariff, A.; Saad, W.Z. Effect of Annealing Temperature on Antimicrobial and Structural Properties of Bio-Synthesized Zinc Oxide Nanoparticles Using Flower Extract of Anchusa italica. Photochem. Photobiol. B Biol. 2016, 161, 441–449. [Google Scholar] [CrossRef]
  220. Ali, J.; Irshad, R.; Li, B.; Tahir, K.; Ahmad, A.; Shakeel, M.; Khan, N.U.; Khan, Z.U.H. Synthesis and Characterization of Phytochemical Fabricated Zinc Oxide Nanoparticles with Enhanced Antibacterial and Catalytic Applications. J. Photochem. Photobiol. B Biol. 2018, 183, 349–356. [Google Scholar] [CrossRef]
  221. Sharretts Plating Company. Platinum vs. Palladium Plating in Medicine. 2017. Available online: https://www.sharrettsplating.com/blog/platinum-vs-palladium-plating-medicine/ (accessed on 20 December 2021).
  222. Food and Drug Administration. FDA Backgrounder on Platinum in Silicone Breast Implants. 2018. Available online: https://www.fda.gov/medical-devices/breast-implants/fda-backgrounder-platinum-silicone-breast-implants (accessed on 20 December 2021).
  223. Sinitsyna, O.; Paralikar, P.; Pandit, R.; Rai, M. Platinum in Biomedical Applications. In Biomedical Applications of Metals; Springer: Berlin/Heidelberg, Germany, 2018; pp. 151–165. ISBN 9783319748146. [Google Scholar]
  224. Nishanthi, R.; Malathi, S.; Paul, S.J.; Palani, P. Green Synthesis and Characterization of Bioinspired Silver, Gold and Platinum Nanoparticles and Evaluation of Their Synergistic Antibacterial Activity after Combining with Different Classes of Antibiotics. Mater. Sci. Eng. C 2019, 96, 693–707. [Google Scholar] [CrossRef]
  225. Castro, L.; Blázquez, M.L.; González, F.; Muñoz, J.Á.; Ballester, A. Biosynthesis of Silver and Platinum Nanoparticles Using Orange Peel Extract: Characterisation and Applications. IET Nanobiotechnol. 2015, 9, 252–258. [Google Scholar] [CrossRef] [PubMed]
  226. Chelli, V.R.; Golder, A.K. One Pot Green Synthesis of Pt, Co and Pt @ Co Core-Shell Nanoparticles Using Sechium edule. J. Chem. Technol. Biotechnol. 2019, 94, 911–918. [Google Scholar] [CrossRef]
  227. Subramanian, S.B.; Ramani, A.; Ganapathy, V.; Anbazhagan, V. Preparation of Self-Assembled Platinum Nanoclusters to Combat Salmonella Typhi Infection and Inhibit Biofilm Formation. Colloids Surf. B Biointerfaces 2018, 92, 479–490. [Google Scholar] [CrossRef] [PubMed]
  228. Tahir, K.; Nazir, S.; Ahmad, A.; Li, B.; Ullah, A.; Ul, Z.; Khan, H.; Ullah, F.; Ullah, Q.; Khan, A.; et al. Facile and Green Synthesis of Phytochemicals Capped Platinum Nanoparticles and in Vitro Their Superior Antibacterial Activity. J. Photochem. Photobiol. B Biol. 2017, 166, 246–251. [Google Scholar] [CrossRef] [PubMed]
  229. Arockiya, F.; Rajathi, A. Phytofabrication of Nano-Crystalline Platinum Particles by Leaves of Cerbera manghas and Its Antibacterial Efficacy. Inter. J. Pharm. Bio. Sci. 2015, 5, 619–628. [Google Scholar]
  230. Manikandan, V.; Velmurugan, P.; Park, H.; Lovanh, N.; Seo, S.; Jayanthi, P.; Park, Y.; Cho, M. Synthesis and Antimicrobial Activity of Palladium Nanoparticles from Prunus × Yedoensis Leaf Extract. Mater. Lett. 2016, 185, 335–338. [Google Scholar] [CrossRef]
  231. Yu, X.; Yuan, L.; Zhu, N.; Wang, K.; Xia, Y. Fabrication of Antimicrobial Curcumin Stabilized Platinum Nanoparticles and Their Anti-Liver Fibrosis Activity for Potential Use in Nursing Care. J. Photochem. Photobiol. B Biol. 2019, 195, 27–32. [Google Scholar] [CrossRef]
  232. Surendra, T.V.; Mohana, S.; Valan, M.; Al-dhabi, N.A.; Rayalu, G.M. RSM Optimized Moringa oleifera Peel Extract for Green Synthesis of M. oleifera Capped Palladium Nanoparticles with Antibacterial and Hemolytic Property. J. Photochem. Photobiol. B Biol. 2016, 162, 550–557. [Google Scholar] [CrossRef]
  233. Anjana, P.M.; Bindhu, M.R.; Umadevi, M.; Rakhi, R.B. Antibacterial and Electrochemical Activities of Silver, Gold, and Palladium Nanoparticles Dispersed Amorphous Carbon Composites. Appl. Surf. Sci. 2019, 479, 96–104. [Google Scholar] [CrossRef]
  234. Azizi, S.; Mahdavi, M.; Sulaiman, H.; Rahim, R.A.; Rasedee, A. Green Synthesis Palladium Nanoparticles Mediated by White Tea (Camellia sinensis) Extract with Antioxidant, Antibacterial, and Antiproliferative Activities toward the Human Leukemia (MOLT-4) Cell Line. Int. J. Nanomed. 2017, 12, 8841–8853. [Google Scholar] [CrossRef] [Green Version]
  235. Hazarika, M.; Borah, D.; Bora, P.; Silva, A.R.; Das, P. Biogenic Synthesis of Palladium Nanoparticles and Their Applications as Catalyst and Antimicrobial Agent. PLoS ONE 2017, 12, e0184936. [Google Scholar] [CrossRef] [PubMed]
  236. Tahir, K.; Nazir, S.; Ahmad, A.; Li, B.; Shah, S.A.A.; Khan, A.U.; Khan, Z.U.H.; Khan, Q.; Khan, F.U. Biodirected Synthesis of Palladium Nanoparticles Using Phoenix Dactylifera Leaves Extract and Their Size Dependent Biomedical and Catalytic Applications. RSC Adv. 2016, 6, 1–39. [Google Scholar] [CrossRef]
  237. Parker, H.L.; Rylott, E.L.; Hunt, A.J.; Dodson, J.R.; Taylor, A.F.; Bruce, N.C.; Clark, J.H. Supported Palladium Nanoparticles Synthesized by Living Plants as a Catalyst for Suzuki-Miyaura Reactions. PLoS ONE 2014, 9, e087192. [Google Scholar] [CrossRef] [PubMed]
  238. Devi, D.K.; Pratap, S.V.; Haritha, R.; Sivudu, K.S.; Radhika, P.; Sreedhar, B. Gum Acacia as a Facile Reducing, Stabilizing, and Templating Agent for Palladium Nanoparticles. J. Appl. Polym. Sci. 2011, 121, 1765–1773. [Google Scholar] [CrossRef]
  239. Vaghela, H.; Shah, R.; Pathan, A. Palladium Nanoparticles Mediated Through Bauhinia Variegata: Potent In Vitro Anticancer Activity Against MCF-7 Cell Lines and Antimicrobial Assay. Curr. Nanomater. 2018, 3, 168–177. [Google Scholar] [CrossRef]
  240. Liu, D.; Wu, F. Biosynthesis of Pd Nanoparticle Using Onion Extract for Electrochemical Determination of Carbendazim. Int. J. Electrochem. Sci. 2017, 12, 2125–2134. [Google Scholar] [CrossRef]
  241. Sharmila, G.; Fathima, M.F.; Haries, S.; Geetha, S.; Kumar, N.M.; Muthukumaran, C. Green Synthesis, Characterization and Antibacterial Efficacy of Palladium Nanoparticles Synthesized Using Filicium Decipiens Leaf Extract. J. Mol. Struct. 2017, 12, 2125–2134. [Google Scholar] [CrossRef]
  242. Dinesh, M.; Roopan, S.M.; Selvaraj, C.I.; Arunachalam, P. Phyllanthus Emblica Seed Extract Mediated Synthesis of PdNPs against Antibacterial, Heamolytic and Cytotoxic Studies. J. Photochem. Photobiol. B Biol. 2017, 167, 64–71. [Google Scholar] [CrossRef]
  243. Duan, L.; Li, M.; Liu, H. Biosynthesised Palladium Nanoparticles Using Eucommia Ulmoides Bark Aqueous Extract and Their Catalytic Activity. IET Nanobiotechnol. 2015, 9, 349–354. [Google Scholar] [CrossRef]
  244. Dauthal, P.; Mukhopadhyay, M. Biosynthesis of Palladium Nanoparticles Using Delonix Regia Leaf Extract and Its Catalytic Activity for Nitro-Aromatics Hydrogenation. Ind. Eng. Chem. Res. 2013, 52, 18131–18139. [Google Scholar] [CrossRef]
  245. Mohammed, N.G.; Prasad, S.; Khandare, R.V.; Prasad, N.R. Extracellular One Pot Green Synthesis of Palladium Nanoparticles. Int. J. Nanomater. Nanostruct. 2014, 1, 1–8. [Google Scholar]
  246. Mallikarjuna, K.; Sushma, N.J.; Reddy, B.V.S.; Narasimha, G.; Raju, B.D.P. Palladium Nanoparticles: Single-Step Plant-Mediated Green Chemical Procedure Using Piper Betle Leaves Broth and Their Anti-Fungal Studies. Int. J. Chem. Anal. Sci. 2013, 4, 14–18. [Google Scholar] [CrossRef]
  247. Rabiee, N.; Bagherzadeh, M.; Kiani, M.; Ghadiri, A.M. Rosmarinus Officinalis Directed Palladium Nanoparticle Synthesis: Investigation of Potential Anti-Bacterial, Anti-Fungal and Mizoroki-Heck Catalytic Activities. Adv. Powder Technol. 2020, 31, 1402–1411. [Google Scholar] [CrossRef]
  248. Kora, A.J.; Rastogi, L. Catalytic Degradation of Anthropogenic Dye Pollutants Using Palladium Nanoparticles Synthesized by Gum Olibanum, a Glucuronoarabinogalactan Biopolymer. Ind. Crop. Prod. 2016, 81, 1–10. [Google Scholar] [CrossRef]
  249. Nadagouda, M.N.; Varma, R.S. Green Synthesis of Silver and Palladium Nanoparticles at Room Temperature Using Coffee and Tea Extract Green Synthesis of Silver and Palladium Nanoparticles at Room Temperature Using Coffee and Tea Extract. Green Chem. 2008, 10, 859–862. [Google Scholar] [CrossRef]
  250. Hoseinpour, V.; Ghaemi, N. Green Synthesis of Manganese Nanoparticles: Applications and Future Perspective–A Review. J. Photochem. Photobiol. B Biol. 2018, 189, 234–243. [Google Scholar] [CrossRef]
  251. Cherian, T.; Ali, K.; Saquib, Q.; Faisal, M.; Wahab, R. Cymbopogon Citratus Functionalized Green Synthesis of CuO-Nanoparticles: Novel Prospects as Antibacterial and Antibiofilm Agents. Biomolecules 2019, 10, 169. [Google Scholar] [CrossRef] [Green Version]
  252. Khani, R.; Roostaei, B.; Bagherzade, G.; Moudi, M. Green Synthesis of Copper Nanoparticles by Fruit Extract of Ziziphus spina-Christi (L.) Willd: Application for Adsorption of Triphenylmethane Dye and Antibacterial Assay. J. Mol. Liq. 2018, 255, 541–549. [Google Scholar] [CrossRef]
  253. Mali, S.C.; Raj, S.; Trivedi, R. Biosynthesis of Copper Oxide Nanoparticles Using Enicostemma Axillare (Lam.) Leaf Extract. Biochem. Biophys. Rep. 2019, 20, 100699. [Google Scholar] [CrossRef]
  254. Caroling, G.; Vinodhini, E.; Ranjitham, A.M.; Shanthi, P. Biosynthesis of Copper Nanoparticles Using Aqueous Phyllanthus Embilica (Gooseberry) Extract—Characterisation and Study of Antimicrobial Effects. Int. J. Nano. Chem. 2015, 63, 53–63. [Google Scholar]
  255. Sankar, R.; Manikandan, P.; Malarvizhi, V.; Fathima, T. Green Synthesis of Colloidal Copper Oxide Nanoparticles Using Carica Papaya and Its Application in Photocatalytic Dye Degradation. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 121, 746–750. [Google Scholar] [CrossRef] [PubMed]
  256. Sathiyavimal, S.; Vasantharaj, S.; Bharathi, D.; Saravanan, M. Biogenesis of Copper Oxide Nanoparticles (CuONPs) Using Sida acuta and Their Incorporation over Cotton Fabrics to Prevent the Pathogenicity of Gram Negative and Gram Positive Bacteria. J. Photochem. Photobiol. B Biol. 2018, 188, 126–134. [Google Scholar] [CrossRef] [PubMed]
  257. Jinu, U.; Gomathi, M.; Saiqa, I.; Geetha, N.; Benelli, G.; Venkatachalam, P. Green Engineered Biomolecule-Capped Silver and Copper Nanohybrids Using Prosopis Cineraria Leaf Extract: Enhanced Antibacterial Activity against Microbial Pathogens of Public Health Relevance and Cytotoxicity on Human Breast Cancer Cells (MCF-7). Microb. Pathog. 2017, 105, 86–95. [Google Scholar] [CrossRef] [PubMed]
  258. Prasad, P.R.; Kanchi, S.; Naidoo, E.B. In-Vitro Evaluation of Copper Nanoparticles Cytotoxicity on Prostate Cancer Cell Lines and Their Antioxidant, Sensing and Catalytic Activity: One-Pot Green Approach. Photochem. Photobiol. 2016, 161, 375–382. [Google Scholar] [CrossRef] [PubMed]
  259. Vasantharaj, S.; Sathiyavimal, S.; Saravanan, M.; Senthilkumar, P.; Gnanasekaran, K.; Shanmugavel, M. Synthesis of Ecofriendly Copper Oxide Nanoparticles for Fabrication over Textile Fabrics: Characterization of Antibacterial Activity and Dye Degradation Potential. J. Photochem. Photobiol. B Biol. 2019, 191, 143–149. [Google Scholar] [CrossRef]
  260. Kaur, P.; Energy, T.; Thakur, R.; Chaudhury, A. Biogenesis of Copper Nanoparticles Using Peel Extract of Punica Granatum and Their Antimicrobial Activity against Opportunistic Pathogens. Green Chem. Lett. Rev. 2016, 9, 33–38. [Google Scholar] [CrossRef] [Green Version]
  261. Thakur, S.; Sharma, S.; Thakur, S.; Rai, R. Green Synthesis of Copper Nano-Particles Using Asparagus Adscendens Roxb. Root and Leaf Extract and Their Antimicrobial Activities. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 683–694. [Google Scholar] [CrossRef]
  262. Naika, H.R.; Lingaraju, K.; Manjunath, K.; Kumar, D.; Nagaraju, G.; Suresh, D.; Nagabhushana, H. Green Synthesis of CuO Nanoparticles Using Gloriosa superba L. Extract and Their Antibacterial Activity. J Taibah Univ. Sci. 2015, 9, 7–12. [Google Scholar] [CrossRef] [Green Version]
  263. Valli, G.; Geetha, S. Green Synthesis of Copper Nanoparticles Using Cassia Auriculata Leaves Extract. Int. J. TechnoChem Res. 2016, 2, 5–10. [Google Scholar]
  264. Bekele, S. Synthesis of Copper Oxide Nanoparticles Using Leaf Extract of Bersama Abyssinica and Its Application for the Treatment of Drug Resistant Bacteria. Marster’s Thesis, Adama Science and Technology University, Adama, Ethiopia, 2018. [Google Scholar]
  265. Kala, A.; Soosairaj, S. Green Synthesis of Copper Bionanoparticles to Control the Bacterial Leaf Blight Disease of Rice. Curr. Sci. 2016, 110, 2011–2014. [Google Scholar] [CrossRef]
  266. Chitra, K.; Reena, K.; Manikandan, A.; Antony, S.A. Antibacterial Studies and Effect of Poloxamer on Gold Nanoparticles by Zingiber Officinale Extracted Green Synthesis. J. Nanosci. Nanotechnol. 2015, 15, 4984–4991. [Google Scholar] [CrossRef] [PubMed]
  267. Mohammadi-aloucheh, R.; Habibi-yangjeh, A.; Bayrami, A.; Asadi, A. Enhanced Anti-Bacterial Activities of ZnO Nanoparticles and ZnO/CuO Nanocomposites Synthesized Using Vaccinium arctostaphylos L. Fruit Extract. Artif. Cells Nanomed. Biotechnol. 2018, 46 (Suppl. 1), 1200–1209. [Google Scholar] [CrossRef] [Green Version]
  268. Rajeshkumar, S.; Menon, S.; S, V.K.; Tambuwala, M.M.; Bakshi, H.A.; Mehta, M.; Satija, S.; Gupta, G.; Kumar, D. Antibacterial and Antioxidant Potential of Biosynthesized Copper Nanoparticles Mediated through Cissus arnotiana Plant Extract. J. Photochem. Photobiol. B Biol. 2019, 197, 111531. [Google Scholar] [CrossRef] [PubMed]
  269. Qasim, S.; Zafar, A.; Saif, M.S.; Nazar, M.; Waqas, M.; Haq, A.U.; Tariq, T. Green Synthesis of Iron Oxide Nanorods Using Withania coagulans Extract Improved Photocatalytic Degradation and Antimicrobial Activity. J. Photochem. Photobiol. B Biol. 2020, 204, 111784. [Google Scholar] [CrossRef] [PubMed]
  270. Da, E.; Taha, A.; Afkar, E. Applied Sciences Green Synthesis of Iron Nanoparticles by Acacia nilotica Pods Extract and Its Catalytic, Adsorption, and Antibacterial Activities. Appl. Sci. 2018, 8, 1922. [Google Scholar] [CrossRef] [Green Version]
  271. Saranya, S.; Vijayaranai, K.; Pavithra, S.; Raihana, N.; Kumanan, K. In Vitro Cytotoxicity of Zinc Oxide, Iron Oxide and Copper Nanopowders Prepared by Green Synthesis. Toxicol. Rep. 2017, 4, 427–430. [Google Scholar] [CrossRef]
  272. Alam, T.; Asad, R.; Khan, A.; Ali, A.; Sher, H.; Ullah, Z.; Ali, M. Biogenic Synthesis of Iron Oxide Nanoparticles via Skimmia laureola and Their Antibacterial Efficacy against Bacterial Wilt Pathogen Ralstonia solanacearum. Mater. Sci. Eng. C 2019, 98, 101–108. [Google Scholar] [CrossRef]
  273. Kanagasubbulakshmi, S.; Kadirvelu, K. Green Synthesis of Iron Oxide Nanoparticles Using Lagenaria siceraria and Evaluation of Its Antimicrobial Activity. Def. Life Sci. J. 2017, 2, 422–427. [Google Scholar] [CrossRef]
  274. Daniel, K.; Natesan, S.; Kasi, N. Biosynthesis of Cu, ZVI, and Ag Nanoparticles Using Dodonaea viscosa Extract for Antibacterial Activity against Human Pathogens. J. Nanopart. Res. 2013, 15, 1–10. [Google Scholar] [CrossRef]
  275. Sathishkumar, G.; Logeshwaran, V.; Sarathbabu, S.; Jha, P.K.; Jeyaraj, M.; Rajkuberan, C.; Senthilkumar, N.; Sivaramakrishnan, S. Green Synthesis of Magnetic Fe3O4 Nanoparticles Using Couroupita guianensis aubl. Fruit Extract for Their Antibacterial and Cytotoxicity Activities. Artif. Cells Nanomed. Biotechnol. 2018, 46, 589–598. [Google Scholar] [CrossRef] [Green Version]
  276. Jeyasundari, J.; Praba, P.S.; Jacob, Y.B.A.; Vasantha, V.S.; Shanmugaiah, V. Green Synthesis and Characterization of Zero Valent Iron Nanoparticles from the Leaf Extract of Psidium guajava Plant and Their Antibacterial Activity. Chem. Sci. Rev. Lett. 2017, 6, 1244–1252. [Google Scholar]
  277. Irshad, R.; Tahir, K.; Li, B.; Ahmad, A.; Siddiqui, A.R.; Nazir, S. Antibacterial Activity of Biochemically Capped Iron Oxide Nanoparticles: A View towards Green Chemistry. J. Photochem. Photobiol. B Biol. 2017, 170, 241–246. [Google Scholar] [CrossRef] [PubMed]
  278. Arokiyaraj, S.; Saravanan, M.; Prakash, N.K.U.; Arasu, M.V.; Vijayakumar, B.; Vincent, S. Enhanced Antibacterial Activity of Iron Oxide Magnetic Nanoparticles Treated with Argemone mexicana L. Leaf Extract: An in Vitro Study. Mater. Res. Bull. 2013, 48, 3323–3327. [Google Scholar] [CrossRef]
  279. Vasantharaj, S.; Sathiyavimal, S.; Senthilkumar, P.; Lewisoscar, F. Biosynthesis of Iron Oxide Nanoparticles Using Leaf Extract of Ruellia tuberosa: Antimicrobial Properties and Their Applications in Photocatalytic Degradation. J. Photochem. Photobiol. B Biol. 2019, 192, 74–82. [Google Scholar] [CrossRef] [PubMed]
  280. Veeramanikandan, V.; Madhu, G.C.; Pavithra, V.; Jaianand, K.; Balaji, P. Green Synthesis, Characterization of Iron Oxide Nanoparticles Using Leucas Aspera Leaf Extract and Evaluation of Antibacterial and Antioxidant Studies. Int. J. Agric. Innov. Res. 2018, 6, 2319-1473. [Google Scholar]
  281. Jagathesan, G.; Rajiv, P. Biocatalysis and Agricultural Biotechnology Biosynthesis and Characterization of Iron Oxide Nanoparticles Using Eichhornia crassipes Leaf Extract and Assessing Their Antibacterial Activity. Biocatal. Agric. Biotechnol. 2018, 13, 90–94. [Google Scholar] [CrossRef]
  282. Pallela, P.N.V.K.; Ummey, S.; Ruddaraju, L.K.; Gadi, S.; Cherukuri, C.S.L.; Barla, S.; Pammi, S.V.N. Antibacterial Efficacy of Green Synthesized α-Fe2O3 Nanoparticles Using Sida cordifolia Plant Extract. Heliyon 2019, 5, e02765. [Google Scholar] [CrossRef]
  283. Radini, I.A.; Hasan, N.; Malik, M.A. Biosynthesis of Iron Nanoparticles Using Trigonella foenum-graecum Seed Extract for Photocatalytic Methyl Orange Dye Degradation and Antibacterial Applications. J. Photochem. Photobiol. B Biol. 2018, 183, 154–163. [Google Scholar] [CrossRef]
  284. Igwe, O.U.; Nwamezie, F. Green Synthesis of Iron Nanoparticles Using Flower Extracts of Piliostigma thonningii and Their Antibacterial Activity Evaluation Green Synthesis of Iron Nanoparticles Using Flower Extract of Piliostigma thonningii and Their Antibacterial Activity Evaluat. Chem. Int. 2018, 4, 60–66. [Google Scholar]
  285. Wang, F.; Niu, X.; Wang, W.; Jing, W.; Huang, Y.; Zhang, J. Green Synthesis of Pd Nanoparticles via Extracted Polysaccharide Applied to Glucose Detection. J. Taiwan Inst. Chem. Eng. 2018, 93, 87–93. [Google Scholar] [CrossRef]
  286. Tang, Q.; Xia, H.; Liang, W.; Huo, X.; Wei, X. Synthesis and Characterization of Zinc Oxide Nanoparticles from Morus nigra and Its Anticancer Activity of AGS Gastric Cancer Cells. J. Photochem. Photobiol. B Biol. 2020, 202, 111698. [Google Scholar] [CrossRef] [PubMed]
  287. Karthiga, P.; Shankar, T.; Karthick, K.; Swarnalatha, K. Phytomediated Synthesis of Silver Nanoparticles Against Microbial Pathogens and Cytotoxicity on Human Breast Cancer Cells (MCF-7). Resour. Effic. Technol. 2020, 2, 16–24. [Google Scholar] [CrossRef]
  288. Kuppusamy, P.; Yusoff, M.M.; Maniam, G.P. Biosynthesis of Metallic Nanoparticles Using Plant Derivatives and Their New Avenues in Pharmacological Applications—An Updated Report. Saudi Pharm. J. 2016, 24, 473–484. [Google Scholar] [CrossRef] [PubMed]
  289. Surendra, T.V.; Roopan, S.M.; Al-dhabi, N.A.; Arasu, M.V.; Sarkar, G. Vegetable Peel Waste for the Production of ZnO Nanoparticles and Its Toxicological Efficiency, Antifungal, Hemolytic, and Antibacterial Activities. Nanoscale Res. Lett. 2016, 11, 546. [Google Scholar] [CrossRef] [Green Version]
  290. Edayadulla, N.; Basavegowda, N.; Lee, Y.R. Green Synthesis and Characterization of Palladium Nanoparticles and Their Catalytic Performance for the Efficient Synthesis of Biologically Interesting Di (Indolyl) Indolin-2-Ones. J. Ind. Eng. Chem. 2014, 21, 1365–1372. [Google Scholar] [CrossRef]
  291. Islam, N.U.; Amin, R.; Shahid, M.; Amin, M.; Zaib, S.; Iqbal, J. A Multi-Target Therapeutic Potential of Prunus Domestica Gum Stabilized Nanoparticles Exhibited Prospective Anti-Inflammatory and Analgesic Properties. BMC Complement. Altern. Med. 2017, 17, 276. [Google Scholar] [CrossRef]
  292. Mahlaule-Glory, L.M.; Mbita, Z.; Ntsendwana, B.; Mathipa, M.M.; Mketo, N.; Hintsho-Mbita, N.C. ZnO Nanoparticles via Sutherlandia frutescens Plant Extract: Physical and Biological Properties. Mater. Res. Express 2019, 6, 085006. [Google Scholar] [CrossRef]
  293. Idelevich, E.A.; Becker, K. How to Accelerate Antimicrobial Susceptibility Testing. Clin. Microbiol. Infect. 2019, 25, 1347–1355. [Google Scholar] [CrossRef]
  294. Van Belkum, A.; Dunne, W.M. Next-Generation Antimicrobial Susceptibility Testing. J. Clin. Microbiol. 2013, 51, 2018–2024. [Google Scholar] [CrossRef] [Green Version]
  295. Suresh, A.K. Co-Relating Metallic Nanoparticle Characteristics and Bacterial Toxicity; Springer Nature: Cham, Switzerland, 2015. [Google Scholar]
  296. Ferreyra Maillard, A.P.V.; Gonçalves, S.; Santos, N.C.; López de Mishima, B.A.; Dalmasso, P.R.; Hollmann, A. Studies on Interaction of Green Silver Nanoparticles with Whole Bacteria by Surface Characterization Techniques. Biochim. Biophys. Acta Biomembr. 2019, 1861, 1086–1092. [Google Scholar] [CrossRef]
  297. Cui, L.; Chen, P.; Chen, S.; Yuan, Z.; Yu, C.; Ren, B.; Zhang, K. In Situ Study of the Antibacterial Activity and Mechanism of Action of Silver Nanoparticles by Surface-Enhanced Raman Spectroscopy. Anal. Chem. 2013, 85, 5436–5443. [Google Scholar] [CrossRef] [PubMed]
  298. Canciu, A.; Tertis, M.; Hosu, O.; Cernat, A.; Cristea, C.; Graur, F. Modern Analytical Techniques for Detection of Bacteria in Surface and Wastewaters. Sustainability 2021, 13, 7229. [Google Scholar] [CrossRef]
  299. Muhammad, H.; Akram, B.; Kazmi, S.A.; Ahmad, I. Populus Ciliata Leaves Extract Mediated Synthesis of Zinc Oxide Nanoparticles and Investigation of Their Anti-Bacterial Activities. Mater. Res. Express 2019, 6, 075064. [Google Scholar] [CrossRef]
  300. Pethakamsetty, L.; Kothapenta, K.; Nammi, H.R.; Ruddaraju, L.K.; Kollu, P.; Yoon, S.G.; Pammi, S.V.N. Green Synthesis, Characterization and Antimicrobial Activity of Silver Nanoparticles Using Methanolic Root Extracts of Diospyros sylvatica. J. Environ. Sci. 2017, 55, 157–163. [Google Scholar] [CrossRef] [PubMed]
  301. Samira, S.; Mohamadi, A.; Mohseni, S. Biosynthesis, Characterization and Antimicrobial Activities of Zinc Oxide Nanoparticles from Leaf Extract of Mentha pulegium (L.). Microb. Pthogenes. 2019, 131, 239–245. [Google Scholar] [CrossRef]
  302. Raja, A.; Ashokkumar, S.; Marthandam, R.; Jayachandiran, J.; Khatiwada, C.P.; Kaviyarasy, K.; Raman, R.G.; Swaminathan, M. Eco-Friendly Preparation of Zinc Oxide Nanoparticles Using Tabernaemontana Divaricata and Its Photocatalytic and Antimicrobial Activity. J. Photochem. Photobiol. B Biol. 2018, 181, 53–58. [Google Scholar] [CrossRef]
  303. Balouiri, M.; Sadiki, M.S.; Ibnsouda, S.K. Methods for in Vitro Evaluating Antimicrobial Activity: A Review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef] [Green Version]
  304. Alonso, C.A.; Dominguez, C.; Heras, J.; Mata, E.; Pascual, V.; Torres, C.; Zarazaga, M. AntibiogramJ: A Tool for Analysing Images from Disk Diffusion Tests. Comput. Methods Programs Biomed. 2017, 143, 159–169. [Google Scholar] [CrossRef]
  305. Jorgensen, J.H.; Turnidge, J.D. Susceptibility Test Methods: Dilution and Disk Diffusion Methods. In Manual of Clinical Microbiology, 11th ed.; Wiley: Hoboken, NJ, USA, 2015; pp. 1253–1273. [Google Scholar] [CrossRef]
  306. Brook, I.; Wexler, H.M.; Goldstein, J.C. Antianaerobic Antimicrobials: Spectrum and Susceptibility Testing. Clin. Microbiol. Rev. 2013, 26, 526–546. [Google Scholar] [CrossRef] [Green Version]
  307. Kolya, H.; Maiti, P.; Pandey, A.; Tripathy, T. Green Synthesis of Silver Nanoparticles with Antimicrobial and Azo Dye (Congo Red) Degradation Properties Using Amaranthus Gangeticus Linn Leaf Extract. J. Anal. Sci. Technol. 2015, 6, 4–10. [Google Scholar] [CrossRef] [Green Version]
  308. Gomathi, M.; Rajkumar, P.V.; Prakasam, A.; Ravichandran, K. Green Synthesis of Silver Nanoparticles Using Datura stramonium Leaf Extract and Assessment of Their Antibacterial Activity. Resour. Technol. 2017, 3, 280–284. [Google Scholar] [CrossRef]
  309. Shameli, K.; Ahmad, M.B.; Jazayeri, S.D.; Shabanzadeh, P.; Sangpour, P.; Jahangirian, H.; Gharayebi, Y. Investigation of Antibacterial Properties Silver Nanoparticles Prepared via Green Method. Chem. Cent. J. 2012, 6, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  310. Lakshmeesha, T.R.; Sateesh, M.K.; Prasad, B.D.; Sharma, S.C.; Kavyashree, D.; Chandrasekhar, M.; Nagabhushana, H. Reactivity of Crystalline ZnO Superstructures against Fungi and Bacterial Pathogens: Synthesized Using Nerium Oleander Leaf Extract. Cryst. Growth Des. 2014, 14, 4068–4079. [Google Scholar] [CrossRef]
  311. Hamelian, M.; Varmira, K.; Veisi, H. Green Synthesis and Characterizations of Gold Nanoparticles Using Thyme and Survey Cytotoxic Effect, Antibacterial and Antioxidant Potential. J. Photochem. Photobiol. B Biol. 2018, 184, 71–79. [Google Scholar] [CrossRef] [PubMed]
  312. Dorosti, N.; Jamshidi, F. Plant-mediated Gold Nanoparticles by Dracocephalum Kotschyi as Anticholinesterase Agent: Synthesis, Characterization, and Evaluation of Anticancer and Antibacterial Activity. J. Econ. Financ. Adm. Sci. 2016, 14, 235–245. [Google Scholar] [CrossRef]
  313. Escarcega-Gonzalez, C.E.; Garza-Cervantes, J.A.; Vazquez-Rodriguez, A.; Montelongo-Peralta, L.Z.; Trevino-Gonzalez, M.J.; Diaz Barriga Castro, E.; Saucedo-Salazar, E.M.; Chavez Morales, R.M.; Regalado Soto, D.I.; Trevino Gonzalez, F.M.; et al. In Vivo Antimicrobial Activity of Silver Nanoparticles Produced via a Green Chemistry Synthesis Using Acacia Rigidula as a Reducing and Capping Agent. Int. J. Nanomed. 2018, 13, 2349–2363. [Google Scholar] [CrossRef] [Green Version]
  314. Mogana, R.; Adhikari, A.; Tzar, M.N.; Ramliza, R.; Wiart, C. Antibacterial Activities of the Extracts, Fractions and Isolated Compounds from Canarium patentinervium Miq. against Bacterial Clinical Isolates. BMC Complement. Med. Ther. 2020, 20, 1–11. [Google Scholar] [CrossRef] [Green Version]
  315. Wiegand, I.; Burak, S. Effect of Inoculum Density on Susceptibility of Plesiomonas shigelloides to Cephalosporins. J. Antimicrob. Chemother. 2004, 54, 418–423. [Google Scholar] [CrossRef] [Green Version]
  316. Schumacher, A.; Vranken, T.; Malhotra, A.; Arts, J.J.C.; Habibovic, P. In Vitro Antimicrobial Susceptibility Testing Methods: Agar Dilution to 3D Tissue-Engineered Models. Eur. J. Clin. Microbiol. Infect. Dis. 2018, 37, 187–208. [Google Scholar] [CrossRef] [Green Version]
  317. European Committee on Antibiotic Susceptibility Testing. Methods for the Determination of Susceptibility of Bacteria to Antimicrobial Agents, Terminology. Eucast Defin. Doc. 1998, 4, 291–296. [Google Scholar] [CrossRef] [Green Version]
  318. Clinical Laboratory Standards Institute. Methods for Determining Bactericidal Activity of Antimicrobial Agents; Approved Standard; CLSI Guideline M26-A; Clinical Laboratory Standards Institute: Wayne, PA, USA, 1999. [Google Scholar]
  319. Wiegand, I.; Hilpert, K.; Hancock, R.E.W. Agar and Broth Dilution Methods to Determine the Minimal Inhibitory Concentration (MIC) of Antimicrobial Substances. Nat. Protoc. 2015, 3, 163–175. [Google Scholar] [CrossRef] [PubMed]
  320. Dafale, N.A.; Semwal, U.P.; Rajput, R.K.; Singh, G.N. Selection of Appropriate Analytical Tools to Determine the Potency and Bioactivity of Antibiotics and Antibiotic Resistance. J. Pharm. Anal. 2016, 6, 207–213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  321. Jorgensen, J.H.; Ferraro, M.J. Antimicrobial Susceptibility Testing: A Review of General Principles and Contemporary Practices. Clin. Infect. Dis. 2009, 49, 1749–1755. [Google Scholar] [CrossRef] [PubMed]
  322. Eloff, J.N. Avoiding Pitfalls in Determining Antimicrobial Activity of Plant Extracts and Publishing the Results. BMC Complement Altern. Med. 2019, 19, 106. [Google Scholar] [CrossRef] [Green Version]
  323. Shanmugakani, R.K.; Srinivasan, B.; Glesby, M.J.; Westblade, L.F.; Cárdenas, W.B.; Raj, T.; Erickson, D.; Mehta, S. Current State of the Art in Rapid Diagnostics for Antimicrobial Resistance. Lab Chip 2020, 20, 2607–2625. [Google Scholar] [CrossRef]
  324. Kumar, A.; Chordia, N. Role of Microbes in Human. Appl. Microbiol. 2017, 3, 2–4. [Google Scholar] [CrossRef] [Green Version]
  325. Gilbert, J.A.; Blaser, M.J.; Caporaso, J.G.; Jansson, J.K.; Lynch, S.V.; Knight, R. Current Understanding of the Human Microbiome. Nat. Med. 2018, 24, 392–400. [Google Scholar] [CrossRef]
  326. Chen, T.; Cheng, Z.; Yi, C.; Xu, Z. Synthesis of Platinum Nanoparticles Templated by Dendrimers Terminated with Alkyl Chains. Chem. Commun. 2018, 54, 9143–9146. [Google Scholar] [CrossRef] [Green Version]
  327. Liu, Y.; Liu, Y.; Du, Z.; Zhang, L.; Chen, J.; Shen, Z.; Liu, Q.; Qin, J.; Lv, H.; Wang, H.; et al. Skin Microbiota Analysis-Inspired Development of Novel Anti-Infectives. Microbiome 2020, 8, 85. [Google Scholar] [CrossRef]
  328. Byrd, A.L.; Belkaid, Y.; Segre, J.A. The Human Skin Microbiome. Nat. Publ. Gr. 2018, 16, 143–155. [Google Scholar] [CrossRef]
  329. Huffnagle, G.B.; Noverr, M.C. The Emerging World of the Fungal Microbiome. Trends Microbiol. 2013, 21, 334–341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  330. Chaturvedi, M.; Punj, A. Human Oral Microflora. Int. J. Curr. Adv. Res. 2018, 7, 14065–14070. [Google Scholar] [CrossRef]
  331. Thursby, E.; Juge, N. Introduction to the Human Gut Microbiota. Biochem. J. 2017, 474, 1823–1836. [Google Scholar] [CrossRef] [PubMed]
  332. Nagajyothi, P.C.; Sreekanth, T.V.M.; Tettey, C.O.; Jun, Y.I.; Mook, S.H. Characterization, Antibacterial, Antioxidant, and Cytotoxic Activities of ZnO Nanoparticles Using Coptidis rhizoma. Bioorg. Med. Chem. Lett. 2014, 24, 4298–4303. [Google Scholar] [CrossRef] [PubMed]
  333. Khalil, A.T.; Ovais, M.; Ullah, I.; Ali, M.; Shinwari, Z.K.; Khamlich, S.; Maaza, M. Sageretia thea (Osbeck.) Mediated Synthesis of Zinc Oxide Nanoparticles and Its Biological Applications. Nanomedicine 2017, 12, 1767–1789. [Google Scholar] [CrossRef]
  334. Pavithra, N.S.; Lingaraju, K.; Raghu, G.K.; Nagaraju, G. Citrus maxima (Pomelo) Juice Mediated Eco-Friendly Synthesis of ZnO Nanoparticles: Applications to Photocatalytic, Electrochemical Sensor and Antibacterial Activities. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017, 185, 11–19. [Google Scholar] [CrossRef]
  335. Al-Dhabi, N.A.; Arasu, M.V. Environmentally-Friendly Green Approach for the Production of Zinc Oxide Nanoparticles and Their. Nanomaterials 2018, 8, 500. [Google Scholar] [CrossRef] [Green Version]
  336. Pandiyan, N.; Murugesan, B.; Arumugam, M.; Sonamuthu, J. Ionic Liquid—A Greener Templating Agent with Justicia Adhatoda Plant Extract Assisted Green Synthesis of Morphologically Improved Ag-Au/ZnO Nanostructure and It’s Antibacterial and Anticancer Activities. J. Photochem. Photobiol. B Biol. 2019, 198, 111559. [Google Scholar] [CrossRef]
  337. El-Moslamy, S.H.; Shokry, H.H.; Rezk, A.H.; Fattah, Y.R.A. Bioprocess Strategies and Characterization of Anti-Multidrug Resistant Human Pathogens Copper/Copper Oxide Nanoparticles from Citrus Peel Waste Extracts. J. Nanomater. Mol. Nanotechnol. 2017, 6, 1000217. [Google Scholar] [CrossRef]
  338. Slavin, Y.N.; Asnis, J.; Häfeli, U.O.; Bach, H. Metal Nanoparticles: Understanding the Mechanisms behind Antibacterial Activity. J. Nanobiotechnol. 2017, 15, 65. [Google Scholar] [CrossRef]
  339. Kim, S.W.; Jung, J.H.; Lamsal, K.; Kim, Y.S.; Min, J.S.; Lee, Y.S. Antifungal Effects of Silver Nanoparticles (AgNPs) against Various Plant Pathogenic Fungi. Mycobiology 2012, 40, 53–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  340. Cavassin, E.D.; de Figueiredo, L.F.P.; Otoch, J.P.; Seckler, M.M.; de Oliveira, R.A.; Franco, F.F.; Marangoni, V.S.; Zucolotto, V.; Levin, A.S.S.; Costa, S.F. Comparison of Methods to Detect the in Vitro Activity of Silver Nanoparticles (AgNP) against Multidrug Resistant Bacteria. J. Nanobiotechnol. 2015, 13, 64. [Google Scholar] [CrossRef] [PubMed]
  341. Dorobantu, L.S.; Fallone, C.; Noble, A.J.; Veinot, J.; Ma, G.; Goss, G.G.; Burrell, R.E. Toxicity of Silver Nanoparticles against Bacteria, Yeast, and Algae. J. Nanopart. Res. 2015, 17, 172. [Google Scholar] [CrossRef]
  342. Mukha, I.P.; Eremenko, A.M.; Smirnova, N.P.; Mikhienkova, A.I.; Korchak, G.I.; Gorchev, V.F.; Chunikhin, A.Y. Antimicrobial Activity of Stable Silver Nanoparticles of a Certain Size. Appl. Biochem. Microbiol. 2013, 49, 199–206. [Google Scholar] [CrossRef]
  343. Taranath, T.C.; Patil, B.N. Limonia acidissima L. Leaf Mediated Synthesis of Zinc Oxide Nanoparticles: A Potent Tool against Mycobacterium Tuberculosis. Int. J. Mycobacteriol. 2016, 5, 197–204. [Google Scholar] [CrossRef] [Green Version]
  344. Aljabali, A.A.A.; Akkam, Y.; Salim, M.; Zoubi, A.; Al-batayneh, K.M.; Id, B.A.; Alrob, O.A.; Alkilany, A.M.; Benamara, M.; Id, D.J.E. Synthesis of Gold Nanoparticles Using Leaf Extract of Ziziphus zizyphus and Their Antimicrobial Activity. Nanomaterials 2018, 8, 174. [Google Scholar] [CrossRef] [Green Version]
  345. Alavi, M.; Karimi, N. Biosynthesis of Ag and Cu NPs by Secondary Metabolites of Usnic Acid and Thymol with Biological Macromolecules Aggregation and Antibacterial Activities against Multi Drug Resistant (MDR) Bacteria. Int. J. Biol. Macromol. 2019, 128, 893–901. [Google Scholar] [CrossRef]
  346. Seetharaman, P.; Chandrasekaran, R.; Gnanasekar, S.; Mani, I.; Sivarperumal, S. Biogenic Gold Nanoparticles Synthesized Using Crescentia cujete L. and Evaluation of Their Different Biological Activities. Biocatal. Agric. Biotechnol. 2017, 11, 75–82. [Google Scholar] [CrossRef]
  347. Behlol, K.; Ahmed, A.; Subramanian, S.; Sivasubramanian, A.; Veerappan, G.; Veerappan, A. Preparation of Gold Nanoparticles Using Salicornia brachiata Plant Extract and Evaluation of Catalytic and Antibacterial Activity. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 130, 54–58. [Google Scholar] [CrossRef]
  348. Baskar, S.; Selvan, G.; Anbarasu, R.; Raja, V. Green Synthesis of Gold Nanoparticles (Au-NPs) Using Barleria cristata and Study Their Pharmacological Applications. World J. Pharm. Res. 2016, 5, 1072–1085. [Google Scholar] [CrossRef]
  349. Sela, U.; Euler, C.W.; Correa da Rosa, J.; Fischetti, V.A. Strains of Bacterial Species Induce a Greatly Varied Acute Adaptive Immune Response: The Contribution of the Accessory Genome. PLoS Pathog. 2018, 14, e1006726. [Google Scholar] [CrossRef] [PubMed]
  350. Bundy, J.G.; Willey, T.L.; Castell, R.S.; Ellar, D.J.; Brindle, K.M. Discrimination of Pathogenic Clinical Isolates and Laboratory Strains of Bacillus Cereus by NMR-Based Metabolomic Profiling. FEMS Microbiol. Lett. 2005, 242, 127–136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  351. Medeiros, A.W.; Pereira, R.I.; Oliveira, D.V.; Martins, P.D.; d’Azevedo, P.A.; Van der Sand, S.; Frazzon, J.; Frazzon, A.P.G. Molecular Detection of Virulence Factors among Food and Clinical Enterococcus Faecalis Strains in South Brazil. Braz. J. Microbiol. 2014, 45, 327–332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  352. Tayabali, A.F.; Nguyen, K.C.; Shwed, P.S.; Crosthwait, J.; Coleman, G.; Seligy, V.L. Comparison of the Virulence Potential of Acinetobacter Strains from Clinical and Environmental Sources. PLoS ONE 2012, 7, e37024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  353. Alnuaimi, A.D.; O’Brien-Simpson, N.M.; Reynolds, E.C.; Mccullough, M.J. Clinical Isolates and Laboratory Reference Candida Species and Strains Have Varying Abilities to Form Biofilms. FEMS Yeast Res. 2013, 13, 689–699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  354. Clinical Laboratory Standards Institute. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, 11th ed.; Approved Standard; CLSI Guideline M07; Clinical Laboratory Standards Institute: Wayne, PA, USA, 2018. [Google Scholar]
  355. European Committee on Antimicrobial Susceptibility Testing. Determination of Minimum Inhibitory Concentrations (MICs) of Antibacterial Agents by Broth Dilution. Clin. Microbiol. Infect. 2003, 9, 1–7. [Google Scholar]
  356. Åhman, J.; Matuschek, E.; Kahlmeter, G. EUCAST Evaluation of 21 Brands of Mueller–Hinton Dehydrated Media for Disc Diffusion Testing. Clin. Microbiol. Infect. 2020, 26, 1412.e1–1412.e5. [Google Scholar] [CrossRef] [Green Version]
  357. Udekwu, K.I.; Parrish, N.; Ankomah, P.; Baquero, F.; Levin, B.R. Functional Relationship between Bacterial Cell Density and the Efficacy of Antibiotics. J. Antimicrob. Chemother. 2009, 63, 745–757. [Google Scholar] [CrossRef]
  358. Matuschek, E.; Brown, D.F.J.; Kahlmeter, G. Development of the EUCAST Disk Diffusion Antimicrobial Susceptibility Testing Method and Its Implementation in Routine Microbiology Laboratories. Clin. Microbiol. Infect. 2014, 20, O255–O266. [Google Scholar] [CrossRef] [Green Version]
  359. Hudzicki, J. Kirby-Bauer Disk Diffusion Susceptibility Test Protocol. Am. Soc. Microbiol. 2016, 15, 55–63. [Google Scholar]
  360. Vandepitte, J.; Engbaek, K.; Rohner, P.; Piot, P.; Heuck, C.C. Basic Laboratory Procedures in Clinical Bacteriology, 2nd ed.; World Health Organization: Geneva, Switzerland, 2003. [Google Scholar]
  361. United States Pharmacopoeia. Antimicrobial Effectiveness Testing; USP 51; United States Pharmacopoeia: Rockville, MD, USA, 2010. [Google Scholar]
  362. European Pharmacopoeia. Efficacy of Antimicrobial Preservation; EP 6.4; Council of Europe: Strasbourg, France, 2010.
  363. Japanese Pharmacopoeia. Preservative Effectiveness Test, 15th ed.; Pharmaceuticals and Medical Devices Agency: Tokyo, Japan, 2016.
  364. Smith, K.P.; Kirby, J.E. The Inoculum Effect in the Era of Multidrug Resistance: Minor Differences in Inoculum Have Dramatic Effect on MIC Determination. Antimicrob. Agents Chemother. 2018, 62, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  365. Clinical Laboratory Standards Institute. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, 9th ed.; Approved Standard; CLSI Guideline M07; Clinical Laboratory Standards Institute: Wayne, PA, USA, 2015. [Google Scholar]
  366. Chahardoli, A.; Karimi, N.; Sadeghi, F.; Fattahi, A. Green Approach for Synthesis of Gold Nanoparticles from Nigella Arvensis Leaf Extract and Evaluation of Their Antibacterial, Antioxidant, Cytotoxicity and Catalytic Activities. Artif. Cells Nanomed. Biotechnol. 2018, 46, 579–588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  367. Ishwarya, R.; Vaseeharan, B.; Kalyani, S.; Banumathi, B.; Govindarajan, M.; Alharbi, N.S.; Kadaikunnan, S.; Al-anbr, M.N.; Khaled, J.M.; Benelli, G. Facile Green Synthesis of Zinc Oxide Nanoparticles Using Ulva lactuca Seaweed Extract and Evaluation of Their Photocatalytic, Antibiofilm and Insecticidal Activity. J. Photochem. Photobiol. B Biol. 2018, 178, 249–258. [Google Scholar] [CrossRef] [PubMed]
  368. Clinical Laboratory Standards Institute. Performance Standards for Antimicrobial Disk Susceptibility Tests, 13th ed.; Approved Standard; CLSI Guideline M02; Clinical Laboratory Standards Institute: Wayne, PA, USA, 2018. [Google Scholar]
  369. Clinical Laboratory Standards Institute. Method for Antifungal Disk Diffusion Susceptibility Testing of Yeasts, 3rd ed.; Approved Standard; CLSI Guideline M44; Clinical Laboratory Standards Institute: Wayne, PA, USA, 2018. [Google Scholar]
  370. Clinical Laboratory Standards Institute. Method for Antifungal Disk Diffusion Susceptibility Testing of Nondermatophyte Filamentous Fungi; Approved Standard; CLSI Guideline M51-A; Clinical Laboratory Standards Institute: Wayne, PA, USA, 2010. [Google Scholar]
  371. Clinical Laboratory Standards Institute. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts, 4th ed.; Approved Standard; CLSI Guideline M27; Clinical Laboratory Standards Institute: Wayne, PA, USA, 2017. [Google Scholar]
  372. Clinical and Laboratory Standards Institute. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi; Approved Guideline, 3rd ed.; CLSI Guideline M38; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2017. [Google Scholar]
  373. Flanagan, J.N.; Steck, T.R. The Relationship Between Agar Thickness and Antimicrobial Susceptibility Testing. Indian J. Microbiol. 2017, 57, 503–506. [Google Scholar] [CrossRef] [PubMed]
  374. Aisida, S.O.; Madubuonu, N.; Alnasir, M.H.; Ahmad, I.; Botha, S.; Maaza, M.; Ezema, F.I. Biogenic Synthesis of Iron Oxide Nanorods Using Moringa Oleifera Leaf Extract for Antibacterial Applications. Appl. Nanosci. 2019, 101, 305–315. [Google Scholar] [CrossRef]
  375. Ambika, S.; Sundrarajan, M. Antibacterial Behaviour of Vitex negundo Extract Assisted ZnO Nanoparticles against Pathogenic Bacteria. J. Photochem. Photobiol. B Biol. 2015, 146, 52–57. [Google Scholar] [CrossRef] [PubMed]
  376. Devi, H.S.; Boda, M.A.; Shah, M.A.; Parveen, S.; Wani, A.H. Green Synthesis of Iron Oxide Nanoparticles Using Platanus Orientalis Leaf Extract for Antifungal Activity. Green Process. Synth. 2019, 8, 38–45. [Google Scholar] [CrossRef]
  377. Chamsa-ard, W.; Fawcett, D.; Fung, C.C.; Poinern, G.E.J. Biogenic Synthesis of Gold Nanoparticles from Waste Watermelon and Their Antibacterial Activity against Escherichia coli and Staphylococcus epidermidis. Int. J. Res. Med. Sci. 2019, 7, 2499–2505. [Google Scholar] [CrossRef]
  378. Supraja, N.; Prasad, T.N.V.K.V.; Dhanesh, A.; Anbumani, D. Synthesis, Characterization and Evaluation of Antimicrobial Efficacy and Brine Shrimp Lethality Assay of Alstonia scholaris Stem Bark Extract Mediated ZnONPs. Biochem. Biophys. Rep. 2018, 14, 69–77. [Google Scholar] [CrossRef]
  379. Clinical Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing, 32nd ed.; Approved Standard; CLSI Guideline M100; Clinical Laboratory Standards Institute: Wayne, PA, USA, 2022. [Google Scholar]
  380. European Committee on Antimicrobial Susceptibility Testing. Routine and Extended Internal Quality Control for MIC Determination and Disk Diffusion as Recommended by EUCAST; Version 12.0.; European Committee on Antimicrobial Susceptibility Testing: Växjö, Sweden, 2022. [Google Scholar]
  381. Mohamed, D.S.; El-Baky, R.M.A.; Sandle, T.; Mandour, S.A.; Ahmed, E.F. Antimicrobial Activity of Silver-Treated Bacteria against Other Multi-Drug Resistant Pathogens in Their Environment. Antibiotics 2020, 9, 181. [Google Scholar] [CrossRef] [Green Version]
  382. Konaté, K.; Mavoungou, J.F.; Lepengué, A.N.; Aworet-samseny, R.R.R.; Hilou, A.; Souza, A.; Dicko, M.H.; Batchi, B.M. Antibacterial Activity against β-Lactamase Producing Methicillin and Ampicillin-Resistants Staphylococcus aureus: Fractional Inhibitory Concentration Index (FICI) Determination. Ann. Clin. Microbiol. Antimicrob. 2012, 11, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  383. Appiah, T.; Boakye, Y.D.; Agyare, C. Antimicrobial Activities and Time-Kill Kinetics of Extracts of Selected Ghanaian Mushrooms. Evid.-Based Complement. Altern. Med. 2017, 2017, 4534350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  384. Wani, I.A.; Ahmad, T. Size and Shape Dependant Antifungal Activity of Gold Nanoparticles: A Case Study of Candida. Colloids Surf. B Biointerfaces 2013, 101, 162–170. [Google Scholar] [CrossRef] [PubMed]
  385. Hoseinzadeh, E.; Makhdoumi, P.; Taha, P.; Hossini, H.; Stelling, J.; Amjad Kamal, M.; Md Ashraf, G. A Review on Nano-Antimicrobials: Metal Nanoparticles, Methods and Mechanisms. Curr. Drug Metab. 2016, 18, 120–128. [Google Scholar] [CrossRef]
  386. Lu, Z.; Rong, K.; Li, J.; Yang, H.; Chen, R. Size-Dependent Antibacterial Activities of Silver Nanoparticles against Oral Anaerobic Pathogenic Bacteria. J. Mater. Sci. Mater. Med. 2013, 24, 1465–1471. [Google Scholar] [CrossRef]
  387. Osonga, F.J.; Kalra, S.; Miller, R.M.; Isika, D.; Sadik, O.A. Synthesis, Characterization and Antifungal Activities of Eco-Friendly Palladium Nanoparticles. RSC Adv. 2020, 10, 5894–5904. [Google Scholar] [CrossRef]
  388. Pajerski, W.; Ochonska, D.; Brzychczy-Wloch, M.; Indyka, P.; Jarosz, M.; Golda-Cepa, M.; Sojka, Z.; Kotarba, A. Attachment Efficiency of Gold Nanoparticles by Gram-Positive and Gram-Negative Bacterial Strains Governed by Surface Charges. J. Nanoparticle Res. 2019, 21, 186. [Google Scholar] [CrossRef] [Green Version]
  389. Kim, D.H.; Park, J.C.; Jeon, G.E.; Kim, C.S.; Seo, J.H. Effect of the Size and Shape of Silver Nanoparticles on Bacterial Growth and Metabolism by Monitoring Optical Density and Fluorescence Intensity. Biotechnol. Bioprocess. Eng. 2017, 22, 210–217. [Google Scholar] [CrossRef]
  390. Pal, S.; Tak, Y.K.; Song, J.M. Does the Antibacterial Activity of Silver Nanoparticles Depend on the Shape of the Nanoparticle? A Study of the Gram-Negative Bacterium Escherichia coli. Appl. Environ. Microbiol. 2007, 73, 1712–1720. [Google Scholar] [CrossRef] [Green Version]
  391. Van Dong, P.; Ha, C.H.; Binh, L.T.; Kasbohm, J. Chemical Synthesis and Antibacterial Activity of Novel-Shaped Silver Nanoparticles. Int. Nano Lett. 2012, 2, 1–9. [Google Scholar] [CrossRef] [Green Version]
  392. Javed, R.; Zia, M.; Naz, S.; Aisida, S.O.; ul Ain, N.; Ao, Q. Role of Capping Agents in the Application of Nanoparticles in Biomedicine and Environmental Remediation: Recent Trends and Future Prospects. J. Nanobiotechnol. 2020, 18, 172. [Google Scholar] [CrossRef] [PubMed]
  393. Restrepo, C.V.; Villa, C.C. Synthesis of Silver Nanoparticles, Influence of Capping Agents, and Dependence on Size and Shape: A Review. Environ. Nanotechnol. Monit. Manag. 2021, 15, 100428. [Google Scholar] [CrossRef]
  394. Zhang, Y.; Yang, M.; Portney, N.G.; Cui, D.; Budak, G.; Ozbay, E.; Ozkan, M.; Ozkan, C.S. Zeta Potential: A Surface Electrical Characteristic to Probe the Interaction of Nanoparticles with Normal and Cancer Human Breast Epithelial Cells. Biomed. Microdevices 2008, 10, 321–328. [Google Scholar] [CrossRef] [PubMed]
  395. Wilson, W.W.; Wade, M.M.; Holman, S.C.; Champlin, F.R. Status of Methods for Assessing Bacterial Cell Surface Charge Properties Based on Zeta Potential Measurements. J. Microbiol. Methods 2001, 43, 153–164. [Google Scholar] [CrossRef]
  396. Wang, L.; Hu, C.; Shao, L. The Antimicrobial Activity of Nanoparticles: Present Situation and Prospects for the Future. Int. J. Nanomed. 2017, 12, 1227–1249. [Google Scholar] [CrossRef] [Green Version]
  397. Arakha, M.; Pal, S.; Samantarrai, D.; Panigrahi, T.K. Antimicrobial Activity of Iron Oxide Nanoparticle upon Modulation of Nanoparticle-Bacteria Interface. Sci. Rep. 2015, 5, 14813. [Google Scholar] [CrossRef] [Green Version]
  398. Fang, B.; Jiang, Y.; Nüsslein, K.; Rotello, V.M.; Santore, M.M. Antimicrobial Surfaces Containing Cationic Nanoparticles: How Immobilized, Clustered, and Protruding Cationic Charge Presentation Affects Killing Activity and Kinetics. Colloids Surf. B Biointerfaces 2015, 125, 255–263. [Google Scholar] [CrossRef]
  399. Halder, S.; Yadav, K.K.; Sarkar, R.; Mukherjee, S.; Saha, P.; Haldar, S.; Karmakar, S.; Sen, T. Alteration of Zeta Potential and Membrane Permeability in Bacteria: A Study with Cationic Agents. Springerplus 2015, 4, 672. [Google Scholar] [CrossRef] [Green Version]
  400. Abo-Shama, U.H.; El-Gendy, H.; Mousa, W.S.; Hamouda, R.A.; Yousuf, W.E.; Hetta, H.F.; Abdeen, E.E. Synergistic and Antagonistic Effects of Metal Nanoparticles in Combination with Antibiotics against Some Reference Strains of Pathogenic Microorganisms. Infect. Drug Resist. 2020, 13, 351–362. [Google Scholar] [CrossRef] [Green Version]
  401. Malawong, S.; Thammawithan, S.; Sirithongsuk, P.; Daduang, S.; Klaynongsruang, S.; Wong, P.T.; Patramanon, R. Silver Nanoparticles Enhance Antimicrobial Efficacy of Antibiotics and Restore That Efficacy against the Melioidosis Pathogen. Antibiotics 2021, 10, 839. [Google Scholar] [CrossRef]
  402. Heydari, R.; Rashidipour, M. Green Synthesis of Silver Nanoparticles Using Extract of Oak Fruit Hull (Jaft): Synthesis and In Vitro Cytotoxic Effect on MCF-7 Cells. Int. J. Breast Cancer 2015, 2015, 846743. [Google Scholar] [CrossRef] [PubMed]
  403. Balciunaitiene, A.; Viskelis, P.; Viskelis, J.; Streimikyte, P.; Liaudanskas, M.; Bartkiene, E.; Zavistanaviciute, P.; Zokaityte, E.; Starkute, V.; Ruzauskas, M.; et al. Green Synthesis of Silver Nanoparticles Using Extract of Artemisia absinthium L., Humulus lupulus L. and Thymus vulgaris L., Physico-Chemical Characterization, Antimicrobial and Antioxidant Activity. Processes 2021, 9, 1304. [Google Scholar] [CrossRef]
  404. Banerjee, P.; Satapathy, M.; Mukhopahayay, A.; Das, P. Leaf Extract Mediated Green Synthesis of Silver Nanoparticles from Widely Available Indian Plants: Synthesis, Characterization, Antimicrobial Property and Toxicity Analysis. Bioresour. Bioprocess. 2014, 1, 3. [Google Scholar] [CrossRef] [Green Version]
  405. Sibiya, P.N.; Moloto, M.J. Green Synthesis of Ag2S Nanoparticles: Effect of pH and Capping Agent on Size and Shape of NPs and Their Antibacterial Activity. Dig. J. Nanomater. Biostruct. 2018, 13, 411–418. [Google Scholar]
  406. Guckeisen, T.; Hosseinpour, S.; Peukert, W. Effect of PH and Urea on the Proteins Secondary Structure at the Water/Air Interface and in Solution. J. Colloid Interface Sci. 2021, 590, 38–49. [Google Scholar] [CrossRef] [PubMed]
  407. Vadlapudi, V.; Kaladhar, D. Review: Green Synthesis of Silver and Gold Nanoparticles. Middle-East J. Sci. Res. 2014, 19, 834–842. [Google Scholar]
  408. Friedman, M.; Jurgens, H.S. Effect of PH on the Stability of Plant Phenolic Compounds Mendel. J. Agric. Food Chem. 2000, 48, 2101–2110. [Google Scholar] [CrossRef]
  409. Chitra, K.; Annadurai, G. Antibacterial Activity of PH-Dependent Biosynthesized Silver Nanoparticles against Clinical Pathogen. Biomed. Res. Int. 2014, 2014, 725165. [Google Scholar] [CrossRef] [Green Version]
  410. Qu, F.; Xu, H.; Wei, H.; Lai, W. Effects of pH and Temperature on Antibacterial Activity of Silver Nanoparticles. In Proceedings of the 2010 3rd International Conference on Biomedical Engineering and Informatics, Yantai, China, 16–18 October 2010; pp. 2033–2037. [Google Scholar] [CrossRef]
  411. Kredy, H.M. The Effect of pH, Temperature on the Green Synthesis and Biochemical Activities of Silver Nanoparticles from Lawsonia Inermis Extract. J. Pharm. Sci. Res. 2018, 10, 2022–2026. [Google Scholar]
  412. Saliani, M.; Jalal, R. Effects of pH and Temperature on Antibacterial Activity of Zinc Oxide Nanofluid Against Escherichia coli O157:H7 and Staphylococcus Aureus. J. Microbiol. 2015, 8, e17115. [Google Scholar] [CrossRef] [Green Version]
  413. Arakha, M.; Saleem, M.; Mallick, B.C.; Jha, S. The Effects of Interfacial Potential on Antimicrobial Propensity of ZnO Nanoparticle. Sci. Rep. 2015, 5, 9578. [Google Scholar] [CrossRef] [PubMed]
  414. Agarwal, H.; Menon, S.; Kumar, S.V.; Rajeshkumar, S. Mechanistic Study on Antibacterial Action of Zinc Oxide Nanoparticles Synthesized Using Green Route. Chem. Biol. Interact. 2018, 286, 60–70. [Google Scholar] [CrossRef] [PubMed]
  415. Nagarajan, S.; Kuppusamy, K.A. Extracellular Synthesis of Zinc Oxide Nanoparticle Using Seaweeds of Gulf of Mannar, India. J. Nanobiotechnol. 2013, 11, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  416. Parashar, S.; Sharma, M.K.; Garg, C.; Garg, M. Green Synthesized Silver Nanoparticles as Silver Lining in Antimicrobial Resistance: A Review. Curr. Drug. Deliv. 2022, 19, 170–181. [Google Scholar] [CrossRef] [PubMed]
  417. LIOFILCHEM. Antibiotic Disc Interpretative Criteria and Quality Control. 2017. Available online: http://www.liofilchem.net/pdf/disc/disc_interpretative_table.pdf (accessed on 20 December 2021).
  418. European Committee on Antimicrobial Susceptibility Testing. Breakpoints Tables for Interpretation of MICs and Zone Diameters. 2019. Available online: https://www.eucast.org/clinical_breakpoints/ (accessed on 20 December 2021).
  419. Maťátkova, O.; Michailidu, J.; Miškovská, A.; Kolouchová, I.; Masák, J.; Čejková, A. Antimicrobial Properties and Applications of Metal Nanoparticles Biosynthesized by Green Methods. Biotechnol. Adv. 2022, 11, 107905. [Google Scholar] [CrossRef] [PubMed]
  420. Baron, S.; Ceccarelli, D.; Dalsgaard, I.; Granier, S.A.; Haenen, O.; Jansson, E.; Madsen, L.; Jouy, E.; Kempf, I.; Larvor, E.; et al. Influence of Incubation Time on Antimicrobial Susceptibility Testing of Pathogenic Vibrio anguillarum and Vibrio vulnificus Isolated from Fish. Aquaculture 2020, 524, 735258. [Google Scholar] [CrossRef]
  421. Ipe, D.S.; Kumar, P.T.S.; Love, R.M.; Hamlet, S.M. Silver Nanoparticles at Biocompatible Dosage Synergistically Increases Bacterial Susceptibility to Antibiotics. Front. Microbiol. 2020, 11, 74. [Google Scholar] [CrossRef]
  422. Ali, K.; Dwivedi, S.; Azam, A.; Saquib, Q.; Al-said, M.S.; Alkhedhairy, A.A.; Musarrat, J. Aloe Vera Extract Functionalized Zinc Oxide Nanoparticles as Nanoantibiotics against Multi-Drug Resistant Clinical Bacterial Isolates. J. Colloid Interface Sci. 2016, 472, 145–156. [Google Scholar] [CrossRef]
  423. Fayaz, A.M.; Balaji, K.; Girilal, M.; Yadav, R.; Kalaichelvan, P.T.; Venketesan, R. Biogenic Synthesis of Silver Nanoparticles and Their Synergistic Effect with Antibiotics: A Study against Gram-Positive and Gram-Negative Bacteria. Nanomed. Nanotechnol. Biol. Med. 2010, 6, 103–109. [Google Scholar] [CrossRef]
  424. Baker, S.; Pasha, A.; Satish, S. Biogenic Nanoparticles Bearing Antibacterial Activity and Their Synergistic Effect with Broad Spectrum Antibiotics: Emerging Strategy to Combat Drug Resistant Pathogens. Saudi Pharm. J. 2017, 25, 44–51. [Google Scholar] [CrossRef] [Green Version]
  425. Wilson, C.; Lukowicz, R.; Merchant, S.; Valquier-Flynn, H.; Caballero, J.; Sandoval, J.; Okuom, M.; Huber, C.; Brooks, T.D.; Wilson, E.; et al. Quantitative and Qualitative Assessment Methods for Biofilm Growth: A Mini-Review. Res. Rev. J. Eng. Technol. 2017, 6, 6133255. [Google Scholar]
  426. Allkja, J.; Bjarnsholt, T.; Coenye, T.; Cos, P.; Fallarero, A.; Harrison, J.J.; Lopes, S.P.; Oliver, A.; Pereira, M.O.; Ramage, G.; et al. Minimum Information Guideline for Spectrophotometric and Fluorometric Methods to Assess Biofilm Formation in Microplates. Biofilm 2020, 2, 100010. [Google Scholar] [CrossRef] [PubMed]
  427. Azeredo, J.; Azevedo, N.F.; Briandet, R.; Cerca, N.; Coenye, T.; Costa, A.R.; Desvaux, M.; Di Bonaventura, G.; Hébraud, M.; Jaglic, Z.; et al. Critical Review on Biofilm Methods. Crit. Rev. Microbiol. 2017, 43, 313–351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  428. Manikandan, M.; Wu, H.; Hasan, N. Biosensors and Bioelectronics Cell Population Based Mass Spectrometry Using Platinum Nanodots for Algal and Fungal Studies. Biosens. Bioelectron. 2012, 35, 493–497. [Google Scholar] [CrossRef] [PubMed]
  429. Stepanović, S.; Vuković, D.; Hola, V.; Di Bonaventura, G.; Djukić, S.; Ćirković, I.; Ruzicka, F. Quantification of Biofilm in Microtiter Plates: Overview of Testing Conditions and Practical Recommendations for Assessment of Biofilm Production by Staphylococci. Apmis 2007, 115, 891–899. [Google Scholar] [CrossRef]
  430. Peeters, E.; Nelis, H.J.; Coenye, T. Comparison of Multiple Methods for Quantification of Microbial Biofilms Grown in Microtiter Plates. J. Microbiol. Methods 2008, 72, 157–165. [Google Scholar] [CrossRef] [Green Version]
  431. Sandberg, M.; Määttänen, A.; Peltonen, J.; Vuorela, P.M.; Fallarero, A. Automating a 96-Well Microtitre Plate Model for Staphylococcus Aureus Biofilms: An Approach to Screening of Natural Antimicrobial Compounds. Int. J. Antimicrob. Agents 2008, 32, 233–240. [Google Scholar] [CrossRef]
  432. Xu, Z.; Liang, Y.; Lin, S.; Chen, D.; Li, B.; Li, L.; Deng, Y. Crystal Violet and XTT Assays on Staphylococcus Aureus Biofilm Quantification. Curr. Microbiol. 2016, 73, 474–482. [Google Scholar] [CrossRef]
  433. Palanisamy, N.K.; Ferina, N.; Amirulhusni, A.N.; Mohd-Zain, Z.; Hussaini, J.; Ping, L.J.; Durairaj, R. Antibiofilm Properties of Chemically Synthesized Silver Nanoparticles Found against Pseudomonas aeruginosa. J. Nanobiotechnol. 2014, 12, 1–7. [Google Scholar] [CrossRef] [Green Version]
  434. Sabaeifard, P.; Abdi-Ali, A.; Soudi, M.R.; Dinarvand, R. Optimization of Tetrazolium Salt Assay for Pseudomonas Aeruginosa Biofilm Using Microtiter Plate Method. J. Microbiol. Methods 2014, 105, 134–140. [Google Scholar] [CrossRef]
  435. Jagani, S.; Chelikani, R.; Kim, D.S. Effects of Phenol and Natural Phenolic Compounds on Biofilm Formation by Pseudomonas aeruginosa. Biofouling 2009, 25, 321–324. [Google Scholar] [CrossRef] [PubMed]
  436. Marcos-Zambrano, L.J.; Escribano, P.; Bouza, E.; Guinea, J. Production of Biofilm by Candida and Non-Candida Spp. Isolates Causing Fungemia: Comparison of Biomass Production and Metabolic Activity and Development of Cut-off Points. Int. J. Med. Microbiol. 2014, 304, 1192–1198. [Google Scholar] [CrossRef] [PubMed]
  437. Stepanović, S.; Vuković, D.; Ježek, P.; Pavlović, M.; Švabic-Vlahović, M. Influence of Dynamic Conditions on Biofilm Formation by Staphylococci. Eur. J. Clin. Microbiol. Infect. Dis. 2001, 20, 502–504. [Google Scholar] [CrossRef] [PubMed]
  438. Li, X.; Yan, Z.; Xu, J. Quantitative Variation of Biofilms among Strains in Natural Populations of Candida albicans. Microbiology 2003, 149, 353–362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  439. Cruz, C.D.; Shah, S.; Tammela, P. Defining Conditions for Biofilm Inhibition and Eradication Assays for Gram-Positive Clinical Reference Strains. BMC Microbiol. 2018, 18, 1–9. [Google Scholar] [CrossRef] [PubMed]
  440. Hassan, A.; Usman, J.; Kaleem, F.; Omair, M.; Khalid, A.; Iqbal, M. Evaluation of Different Detection Methods of Biofilm Formation in the Clinical Isolates. Braz. J. Infect. Dis. 2011, 15, 305–311. [Google Scholar] [CrossRef] [Green Version]
  441. Kragh, K.N.; Alhede, M.; Rybtke, M.; Stavnsberg, C.; Jensen, P.; Tolker-Nielsen, T.; Whiteley, M.; Bjarnsholt, T. The Inoculation Method Could Impact the Outcome of Microbiological Experiments. Appl. Environ. Microbiol. 2018, 84, e02264-17. [Google Scholar] [CrossRef] [Green Version]
  442. Azevedo, N.F.; Pinto, A.R.; Reis, N.M.; Vieira, M.J.; Keevil, C.W. Shear Stress, Temperature, and Inoculation Concentration Influence the Adhesion of Water-Stressed Helicobacter Pylori to Stainless Steel 304 and Polypropylene. Appl. Environ. Microbiol. 2006, 72, 2936–2941. [Google Scholar] [CrossRef] [Green Version]
  443. Deighton, M.A.; Capstick, J.; Domalewski, E.; Van Nguyen, T. Methods for Studying Biofilms Produced by Staphylococcus epidermidis. Methods Enzymol. 2001, 336, 177–195. [Google Scholar] [CrossRef]
  444. Kiers, P.J.M.; Bos, R.; van der Mei, H.C.; Busscher, H.J. The Electrophoretic Softness of the Surface of Staphylococcus epidermidis Cells Grown in a Liquid Medium and on a Solid Agar. Microbiology 2001, 147, 757–762. [Google Scholar] [CrossRef] [Green Version]
  445. Cheung, A.L.; Fischetti, V.A. Variation in the Expression of Cell Wall Proteins of Staphylococcus Aureus Grown on Solid and Liquid Media. Infect. Immun. 1988, 56, 1061–1065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  446. Mohanty, S.; Mishra, S.; Jena, P.; Jacob, B.; Sarkar, B.; Sonawane, A. An Investigation on the Antibacterial, Cytotoxic, and Antibiofilm Efficacy of Starch-Stabilized Silver Nanoparticles. Nanomedicine 2012, 8, 916–924. [Google Scholar] [CrossRef] [PubMed]
  447. Kaplan, J.B.; Izano, E.A.; Gopal, P.; Karwacki, M.T.; Kim, S.; Bose, J.L.; Bayles, K.W.; Horswill, A.R. Low Levels of β-Lactam Antibiotics Induce Extracellular DNA Release and Biofilm Formation in Staphylococcus aureus. mBio 2012, 3, e00198-12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  448. Sanchez, C.J.; Mende, K.; Beckius, M.L.; Akers, K.S.; Romano, D.R.; Wenke, J.C.; Murray, C.K. Biofilm Formation by Clinical Isolates and the Implications in Chronic Infections. BMC Infect. Dis. 2013, 13, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  449. Izano, E.A.; Amarante, M.A.; Kher, W.B.; Kaplan, J.B. Differential Roles of Poly-N-Acetylglucosamine Surface Polysaccharide and Extracellular DNA in Staphylococcus aureus and Staphylococcus epidermidis Biofilms. Appl. Environ. Microbiol. 2008, 74, 470–476. [Google Scholar] [CrossRef] [Green Version]
  450. Zmantar, T.; Kouidhi, B.; Miladi, H.; Mahdouani, K.; Bakhrouf, A. A Microtiter Plate Assay for Staphylococcus aureus Biofilm Quantification at Various PH Levels and Hydrogen Peroxide Supplementation. New Microbiol. 2010, 33, 137–145. [Google Scholar]
  451. Negri, M.; Gonçalves, V.; Silva, S.; Henriques, M.; Azeredo, J.; Oliveira, R. Crystal Violet Staining to Quantity Candida Adhesion to Epithelial Cells. Br. J. Biomed. Sci. 2010, 67, 120–125. [Google Scholar] [CrossRef]
  452. Monteiro, D.R.; Gorup, L.F.; Silva, S.; Negri, M.; de Camargo, E.R.; Oliveira, R.; Barbosa, D.B.; Henriques, M. Silver Colloidal Nanoparticles: Antifungal Effect against Adhered Cells and Biofilms of Candida Albicans and Candida Glabrata. Biofouling 2011, 27, 711–719. [Google Scholar] [CrossRef]
  453. Li, L.; Zhang, Z. Biosynthesis of Gold Nanoparticles Using Green Alga Pithophora oedogonia with Their Electrochemical Performance for Determining Carbendazim in Soil. Int. J. Electrochem. Sci. 2016, 11, 4550–4559. [Google Scholar] [CrossRef]
  454. Khan, S.; Alam, F.; Azam, A.; Khan, A.U. Gold Nanoparticles Enhance Methylene Blue-Induced Photodynamic Therapy: A Novel Therapeutic Approach to Inhibit Candida Albicans Biofilm. Int. J. Nanomed. 2012, 7, 3245–3257. [Google Scholar] [CrossRef] [Green Version]
  455. Dovigo, L.N.; Pavarina, A.C.; Carmello, J.C.; MacHado, A.L.; Brunetti, I.L.; Bagnato, V.S. Susceptibility of Clinical Isolates of Candida to Photodynamic Effects of Curcumin. Lasers Surg. Med. 2011, 43, 927–934. [Google Scholar] [CrossRef] [PubMed]
  456. Deveau, A.; Hogan, D.A. Linking Quorum Sensing Regulation and Biofilm Formation by Candida albicans. Methods Mol. Biol. 2011, 692, 219–233. [Google Scholar] [PubMed]
  457. Christensen, G.D.; Simpson, W.A.; Younger, J.J.; Baddour, L.M.; Barrett, F.F.; Melton, D.M.; Beachey, E.H. Adherence of Coagulase-Negative Staphylococci to Plastic Tissue Culture Plates: A Quantitative Model for the Adherence of Staphylococci to Medical Devices. J. Clin. Microbiol. 1985, 22, 996–1006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  458. Kennedy, C.A.; O’Gara, J.P. Contribution of Culture Media and Chemical Properties of Polystyrene Tissue Culture Plates to Biofilm Development by Staphylococcus aureus. J. Med. Microbiol. 2004, 53, 1171–1173. [Google Scholar] [CrossRef]
  459. Stepanović, S.; Vuković, D.; Dakić, I.; Savić, B.; Švabić-Vlahović, M. A Modified Microtiter-Plate Test for Quantification of Staphylococcal Biofilm Formation. J. Microbiol. Methods 2000, 40, 175–179. [Google Scholar] [CrossRef]
  460. Mathur, T.; Singhal, S.; Khan, S.; Upadhyay, D.; Fatma, T.; Rattan, A. Detection of Biofilm Formation Among the Clinical Isolates of Staphylococci: An Evaluation of Three Different Screening Methods. Indian J. Med. Microbiol. 2006, 24, 25–29. [Google Scholar] [CrossRef]
  461. Cramton, S.E.; Gerke, C.; Gotz, F. In Vitro Methods to Study Staphylococcal Biofilm Formation. Methods Enzymol. 2001, 336, 239–255. [Google Scholar]
  462. Tormo, M.Á.; Martí, M.; Valle, J.; Manna, A.C.; Cheung, A.L.; Lasa, I.; Penadés, J.R. SarA Is an Essential Positive Regulator of Staphylococcus epidermidis Biofilm Development. J. Bacteriol. 2005, 187, 2348–2356. [Google Scholar] [CrossRef] [Green Version]
  463. Mack, D.; Bartscht, K.; Fischer, C.; Rohde, H.; De Grahl, C.; Dobinsky, S.; Horstkotte, M.A.; Kiel, K.; Knobloch, J.K.M. Genetic and Biochemical Analysis of Staphylococcus epidermidis Biofilm Accumulation. Methods Enzymol. 2001, 336, 215–239. [Google Scholar] [CrossRef]
  464. Petrelli, D.; Zampaloni, C.; D’Ercole, S.; Prenna, M.; Ballarini, P.; Ripa, S.; Vitali, L.A. Analysis of Different Genetic Traits and Their Association with Biofilm Formation in Staphylococcus epidermidis Isolates from Central Venous Catheter Infections. Eur. J. Clin. Microbiol. Infect. Dis. 2006, 25, 773–781. [Google Scholar] [CrossRef]
  465. Huang, H.; Shan, K.; Liu, J.; Tao, X.; Periyasamy, S. Synthesis, Optimization and Characterization of Silver Nanoparticles Using the Catkin Extract of Piper Longum for Bactericidal Effect against Food-Borne Pathogens via Conventional and Mathematical Approaches. Bioorg. Chem. 2020, 20, 104230. [Google Scholar] [CrossRef] [PubMed]
  466. Singh, D.; Kumar, V.; Yadav, E.; Falls, N.; Singh, M.; Komal, U.; Verma, A. One-Pot Green Synthesis and Structural Characterisation of Silver Nanoparticles Using Aqueous Leaves Extract of Carissa Carandas: Antioxidant, Anticancer and Antibacterial Activities. IET Nanobiotechnol. 2018, 12, 748–756. [Google Scholar] [CrossRef] [PubMed]
  467. Ramanathan, S.; Gopinath, S.C.B.; Anbu, P.; Lakshmipriya, T.; Kasim, F.H.; Lee, C. Eco-Friendly Synthesis of Solanum Trilobatum Extract-Capped Silver Nanoparticles Is Compatible with Good Antimicrobial Activities. J. Mol. Struct. 2018, 1160, 80–91. [Google Scholar] [CrossRef]
  468. Lakshmanan, G.; Sathiyaseelan, A.; Kalaichelvan, P.T.; Murugesan, K. Plant-Mediated Synthesis of Silver Nanoparticles Using Fruit Extract of Cleome Viscosa L.: Assessment of Their Antibacterial and Anticancer Activity. Karbala Int. J. Mod. Sci. 2018, 4, 61–68. [Google Scholar] [CrossRef]
  469. Ibrahim, H.M.M. Green Synthesis and Characterization of Silver Nanoparticles Using Banana Peel Extract and Their Antimicrobial Activity against Representative Microorganisms. J. Radiat. Res. Appl. Sci. 2015, 8, 265–275. [Google Scholar] [CrossRef] [Green Version]
  470. Ahmed, S.; Saifullah; Ahmad, M. Green Synthesis of Silver Nanoparticles Using Azadirachta Indica Aqueous Leaf Extract. J. Radiat. Res. Appl. Sci. 2016, 9, 1–7. [Google Scholar] [CrossRef] [Green Version]
  471. Logeswari, P.; Silambarasan, S.; Abraham, J. Ecofriendly Synthesis of Silver Nanoparticles from Commercially Available Plant Powders and Their Antibacterial Properties. Sci. Iran. 2013, 20, 1049–1054. [Google Scholar] [CrossRef]
  472. Aygün, A.; Gülbağca, F.; Nas, M.S.; Alma, M.H.; Çalimili, M.H.; Ustaogulu, B.; Altunoglu, Y.C.; Baloglu, M.C.; Cellat, K.; Sen, F. Biological synthesis of silver nanoparticles using Rheum ribes and evaluation of their anticarcinogenic and antimicrobal potential a novel approach in phytonanotechnology. J. Pharm. Biomed. Anal. 2020, 179, 113012. [Google Scholar] [CrossRef]
  473. Mickymaray, S. One-Step Synthesis of Silver Nanoparticles Using Saudi Arabian Desert Seasonal Plant Sisymbrium Irio and Antibacterial Activity Against Multidrug- Resistant Bacterial Strains. Molecules 2019, 9, 662. [Google Scholar] [CrossRef] [Green Version]
  474. Ali, M.A.; Mosa, K.A.; El-Keblawy, A.; Alawadhi, H. Exogenous production of silver nanoparticles by Tephrosia apollinea living plants under drought stress and their antimicrobial activities. Nanomaterials 2019, 9, 1716. [Google Scholar] [CrossRef] [Green Version]
  475. Tanase, C.; Berta, L.; Coman, N.A.; Roșca, I.; Man, A.; Toma, F.; Mocan, A.; Nicolescu, A.; Jakab-Farkas, L.; Biró, D.; et al. Antibacterial and antioxidant potential of silver nanoparticles biosynthesized using the spruce bark extract. Nanomaterials. 2019, 9, 1541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  476. Küp, F.Ö.; Çoşkunçay, S.; Duman, F. Biosynthesis of Silver Nanoparticles Using Leaf Extract of Aesculus Hippocastanum (Horse Chestnut): Evaluation of Their Antibacterial, Antioxidant and Drug Release System Activities. Mater. Sci. Eng. C 2020, 107, 110207. [Google Scholar] [CrossRef] [PubMed]
  477. Manosalva, N.; Tortella, G.; Cristina Diez, M.; Schalchli, H.; Seabra, A.B.; Durán, N.; Rubilar, O. Green Synthesis of Silver Nanoparticles: Effect of Synthesis Reaction Parameters on Antimicrobial Activity. World J. Microbiol. Biotechnol. 2019, 35, 88. [Google Scholar] [CrossRef] [PubMed]
  478. Baruah, D.; Yadav, R.N.S.; Yadav, A.; Das, A.M. Alpinia Nigra Fruits Mediated Synthesis of Silver Nanoparticles and Their Antimicrobial and Photocatalytic Activities. J. Photochem. Photobiol. B Biol. 2019, 201, 111649. [Google Scholar] [CrossRef] [PubMed]
  479. Aritonang, H.F.; Koleangan, H.; Wuntu, A.D. Synthesis of Silver Nanoparticles Using Aqueous Extract of Medicinal Plants (Impatiens Balsamina and Lantana Camara) Fresh Leaves and Analysis of Antimicrobial Activity. Int. J. Microbiol. 2019, 2019, 8642303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  480. Ibrahim, E.H.; Kilany, M.; Ghramh, H.A.; Khan, K.A.; ul Islam, S. Cellular Proliferation/Cytotoxicity and Antimicrobial Potentials of Green Synthesized Silver Nanoparticles (AgNPs) Using Juniperus Procera. Saudi J. Biol. Sci. 2019, 26, 1689–1694. [Google Scholar] [CrossRef]
  481. Dada, A.O.; Adekola, F.A.; Dada, F.E.; Adelani-Akenda, A.T.; Bello, M.O.; Okonkwo, C.R.; Inyinbor, A.A.; Oluyori, A.P.; Olayanju, A.; Ajanaku, K.O.; et al. Silver Nanoparticle Synthesis by Acalypha wilkesiana Extract Phytochemical Screening, Characterization, Influence of Operational Parameters, and Preliminary Antibacterial Testing. Heliyon 2019, 5, e02517. [Google Scholar] [CrossRef] [Green Version]
  482. Dakshayani, S.S.; Marulasiddeshwara, M.B.; Kumar, M.N.S.; Ramesh, G.; Kumar, P.R.; Devaraja, S.; Hosamani, R. Antimicrobial, Anticoagulant and Antiplatelet Activities of Green Synthesized Silver Nanoparticles Using Selaginella (Sanjeevini) Plant Extract. Int. J. Biol. Macromol 2019, 131, 787–797. [Google Scholar] [CrossRef]
  483. Kumar, V.; Wadhwa, R.; Kumar, N.; Maurya, P.K. A Comparative Study of Chemically Synthesized and Camellia Sinensis Leaf Extract-Mediated Silver Nanoparticles. 3 Biotech 2019, 9, 7. [Google Scholar] [CrossRef]
  484. Anwar, A.; Masri, A.; Rao, K.; Rajendran, K.; Khan, N.A. Antimicrobial Activities of Green Synthesized Gums-Stabilized Nanoparticles Loaded with Flavonoids. Sci. Rep. 2019, 9, 3122. [Google Scholar] [CrossRef]
  485. Salehi, S.; Shandiz, S.; Ghanbar, F.; Darvish, M.; Ardestani, M. Phytosynthesis of Silver Nanoparticles Using Artemisia Marschalliana Sprengel Aerial Part Extract and Assessment of Their Antioxidant, Anticancer, and Antibacterial Properties. Int. J. Nanomed. 2016, 11, 1835–1846. [Google Scholar]
  486. Femi-Adepoju, A.G.; Dada, A.O.; Otun, K.O.; Adepoju, A.O.; Fatoba, O.P. Green Synthesis of Silver Nanoparticles Using Terrestrial Fern (Gleichenia pectinata (Willd.) C. Presl.): Characterization and Antimicrobial Studies. Heliyon 2019, 5, e01543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  487. Basera, P.; Lavania, M.; Agnihotri, A.; Lal, B. Analytical Investigation of Cymbopogon Citratus and Exploiting the Potential of Developed Silver Nanoparticle Against the Dominating Species of Pathogenic Bacteria. Front. Microbiol. 2019, 10, 282. [Google Scholar] [CrossRef] [PubMed]
  488. Ibrahim, F.Y.; El-khateeb, A.Y.; Mohamed, A.H. Rhus and Safflower Extracts as Potential Novel Food Antioxidant, Anticancer, and Antimicrobial Agents Using Nanotechnology. Foods 2019, 8, 139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  489. Sanchooli, N.; Saeidi, S.; Barani, H.K.; Sanchooli, E. In Vitro Antibacterial Effects of Silver Nanoparticles Synthesized Using Verbena officinalis Leaf Extract on Yersinia ruckeri, Vibrio cholera and Listeria monocytogenes. Iran. J. Microbiol. 2018, 10, 400–408. [Google Scholar]
  490. Ashour, A.; Raafat, D.; El-gowelli, H.M.; El-Kamel, A.H. Green Synthesis of Silver Nanoparticles Using Cranberry Powder Aqueous Extract: Characterization and Antimicrobial Properties. Int. J. Nanomed. 2015, 10, 7207–7221. [Google Scholar]
  491. Fernando, H.N.; Kumarasinghe, K.G.U.R.; Gunasekara, T.D.C.P.; Wijekoon, H.P.S.K.; Ekanayaka, E.M.A.K.; Rajapaksha, S.P.; Fernando, S.S.N.; Jayaweera, P.M. Synthesis, Characterization and Antimicrobial Activity of Garcinol Capped Silver Nanoparticles. J. Microbiol. Biotechnol. 2019, 29, 1841–1851. [Google Scholar] [CrossRef]
  492. Rahman, A.U.; Khan, U.A.; Yuan, Q.; Wei, Y.; Ahmad, A. Tuber Extract of Arisaema Flavum Eco-Benignly and Effectively Synthesize Silver Nanoparticles: Photocatalytic and Antibacterial Response against Multidrug Resistant Engineered E. Coli QH4. J. Photochem. Photobiol. B Biol. 2019, 193, 31–38. [Google Scholar] [CrossRef]
  493. Abudalo, M.A.; Al-Mheidat, I.R.; Al-Shurafat, A.W.; Grinham, C. Synthesis of Silver Nanoparticles Using a Modi Fied Tollens’ Method in Conjunction with Phytochemicals and Assessment of Their Antimicrobial Activity. PeerJ 2019, 7, e6413. [Google Scholar] [CrossRef] [Green Version]
  494. Rashid, S.; Azeem, M.; Ali, S.; Maroof, M. Characterization and Synergistic Antibacterial Potential of Green Synthesized Silver Nanoparticles Using Aqueous Root Extracts of Important Medicinal Plants of Pakistan. Colloids Surf. B Biointerfaces 2019, 179, 317–325. [Google Scholar] [CrossRef]
  495. Bharathi, D.; Kalaichelvan, P.T.; Atmaram, V.; Anbu, S. Biogenic Synthesis of Silver Nanoparticles from Aqueous Flower Extract of Bougainvillea Spectabilis and Their Antibacterial Activity. J. Med. Plants 2016, 4, 248–252. [Google Scholar]
  496. Fleming, D.S.A.T. Synthesis of Silver Nanoparticles from Bauhinia Acuminata Aqueous Leaf Extract and Molecular Docking Analysis of Various Cancer Receptors. Int. J. Sci. Res. 2017, 6, 50–55. [Google Scholar]
  497. Ashraf, A.; Zafar, S.; Zahid, K.; Salahuddin, M.; Al-Ghanim, K.A.; Al-Misned, F.; Mahboob, S. Synthesis, Characterization, and Antibacterial Potential of Silver Nanoparticles Synthesized from Coriandrum sativum L. J. Infect. Public Health 2018, 12, 275–281. [Google Scholar] [CrossRef] [PubMed]
  498. Kaur, J.; Gupta, N.; Kaur, M.; Chatli, A.S. Antibacterial Effects of Green Synthesized AgNPs from Datura Metel Leaf Extracts. Int. J. Pure Appl. Biosci. 2019, 7, 247–252. [Google Scholar] [CrossRef]
  499. Pande, N.; Jaspal, D.K.; Ambekar, J.; Jayachandran, V.P. Ecofriendly Synthesis and Applications of Silver Nanoparticles. J. Chem. Pharm. Res. 2014, 6, 403–410. [Google Scholar]
  500. Dada, A.O.; Inyinbor, A.A.; Idu, E.I.; Bello, O.M.; Oluyori, A.P.; Adelani-akande, T.A.; Okunola, A.A. Effect of Operational Parameters, Characterization and Antibacterial Studies of Green Synthesis of Silver Nanoparticles Using Tithonia Diversifolia. PeerJ 2018, 6, e5865. [Google Scholar] [CrossRef] [Green Version]
  501. Tamileswari, R.; Haniff Nisha, M.; Jesurani, S.; Kanagesan, S.; Hashim, M.; Catherine, S.; Alexander, P. Synthesis of Silver Nanoparticles Using the Vegetable Extract of Raphanus sativus (Radish) and Assessment of Their Antibacterial Activity. Int. J. Adv. Technol. Eng. Sci. 2015, 3, 207–212. [Google Scholar]
  502. Ehsan, M.; Yazdi, T.; Khara, J.; Housaindokht, M.R.; Sadeghnia, H.R.; Bahabadi, S.E.; Amiri, M.S.; Mosawee, H.; Taherzadeh, D. Role of Ribes Khorasanicum in the Biosynthesis of Silver Nanoparticles and Their Antibacterial Properties. IET Nanobiotechnol. 2018, 13, 8–13. [Google Scholar] [CrossRef]
  503. Tripathi, D.; Modi, A.; Narayan, G.; Pandey, S. Green and Cost Effective Synthesis of Silver Nanoparticles from Endangered Medicinal Plant Withania Coagulans and Their Potential Biomedical Properties. Mater. Sci. Eng. C 2019, 100, 152–164. [Google Scholar] [CrossRef]
  504. Wintachai, P.; Paosen, S.; Yupanqui, C.T.; Voravuthikunchai, S.P. Silver nanoparticles synthesized with Eucalyptus critriodora ethanol leaf extract stimulate antibacterial activity against clinically multidrug-resistant Acinetobacter baumannii isolated from pneumonia patients. Microb. Pathog. 2019, 126, 245–257. [Google Scholar] [CrossRef]
  505. Arya, G.; Kumar, N.; Gupta, N.; Kumar, A.; Nimesh, S. Antibacterial Potential of Silver Nanoparticles Biosynthesised Using Canarium Ovatum Leaves Extract. IET Nanobiotechnol. 2017, 11, 506–511. [Google Scholar] [CrossRef] [PubMed]
  506. Sinha, A.; Manjhi, J.; Kumar, V.; Rai, D.V. Evaluation of Antibacterial Properties of Silver Nanoparticles Prepared via Green Route Using Elaeocarpus Ganitrus (Rudraksha) Beads Extract. J. Bionanosci. 2018, 12, 553–561. [Google Scholar] [CrossRef]
  507. Suwan, T.; Khongkhunthian, S.; Sirithunyalug, J. Effect of Rice Variety and Reaction Parameters on Synthesis and Antibacterial Activity of Silver Nanoparticles. Drug Discov. Ther. 2018, 12, 267–274. [Google Scholar] [CrossRef] [Green Version]
  508. Allafchian, A.R.; Jalali, S.A.H.; Aghaei, F.; Farhang, H.R. Green Synthesis of Silver Nanoparticles Using Glaucium Corniculatum (L.) Curtis Extract and Evaluation of Its Antibacterial Activity. IET Nanobiotechnol. 2018, 12, 574–578. [Google Scholar] [CrossRef] [PubMed]
  509. Dhiman, J.; Kundu, V.; Kumar, S.; Kumar, R.; Chakarvarti, S.K. Eco-Friendly Synthesis and Characterization of Silver Nanoparticles and Evaluation of Their Antibacterial Activity. Am. J. Mat. Sci. Tech. 2014, 3, 13–21. [Google Scholar] [CrossRef]
  510. Goyal, S.; Gupta, N.; Kumar, A.; Chatterjee, S.; Nimesh, S. Antibacterial, Anticancer and Antioxidant Potential of Silver Nanoparticles Engineered Using Trigonella Foenum-Graecum Seed Extract. IET Nanobiotechnol. 2018, 12, 526–533. [Google Scholar] [CrossRef]
  511. Vijayan, R.; Joseph, S.; Mathew, B. Eco-Friendly Synthesis of Silver and Gold Nanoparticles with Enhanced Antimicrobial, Antioxidant, and Catalytic Activities. IET Nanobiotechnol. 2018, 12, 850–856. [Google Scholar] [CrossRef]
  512. Balashanmugan, P.; Kalaichelvan, P.T. Biosynthesis Characterization of Silver Nanoparticles Using Cassia Roxburghii DC. Aqueous Extract, and Coated on Cotton Cloth for Effective Antibacterial Activity. Int. J. Nanomed. 2015, 10, 87–97. [Google Scholar] [CrossRef] [Green Version]
  513. Indiradevi, M.P.; Nallamuthu, N.; Rajini, N.; Rajulu, A.V.; Hariram, N.; Siengchin, S. Cellulose Hybrid Nanocomposites Using Napier Grass Fibers with in Situ Generated Silver Nanoparticles as Fillers for Antibacterial Applications. Int. J. Biol. Macromol. 2018, 118, 99–106. [Google Scholar] [CrossRef]
  514. Jadou, A.; Al-Shahwany, A. Biogenic Synthesis and Characterization of Silver Nanoparticles Using Some Medical Plants and Evaluation of Their Antibacterial and Toxicity Potential. J AOAC Int. 2018, 101, 1905–1912. [Google Scholar] [CrossRef]
  515. Esfanddarani, H.M.; Kajani, A.A.; Bordbar, A. Green Synthesis of Silver Nanoparticles Using Flower Extract of Malva sylvestris and Investigation of Their Antibacterial Activity. IET Nanobiotechnol. 2018, 12, 412–416. [Google Scholar] [CrossRef] [PubMed]
  516. Shaik, M.R.; Albalawi, G.H.; Khan, S.T.; Khan, M.; Adil, S.F.; Kuniyil, M.; Al-warthan, A. “Miswak” Based Green Synthesis of Silver Nanoparticles: Evaluation and Comparison of Their Microbicidal Activities with the Chemical Synthesis. Molecules 2016, 21, 1478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  517. Elemike, E.E.; Fayemi, O.E.; Ekennia, A.C.; Onwudiwe, D.C.; Ebenso, E.E. Silver Nanoparticles Mediated by Costus Afer Leaf Electrochemical Properties. Molecules 2017, 22, 701. [Google Scholar] [CrossRef] [Green Version]
  518. Mohammed, A.E.; Al-Qahtani, A.; Al-Shamri, B.; Aabed, K. Antibacterial and cytotoxic potential of biosynthesized silver nanoparticles by some plant extracts. Nanomaterials 2018, 8, 382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  519. Patil, M.P.; Singh, R.D.; Koli, P.B.; Patil, K.T.; Jagdale, B.S.; Tipare, A.R.; Kim, G. Antibacterial Potential of Silver Nanoparticles Synthesized Using Madhuca Longifolia Flower Extract as a Green Resource. Microb. Pathog. 2018, 121, 184–189. [Google Scholar] [CrossRef]
  520. Riaz, M.; Altaf, M.; Faisal, A.; Shekheli, M.A.; Miana, G.A.; Khan, M.Q.; Shah, M.A.; Ilyas, S.Z.; Khan, A.A. Biogenic Synthesis of AgNPs with Saussurea Lappa C. B. Clarke and Studies on Their Biochemical Properties. J. Nanosc. Nanotech. 2018, 12, 8392–8398. [Google Scholar] [CrossRef]
  521. Riaz, M.; Altaf, M.; Khan, M.Q.; Manzoor, S.; Shekheli, M.A.; Shah, M.A.; Ilyas, S.Z.; Hussain, Z. Green Synthesis of Silver Nanoparticles Using Jurinea Dolomiaea and Biological Activities. J. Nanosc. Nanotech. 2018, 12, 8386–8391. [Google Scholar] [CrossRef]
  522. Saravanakumar, K.; Chelliah, R.; Shanmugam, S.; Varukattu, N.B.; Oh, D.; Kathiresan, K.; Wang, M. Green Synthesis and Characterization of Biologically Active Nanosilver from Seed Extract of Gardenia Jasminoides Ellis. J. Photochem. Photobiol. B Biol. 2018, 185, 126–135. [Google Scholar] [CrossRef]
  523. Shahriari, M.; Veisi, H.; Hekmati, M.; Nemmati, S. In Situ Green Synthesis of Ag Nanoparticles on Herbal Tea Extract (Stachys lavandulifolia)-Modified Magnetic Iron Oxide Nanoparticles as Antibacterial Agent and Their 4-Nitrophenol Catalytic Reduction Activity. Mater. Sci. Eng. C 2018, 90, 57–66. [Google Scholar] [CrossRef]
  524. Sinsinwar, S.; Sarkar, M.K.; Suriya, K.R.; Nithyanand, P.; Vadivel, V. Use of Agricultural Waste (Coconut Shell) for the Synthesis of Silver Nanoparticles and Evaluation of Their Antibacterial Activity against Selected Human Pathogens. Microb. Pathog. 2018, 124, 30–37. [Google Scholar] [CrossRef]
  525. Mohan, C.; Purwar, R.; Pal, A. Enhanced Potential of Biomimetic, Silver Nanoparticles Functionalized Antheraea mylitta (Tasar) Silk Fibroin Nanofibrous Mats for Skin Tissue Engineering. Int. J. Biol. Macromol. 2019, 130, 437–453. [Google Scholar] [CrossRef]
  526. Upadhyay, P.; Mishra, S.K.; Purohit, S.; Dubey, G.P.; Chauhan, S.; Srikrishna, S.; Upadhyay, P.; Mishra, S.K.; Purohit, S.; Dubey, G.P. Antioxidant, Antimicrobial and Cytotoxic Potential of Silver Nanoparticles Synthesized Using Flavonoid Rich Alcoholic Leaves Extract of Reinwardtia Indica. Drug Chem. Toxicol. 2018, 42, 65–75. [Google Scholar] [CrossRef]
  527. Zia, G.; Haleema, S.; Nazir, S.; Ejaz, K.; Ali, S. In Vitro Studies on Cytotoxic, DNA Protecting, Antibiofilm and Antibacterial Effects of Biogenic Silver Nanoparticles Prepared with Bergenia Ciliata Rhizome Extract. Curr. Pharm. Biotechnol. 2018, 19, 68–78. [Google Scholar] [CrossRef] [PubMed]
  528. De Barros, C.H.N.; Cruz, G.C.F.; Mayrink, W.; Tasic, L. Bio-Based Synthesis of Silver Nanoparticles from Orange Waste: Effects of Distinct Biomolecule Coatings on Size, Morphology, and Antimicrobial Activity. Nanotechnol. Sci. Appl. 2018, 11, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  529. Francis, S.; Koshy, E.P.; Mathew, B. Green synthesis of Stereospermum suaveolens capped silver and gold nanoparticles and assessment of their innate antioxidant, antimicrobial and antiproliferative activities. Bioprocess Biosyst. Eng. 2018, 41, 939–951. [Google Scholar] [CrossRef]
  530. Das, M.P.; Livingstone, J.R.; Veluswamy, P.; Das, J. Exploration of Wedelia Chinensis Leaf-Assisted Silver Nanoparticles for Antioxidant, Antibacterial and in Vitro Cytotoxic Applications. J. Food Drug Anal. 2017, 26, 917–925. [Google Scholar] [CrossRef] [Green Version]
  531. Otunola, G.A.; Afolayan, A.J.; Ajayi, E.O.; Odeyemi, S.W. Characterization, antibacterial and antioxidant properties of silver nanoparticles synthesized from aqueous extracts of Allium sativum, Zingiber officinale, and Capsicum frutescens. Pharmacogn. Mag. 2017, 13, 201–208. [Google Scholar] [CrossRef] [Green Version]
  532. Singh, A.; Sharma, B.; Deswal, R. Green Silver Nanoparticles from Novel Brassicaceae Cultivars with Enhanced Antimicrobial Potential than Earlier Reported Brassicaceae Members. J. Trace Elem. Med. Biol. 2018, 47, 1–11. [Google Scholar] [CrossRef]
  533. Singh, H.; Du, J.; Yi, T.H. Green and Rapid Synthesis of Silver Nanoparticles Using Borago Officinalis Leaf Extract: Anticancer and Antibacterial Activities. Artif. Cells Nanomed. Biotechnol. 2017, 45, 1310–1316. [Google Scholar] [CrossRef] [Green Version]
  534. Ansari, M.A.; Alzohairy, M.A. One-Pot Facile Green Synthesis of Silver Nanoparticles Using Seed Extract of Phoenix Dactylifera and Their Bactericidal Potential against MRSA. Evid.-Based Complement. Altern. Med. 2018, 2018, 1860280. [Google Scholar] [CrossRef] [Green Version]
  535. Eren, A.; Baran, M. Green Synthesis, Characterization and Antimicrobial Activity of Silver Nanoparticles (AgNPs) from Maize (Zea mays L.). Appl. Ecol. Environ. Res. 2019, 17, 4097–4105. [Google Scholar] [CrossRef]
  536. Owaid, M.N.; Muslim, R.F.; Hamad, H.A. Mycosynthesis of Silver Nanoparticles Using Terminia Sp. Desert Truffle, Pezizaceae, and Their Antibacterial Activity. Jordan J. Biol. Sci. 2018, 11, 401–405. [Google Scholar]
  537. Mehmood, A.; Shabir, S.; Hussain, S.; Ahmad, K.S.; Hamid, A. Antibacterial and Antioxidant Activity of Biosynthesized Silver Nanoparticles from Ulmus Wallichiana Planch. Leaf Extract. Farmacia 2019, 67, 662–669. [Google Scholar] [CrossRef]
  538. Sangaonkar, G.M.; Pawar, K.D. Garcinia Indica Mediated Biogenic Synthesis of Silver Nanoparticles with Antibacterial and Antioxidant Activities. Colloids Surf. B Biointerfaces 2018, 164, 210–217. [Google Scholar] [CrossRef]
  539. Ahluwalia, V.; Elumalai, S.; Kumar, V.; Kumar, S.; Sangwan, R.S. Nano Silver Particle Synthesis Using Swertia Paniculata Herbal Extract and Its Antimicrobial Activity Vivek. Microb. Pathog. 2017, 114, 402–408. [Google Scholar] [CrossRef]
  540. Jaffri, S.B.; Ahmad, K.S. Augmented Photocatalytic, Antibacterial and Antifungal Activity of Prunosynthetic Silver Nanoparticles. Artif. Cells Nanomed. Biotechnol. 2018, 46, S127–S137. [Google Scholar] [CrossRef] [Green Version]
  541. Erci, F.; Cakir-Koc, R.; Isildak, I. Green synthesis of silver nanoparticles using Thymbra spicata (L.) var. spicata (zahter) aqueous leaf extract and evaluation of their morphology-dependent antibacterial and cytotoxic activity. Artif Cells Nanomed. Biotechnol. 2018, 46, 150–158. [Google Scholar] [CrossRef] [Green Version]
  542. Idrees, M.; Batool, S.; Kalsoom, T.; Raina, S.; Sharif, M.A.; Yasmeen, S. Biosynthesis of Silver Nanoparticles Using Sida Acuta Extract for Antimicrobial Actions and Corrosion Inhibition Potential. Environ. Technol. 2018, 112, 4073–4085. [Google Scholar] [CrossRef]
  543. Jain, S.; Mehata, M.S. Medicinal Plant Leaf Extract and Pure Flavonoid Mediated Green Synthesis of Silver Nanoparticles and Their Enhanced Antibacterial Property. Sci. Rep. 2017, 7, 15867. [Google Scholar] [CrossRef]
  544. Lakkakula, J.R.; Ndinteh, D.T.; Van Vuuren, S.F.; Olivier, D.K.; Krause, R.W.M. Synthesis of Silver Nanoparticles from a Desmodium Adscendens Extract and Its Antibacterial Evaluation on Wound Dressing Material. IET Nanobiotechnol. 2017, 11, 1017–1026. [Google Scholar] [CrossRef]
  545. Syafiuddin, A.; Salmiati; Hadibarata, T.; Hong, K.A.B.; Salim, R.M. Novel Weed-Extracted Silver Nanoparticles and Their Antibacterial Appraisal against a Rare Bacterium from River and Sewage Treatment Plan. Nanomaterials 2018, 8, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  546. Devanesan, S.; Alsalhi, M.S.; Balaji, R.V.; Ranjitsingh, A.J.A.; Ahamed, A.; Alfuraydi, A.A.; Alqahtani, F.Y.; Aleanizy, F.S.; Othman, A.H. Antimicrobial and Cytotoxicity Effects of Synthesized Silver Nanoparticles from Punica Granatum Peel Extract. Nanoscale Res. Lett. 2018, 13, 315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  547. Mohanta, Y.K.; Biswas, K.; Panda, S.K.; Bandyopadhyay, J.; De, D.; Jayabalan, R.; Bastia, A.K.; Mohanta, T.K. Phyto-Assisted Synthesis of Bio-Functionalised Silver Nanoparticles and Their Potential Anti-Oxidant, Anti-Microbial and Wound Healing Activities. IET Nanobiotechnol. 2017, 11, 1027–1034. [Google Scholar] [CrossRef] [PubMed]
  548. Patil, M.P.; Seo, Y.B.; Kim, G. Morphological Changes of Bacterial Cells upon Exposure of Silver-Silver Chloride Nanoparticles Synthesized Using Agrimonia Pilosa. Microb. Pathog. 2018, 116, 84–90. [Google Scholar] [CrossRef] [PubMed]
  549. Patil, B.N.; Taranath, T.C. Limonia acidissima L. Leaf Mediated Synthesis of Silver and Zinc Oxide Nanoparticles and Their Antibacterial Activities. Microb. Pathog. 2018, 115, 227–232. [Google Scholar] [CrossRef] [PubMed]
  550. Shriniwas, P.P. Antioxidant, Antibacterial and Cytotoxic Potential of Silver Nanoparticles Synthesized Using Terpenes Rich Extract of Lantana Camara L. Leaves. Biochem. Biophys. Rep. 2017, 10, 76–81. [Google Scholar] [CrossRef]
  551. Siritapetawee, J.; Limphirat, W.; Nantapong, N.; Songthamwat, D. Fabrication of Silver Chloride Nanoparticles Using a Plant Serine Protease in Combination with Photo-Activation and Investigation of Their Biological Activities. Biotechnol. Appl. Biochem. 2018, 64, 572–579. [Google Scholar] [CrossRef]
  552. Premkumar, J.; Sudhakar, T.; Dhakal, A.; Shrestha, J.B.; Krishnakumar, S.; Balashanmugam, P. Synthesis of Silver Nanoparticles (AgNPs) from Cinnamon against Bacterial Pathogens. Biocatal. Agric. Biotechnol. 2018, 15, 311–316. [Google Scholar] [CrossRef]
  553. Yuan, C.; Huo, C.; Gui, B.; Liu, J.; Chen, Y. Facile Phyto-Mediated Synthesis of Silver Nanoparticles Using Chinese Winter Jujube (Ziziphus jujuba Mill. Cv. Dongzao ) Extract and Their Antibacterial/Catalytic Properties. IET Nanobiotechnol. 2017, 11, 973–980. [Google Scholar] [CrossRef]
  554. Rodríguez-León, E.; Íñiguez-Palomares, R.A.; Navarro, R.E.; Rodríguez-Beas, C.; Larios-Rodríguez, E.; Alvarez-Cirerol, F.J.; Íñiguez-Palomares, C.; Ramírez-Saldaña, M.; Hernández, J.; Martínez-higuera, A.; et al. Silver Nanoparticles Synthesized with Rumex Hymenosepalus Extracts: Effective Broad-Spectrum Microbicidal Agents and Cytotoxicity Study. Artif. Cells Nanomed. Biotechnol. 2018, 46, 1194–1206. [Google Scholar] [CrossRef] [Green Version]
  555. Hernández-Gómora, A.E.; Lara-Carrillo, E.; Robles-Navarro, J.B.; Scougall-Vilchis, R.J.; Hernández-López, S.; Medina-Solís, C.E.; Morales-Luckie, R.A. Biosynthesis of Silver Nanoparticles on Orthodontic Elastomeric Modules: Evaluation of Mechanical and Antibacterial Properties. Molecules 2017, 22, 1407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  556. Jha, D.; Thiruveedula, P.K.; Pathak, R.; Kumar, B.; Gautam, H.K.; Agnihotri, S.; Sharma, A.K.; Kumar, P. Multifunctional Biosynthesized Silver Nanoparticles Exhibiting Excellent Antimicrobial Potential against Multi-Drug Resistant Microbes along with Remarkable Anticancerous Properties. Mater. Sci. Eng. C 2017, 80, 659–669. [Google Scholar] [CrossRef] [PubMed]
  557. Fierascu, I.; Georgiev, M.I.; Ortan, A.; Fierascu, R.C.; Marius, S.; Ionescu, D.; Sutan, A.; Brinzan, A.; Ditu, L.M. Phyto-Mediated Metallic Nano- Architectures via Melissa Officinalis L.: Synthesis, Characterization and Biological Properties. Sci. Rep. 2017, 7, 12428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  558. Francis, S.; Joseph, S.; Koshy, E.P.; Mathew, B. Microwave Assisted Green Synthesis of Silver Nanoparticles Using Leaf Extract of Elephantopus Scaber and Its Environmental and Biological Applications. Artif. Cells, Nanomed. Biotechnol. 2018, 46, 795–804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  559. Ghanbar, F.; Mirzaie, A.; Ashrafi, F.; Noorbazargan, H.; Jalali, M.D.; Salehi, S.; Shandiz, S.A.S. Antioxidant, Antibacterial and Anticancer Properties of Phyto-Synthesised Artemisia Quttensis Podlech Extract Mediated AgNPs. IET Nanobiotechnol. 2017, 11, 485–492. [Google Scholar] [CrossRef] [PubMed]
  560. Iyer, I.; Panda, R.T. Biosynthesis of Gold and Silver Nanoparticles Using Extracts of Callus Cultures of Pumpkin (Cucurbita maxima). J. Nanosci. Nanotechnol. 2018, 18, 5341–5353. [Google Scholar] [CrossRef]
  561. Kasithevar, M.; Periakaruppan, P.; Muthupandian, S.; Mohan, M. Antibacterial Efficacy of Silver Nanoparticles against Multi-Drug Resistant Clinical Isolates from Post-Surgical Wound Infections. Microb. Pathog. 2017, 107, 327–334. [Google Scholar] [CrossRef]
  562. Kelkawi, A.H.A.; Kajani, A.A.; Bordbar, A. Green Synthesis of Silver Nanoparticles Using Mentha Pulegium and Investigation of Their Antibacterial, Antifungal and Anticancer Activity. IET Nanobiotechnol. 2017, 11, 370–376. [Google Scholar] [CrossRef]
  563. Muniyan, A.; Ravi, K.; Mohan, U.; Panchamoorthy, R. Characterization and in Vitro Antibacterial Activity of Saponin-Conjugated Silver Nanoparticles against Bacteria That Cause Burn Wound Infection. World J. Microbiol. Biotechnol. 2017, 33, 147. [Google Scholar] [CrossRef]
  564. Osibe, D.A.; Chiejina, N.V.; Ogawa, K.; Aoyagi, H. Stable Antibacterial Silver Nanoparticles Produced with Seed-Derived Callus Extract of Catharanthus Roseus. Artif. Cells Nanomed. Biotechnol. 2018, 46, 1266–1273. [Google Scholar] [CrossRef] [Green Version]
  565. Rasheed, T.; Bilal, M.; Iqbal, H.M.N.; Li, C. Green Biosynthesis of Silver Nanoparticles Using Leaves Extract of Artemisia Vulgaris and Their Potential Biomedical Applications. Colloids Surf. B Biointerfaces 2017, 158, 408–415. [Google Scholar] [CrossRef] [PubMed]
  566. Rashid, M.O.; Akhter, K.N.; Chowdhury, J.A.; Hossen, F.; Hussain, S. Characterization of Phytoconstituents and Evaluation of Antimicrobial Activity of Silver- Extract Nanoparticles Synthesized from Momordica Charantia Fruit Extract. BMC Complement Altern. Med. 2017, 17, 336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  567. Senthil, B.; Devasena, T.; Prakash, B.; Rajasekar, A. Non-Cytotoxic Effect of Green Synthesized Silver Nanoparticles and Its Antibacterial Activity. J. Photochem. Photobiol. B Biol. 2017, 177, 1–7. [Google Scholar] [CrossRef]
  568. Singla, R.; Soni, S.; Patial, V.; Kulurkar, P.M. Cytocompatible Anti-Microbial Dressings of S Yzygium Cumini Cellulose Nanocrystals Decorated with Silver Nanoparticles Accelerate Acute and Diabetic Wound Healing. Sci. Rep. 2017, 7, 10457. [Google Scholar] [CrossRef] [PubMed]
  569. Skandalis, N.; Dimopoulou, A.; Georgopoulou, A.; Gallios, N.; Papadopoulos, D.; Tsipas, D.; Theologidis, I.; Michailidis, N. The Effect of Silver Nanoparticles Size, Produced Using Plant Extract from Arbutus Unedo, on Their Antibacterial Efficacy. Nanomaterials 2017, 7, 178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  570. Syafiuddin, A.; Salmiati; Hadibarata, T.; Salim, M.R.; Kueh, A.B.H.; Sari, A.A. A Purely Green Synthesis of Silver Nanoparticles Using Carica Papaya, Manihot Esculenta, and Morinda Citrifolia: Synthesis and Antibacterial Evaluations. Bioprocess Biosyst. Eng. 2017, 40, 1349–1361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  571. Thomas, R.; Mathew, S.; Nayana, A.; Mathews, J.; Radhakrishnan, E. Microbially and Phytofabricated AgNPs with Different Mode of Bactericidal Action Were Identified to Have Comparable Potential for Surface Fabrication of Central Venous Catheters to Combat Staphylococcus Aureus Biofil. J. Photochem. Photobiol. B Biol. 2017, 171, 96–103. [Google Scholar] [CrossRef]
  572. Rashmi, V.; Sanjay, K. Green Synthesis, Characterization and Bioactivity of Plant-Mediated Silver Nanoparticles Using Decalepis Hamiltonii Root Extract. IET Nanobiotechnol. 2017, 11, 247–254. [Google Scholar] [CrossRef]
  573. Sundararajan, B.; Mahendran, G.; Thamaraiselvi, R.; Kumari, B.D.R. Biological Activities of Synthesized Silver Nanoparticles from Cardiospermum halicacabum L. Bull. Mater. Sci. 2016, 39, 423–431. [Google Scholar] [CrossRef] [Green Version]
  574. Ali, Z.A.; Yahya, R.; Sekaran, S.D.; Puteh, R. Green Synthesis of Silver Nanoparticles Using Apple Extract and Its Antibacterial Properties. Adv. Mater. Sci. Eng. 2016, 2016, 4102196. [Google Scholar] [CrossRef] [Green Version]
  575. Khan, F.A.; Zahoor, M.; Jalal, A.; Rahman, A.U. Green Synthesis of Silver Nanoparticles by Using Ziziphus Nummularia Leaves Aqueous Extract and Their Biological Activities. J. Nanomater. 2016, 2016, 8026843. [Google Scholar] [CrossRef] [Green Version]
  576. Anandalakshmi, K.; Venugobal, J.; Ramasamy, V. Characterization of silver nanoparticles by green synthesis method using Pedalium murex leaf extract and their antibacterial activity. Appl. Nanosci. 2016, 6, 399–408. [Google Scholar] [CrossRef] [Green Version]
  577. Pak, Z.H.; Abbaspour, H.; Karimi, N.; Fattahi, A. Eco-Friendly Synthesis and Antimicrobial Activity of Silver Nanoparticles Using Dracocephalum Moldavica Seed Extract. Appl. Sci. 2016, 6, 69. [Google Scholar] [CrossRef]
  578. Augustine, R.; Augustine, A.; Kalarikkal, N.; Thomas, S. Fabrication and Characterization of Biosilver Nanoparticles Loaded Calcium Pectinate Nano-Micro Dual-Porous Antibacterial Wound Dressings. Prog. Biomater. 2016, 5, 223–235. [Google Scholar] [CrossRef] [Green Version]
  579. Muthukrishnan, S.B.S.; Muthukumar, M.S.M. Biogenic Synthesis of Silver Nanoparticles and Their Antioxidant and Antibacterial Activity. Appl. Nanosci. 2016, 6, 755–766. [Google Scholar] [CrossRef] [Green Version]
  580. Bose, D.; Chatterjee, S. Biogenic Synthesis of Silver Nanoparticles Using Guava (Psidium Guajava) Leaf Extract and Its Antibacterial Activity against Pseudomonas Aeruginosa. Appl. Nanosci. 2016, 6, 895–901. [Google Scholar] [CrossRef] [Green Version]
  581. Choudhary, M.K.; Kataria, J.; Cameotra, S.S.; Singh, J. A Facile Biomimetic Preparation of Highly Stabilized Silver Nanoparticles Derived from Seed Extract of Vigna Radiata and Evaluation of Their Antibacterial Activity. Appl. Nanosci. 2015, 6, 105–111. [Google Scholar] [CrossRef] [Green Version]
  582. Dehghanizade, S.; Arasteh, J.; Mirzaie, A. Green Synthesis of Silver Nanoparticles Using Anthemis Atropatana Extract: Characterization and in Vitro Biological Activities. Artif. Cells Nanomed. Biotechnol. 2018, 46, 160–168. [Google Scholar] [CrossRef] [Green Version]
  583. Khatami, M.; Mehnipor, R.; Poor, M.H.S.; Jouzani, G.S. Facile Biosynthesis of Silver Nanoparticles Using Descurainia Sophia and Evaluation of Their Antibacterial and Antifungal Properties. J. Clust. Sci. 2016, 27, 1601–1612. [Google Scholar] [CrossRef]
  584. Lateef, A.; Azeez, M.A.; Asafa, T.B.; Yekeen, T.A. Cocoa Pod Husk Extract-Mediated Biosynthesis of Silver Nanoparticles: Its Antimicrobial, Antioxidant and Larvicidal Activities. J. Nanostructure Chem. 2016, 6, 159–169. [Google Scholar] [CrossRef] [Green Version]
  585. Logaranjan, K.; Raiza, A.J.; Gopinath, S.C.B.; Chen, Y. Shape- and Size-Controlled Synthesis of Silver Nanoparticles Using Aloe Vera Plant Extract and Their Antimicrobial Activity. Nanoscale Res. Lett. 2016, 11, 520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  586. Murali Krishna, I.; Bhagavanth Reddy, G.; Veerabhadram, G.; Madhusudhan, A. Eco-Friendly Green Synthesis of Silver Nanoparticles Using Salmalia Malabarica: Synthesis, Characterization, Antimicrobial, and Catalytic Activity Studies. Appl. Nanosci. 2016, 6, 681–689. [Google Scholar] [CrossRef] [Green Version]
  587. Xia, Q.H.; Ma, Y.J.; Wang, J.W. Biosynthesis of Silver Nanoparticles Using Taxus Yunnanensis Callus and Their Antibacterial Activity and Cytotoxicity in Human Cancer Cells. Nanomaterials 2016, 6, 160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  588. Oluwaniyi, O.O.; Adegoke, H.I.; Adesuji, E.T.; Alabi, A.B.; Bodeke, S.O.; Labulo, A.H.; Oseghale, C.O. Biosynthesis of Silver Nanoparticles Using Aqueous Leaf Extract of Thevetia Peruviana Juss and Its Antimicrobial Activities. Appl. Nanosci. 2015, 6, 903–912. [Google Scholar] [CrossRef]
  589. Sahu, N.; Soni, D.; Satpute, B.C.D.B. Synthesis of Silver Nanoparticles Using Flavonoids: Hesperidin, Naringin and Diosmin, and Their Antibacterial Effects and Cytotoxicity. Int. Nano Lett. 2016, 6, 173–181. [Google Scholar] [CrossRef] [Green Version]
  590. Vijayan, R.; Joseph, S.; Mathew, B. Indigofera Tinctoria Leaf Extract Mediated Green Synthesis of Silver and Gold Nanoparticles and Assessment of Their Anticancer, Antimicrobial, Antioxidant and Catalytic Properties. Artif. Cells Nanomed. Biotechnol. 2018, 46, 861–871. [Google Scholar] [CrossRef] [Green Version]
  591. Ponvel, K.; Narayanaraya, T.; Prabakaran, J. Biosynthesis of Silver Nanoparticles Using Root Extract of the Medicinal Plant Justicia Adhatoda: Characterization, Electrochemical Behavior and Applications. Int. J. Nano Dimens. 2015, 6, 339–349. [Google Scholar] [CrossRef]
  592. Jamil, M.; Murtaza, G.; Mehmood, A. Green Synthesis of Silver Nanoparticles Using Leaves Extract of Skimmia Laureola: Characterization and Antibacterial Activity. Mater. Lett. 2015, 153, 10–13. [Google Scholar] [CrossRef]
  593. Bose, D.; Chatterjee, S. Antibacterial Activity of Green Synthesized Silver Nanoparticles Using Vasaka (Justicia Adhatoda L.) Leaf Extract. Indian J. Microbial. 2015, 55, 163–167. [Google Scholar] [CrossRef] [Green Version]
  594. Soares, M.R.P.S.; Corrêa, R.O.; Stroppa, P.H.F.; Marques, F.C.; Andrade, G.F. Biosynthesis of Silver Nanoparticles Using Caesalpinia Ferrea (Tul.) Martius Extract: Physicochemical Characterization, Antifungal Activity and Cytotoxicity. PeerJ 2018, 6, e4361. [Google Scholar] [CrossRef] [Green Version]
  595. Doddapaneni, S.J.D.S.; Amgoth, C.; Kalle, A.M.; Suryadevara, S.N.; Alapati, K.S. Antimicrobial and Anticancer Activity of AgNPs Coated with Alphonsea Sclerocarpa Extract. 3 Biotech 2018, 8, 156. [Google Scholar] [CrossRef] [PubMed]
  596. Pham, D.C.; Nguyen, T.H.; Thi, U.; Ngoc, P.; Thuy, N.; Le, T.; Tran, T.V.; Nguyen, D.H. Of Chitosan-Silver Nanoparticles Synergize Fungicide Against Pyricularia Oryzae. J. Nanasci. Nanotechnol. 2018, 18, 5299–5305. [Google Scholar] [CrossRef] [PubMed]
  597. Velu, M.; Chang, J.L.W.; Lovanh, N. Fabrication, Optimization, and Characterization of Noble Silver Nanoparticles from Sugarcane Leaf (Saccharum officinarum) Extract for Antifungal Application. 3 Biotech 2017, 7, 147. [Google Scholar] [CrossRef] [PubMed]
  598. Netala, V.R.; Kotakadi, S.V.; Domdi, L.; Gaddam, S.A.; Bobbu, P. Biogenic Silver Nanoparticles: Efficient and Effective Antifungal Agents. Appl. Nanosci. 2015, 6, 475–484. [Google Scholar] [CrossRef] [Green Version]
  599. Dobrucka, R.; Długaszewska, J. Antimicrobial Activities of Silver Nanoparticles Synthesized by Using Water Extract of Arnicae Anthodium. Indian J. Microbiol. 2015, 55, 168–174. [Google Scholar] [CrossRef] [Green Version]
  600. Yugandhar, P.; Haribabu, R.; Savithramma, N. Synthesis, Characterization and Antimicrobial Properties of Green-Synthesised Silver Nanoparticles from Stem Bark Extract of Syzygium Alternifolium (Wt.) Walp. 3 Biotech 2015, 5, 1031–1039. [Google Scholar] [CrossRef] [Green Version]
  601. Joseph, S.; Mathew, B. Microwave Assisted Biosynthesis of Silver Nanoparticles Using the Rhizome Extract of Alpinia Galanga and Evaluation of Their Catalytic and Antimicrobial Activities. J. Nanoparticle 2014, 2014, 967802. [Google Scholar] [CrossRef] [Green Version]
  602. Kumaran, M.; Kalaichelvan, P. Exploitation of Endophytic Fungus, Guignardia Mangiferae for Extracellular Synthesis of Silver Nanoparticles and Their in Vitro Biological Activities. Microbiol. Res. 2015, 178, 9–17. [Google Scholar] [CrossRef]
  603. Khatami, M.; Pourseyedi, S. Phoenix Dactylifera (Date Palm) Pit Aqueous Extract Mediated Novel Route for Synthesis High Stable Silver Nanoparticles with High Antifungal and Antibacterial Activity. IET Nanobiotechnol. 2015, 9, 184–190. [Google Scholar] [CrossRef]
  604. Khatoon, N.; Mishra, A.; Alam, H. Biosynthesis, Characterization, and Antifungal Activity of the Silver Nanoparticles Against Pathogenic Candida Species. BioNanoScience 2015, 5, 65–74. [Google Scholar] [CrossRef]
  605. Mohanta, Y.K.; Panda, S.K.; Jayabalan, R.; Sharma, N. Antimicrobial, Antioxidant and Cytotoxic Activity of Silver Nanoparticles Synthesized by Leaf Extract of Erythrina Suberosa (Roxb.). Front. Mol. Biosci. 2017, 4, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  606. Narayanan, K.B.; Park, H.H. Antifungal Activity of Silver Nanoparticles Synthesized Using Turnip Leaf Extract (Brassica rapa L.) against Wood Rotting Pathogens. Eur. J. Plant Pathol. 2014, 140, 185–192. [Google Scholar] [CrossRef]
  607. Nguyen, D.H.; Lee, J.S.; Park, K.D.; Ching, Y.C.; Nguyen, X.T.; Phan, V.H.G.; Thanh, T.; Thi, H. Green Silver Nanoparticles Formed by Phyllanthus Urinaria, Pouzolzia Zeylanica, and Scoparia Dulcis Leaf Extracts and the Antifungal Activity. Nanomaterials 2020, 10, 542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  608. Padalia, H.; Moteriya, P.; Chanda, S. Green Synthesis of Silver Nanoparticles from Marigold Flower and Its Synergistic Antimicrobial Potential. Arab. J. Chem. 2014, 8, 732–741. [Google Scholar] [CrossRef] [Green Version]
  609. Sahni, G.; Panwar, A.; Kaur, B. Controlled Green Synthesis of Silver Nanoparticles by Allium Cepa and Musa Acuminata with Strong Antimicrobial Activity. Int. Nano Lett. 2015, 5, 93–100. [Google Scholar] [CrossRef] [Green Version]
  610. Shetty, P.; Supraja, N.; Garud, M.; Prasad, T.N.V.K.V. Synthesis, Characterization and Antimicrobial Activity of Alstonia Scholaris Bark-Extract-Mediated Silver Nanoparticles. J. Nanostruc. Chem. 2014, 4, 161–170. [Google Scholar] [CrossRef] [Green Version]
  611. Rao, M.L.; Bhumi, G.; Savithramma, N. Green Synthesis of Silver Nanoparticles by Allamanda Cathartica L. Leaf Extract and Evaluation for Antimicrobial Activity. Int. J. Pharm. Sci. Nanotechnol. 2013, 6, 2260–2268. [Google Scholar] [CrossRef]
  612. Pasupuleti, V.R.; Prasad, T.N.V.K.V.; Shiekh, R.A.; Balam, S.K. Biogenic silver nanoparticles using Rhinacanthus nasutus leaf extract: Synthesis, spectral analysis, and antimicrobial studies. Int. J. Nanomed. 2013, 8, 3355–3364. [Google Scholar] [CrossRef] [Green Version]
  613. Sesuvium, L.; Nabikhan, A.; Kandasamy, K.; Raj, A.; Alikunhi, N.M. Synthesis of Antimicrobial Silver Nanoparticles by Callus and Leaf Extracts from Saltmarsh Plant, Sesuvium portulacastrum L. Colloids Surf. B Biointerfaces 2010, 79, 488–493. [Google Scholar] [CrossRef]
  614. Ansar, S.; Tabassum, H.; Aladwan, N.S.M.; Ali, M.N. Eco Friendly Silver Nanoparticles Synthesis by Brassica Oleracea and Its Antibacterial, Anticancer and Antioxidant Properties. Sci. Rep. 2020, 10, 18564. [Google Scholar] [CrossRef]
  615. Niluxsshun, M.C.D.; Masilamani, K.; Mathiventhan, U. Green Synthesis of Silver Nanoparticles from the Extracts of Fruit Peel of Citrus Tangerina, Citrus Sinensis, and Citrus Limon for Antibacterial Activities. Bioinorg. Chem. Appl. 2021, 2021, 6695734. [Google Scholar] [CrossRef] [PubMed]
  616. Devanesan, S.; Alsalhi, M.S. Green Synthesis of Silver Nanoparticles Using the Flower Extract of Abelmoschus Esculentus for Cytotoxicity and Antimicrobial Studies. Int. J. Nanomed. 2021, 16, 3343–3356. [Google Scholar] [CrossRef] [PubMed]
  617. Nayem, S.M.A.; Sultana, N.; Haque, A.; Miah, B. Green Synthesis of Gold and Silver Nanoparticles by Using Amorphophallus Paeoniifolius Tuber Extract and Evaluation of Their Antibacterial Activity. Molecules 2020, 25, 4773. [Google Scholar] [CrossRef] [PubMed]
  618. Kota, S.; Dumpala, P.; Anantha, R.K.; Verma, M.K. Evaluation of Therapeutic Potential of the Silver/Silver Chloride Nanoparticles Synthesized with the Aqueous Leaf Extract of Rumex Acetosa. Sci. Rep. 2017, 1, 11566. [Google Scholar] [CrossRef] [Green Version]
  619. Khodadadi, S.; Mahdinezhad, N.; Fazeli-Nasab, B.; Heidari, M.J.; Fakheri, B.; Miri, A. Investigating the Possibility of Green Synthesis of Silver Nanoparticles Using Vaccinium Arctostaphlyos Extract and Evaluating Its Antibacterial Properties. Biomed Res. Int. 2021, 2021, 5572252. [Google Scholar] [CrossRef]
  620. Padilla-Camberos, E.; Sanchez-Hernandez, I.M.; Torres-Gonzalez, O.R.; Ramirez-Rodriguez, P.; Diaz, E.; Wille, H.; Flores-Fernandez, J.M. Biosynthesis of Silver Nanoparticles Using Stenocereus Queretaroensis Fruit Peel Extract: Study of Antimicrobial Activity. Materials 2021, 14, 4543. [Google Scholar] [CrossRef]
  621. Logeswari, P.; Silambarasan, S.; Abraham, J. Synthesis of Silver Nanoparticles Using Plants Extract and Analysis of Their Antimicrobial Property. J. Saudi Chem. Soc. 2015, 19, 311–317. [Google Scholar] [CrossRef] [Green Version]
  622. Li, R.; Chen, Z.; Ren, N.; Wang, Y.; Wang, Y.; Yu, F. Biosynthesis of Silver Oxide Nanoparticles and Their Photocatalytic and Antimicrobial Activity Evaluation for Wound Healing Applications in Nursing Care. J. Photochem. Photobiol. B Biol. 2019, 199, 111593. [Google Scholar] [CrossRef]
  623. Sharma, K.; Guleria, S.; Razdan, V.K. Green Synthesis of Silver Nanoparticles Using Ocimum Gratissimum Leaf Extract: Characterization, Antimicrobial Activity and Toxicity Analysis. J. Plant Biochem. Biotechnol. 2019, 29, 213–224. [Google Scholar] [CrossRef]
  624. Ebrahimzadeh, M.A.; Naghizadeh, A.; Mohammadi-aghdam, S.; Khojasteh, H. Enhanced Catalytic and Antibacterial Efficiency of Biosynthesized Convolvulus Fruticosus Extract Capped Gold Nanoparticles (CFE @ AuNPs ). J. Photochem. Photobiol. B Biol. 2020, 209, 111949. [Google Scholar] [CrossRef]
  625. Boomi, P.; Ganesan, R.; Poorani, G.; Gurumallesh, H. Phyto-Engineered Gold Nanoparticles (AuNPs) with Potential Antibacterial, Antioxidant, and Wound Healing Activities Under in Vitro and in Vivo Conditions. Int. J. Nanomed. 2020, 15, 7553–7568. [Google Scholar] [CrossRef] [PubMed]
  626. Ullah, R.; Shah, S.; Muhammad, Z.; Shah, S.A.; Faisal, S. In Vitro and in Vivo Applications of Euphorbia Wallichii Shoot Extract - Mediated Gold Nanospheres. Green Process. Synth. 2021, 10, 101–111. [Google Scholar] [CrossRef]
  627. Karthika, V.; Arumugam, A.; Gopinath, K.; Kaleeswarran, P.; Govindarajan, M.; Alharbi, N.S.; Kadaikunnan, S.; Khaled, J.M.; Benelli, G. Guazuma Ulmifolia Bark-Synthesized Ag, Au and Ag/Au Alloy Nanoparticles: Photocatalytic Potential, DNA/Protein Interactions, Anticancer Activity and Toxicity against 14 Species of Microbial Pathogens. J. Photochem. Photobiol. B Biol. 2017, 167, 189–199. [Google Scholar] [CrossRef] [PubMed]
  628. Huo, Y.; Singh, P.; Kim, Y.J.; Soshnikova, V.; Markus, J.; Ahn, S.; Castro-aceituno, V.; Chokkalingam, M.; Bae, K.; Yang, D.C.; et al. Biological Synthesis of Gold and Silver Chloride Nanoparticles by Glycyrrhiza Uralensis and in Vitro Applications. Artif. Cells Nanomed. Biotechnol. 2017, 46, 303–312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  629. Basavegowda, N.; Kumar, G.D.; Tyliszczak, B.; Wzorek, Z.; Sobczak-Kupiec, A. One-Step Synthesis of Highly-Biocompatible Spherical Gold Nanoparticles Using Artocarpus Heterophyllus Lam. (Jackfruit) Fruit Extract and Its Effect on Pathogens. Ann. Agric. Environ. Med. 2015, 22, 84–89. [Google Scholar] [CrossRef] [Green Version]
  630. Shahriari, M.; Hemmati, S. Biosynthesis of Gold Nanoparticles Using Allium Noeanum Reut. Ex Regel Leaves Aqueous Extract; Characterization and Analysis of Their Cytotoxicity, Antioxidant, and Antibacterial Properties. Appl. Ornanometallic Chem. 2019, 33, e5189. [Google Scholar] [CrossRef]
  631. Dobrucka, R.; Dlugaszewska, J.; Kaczmarek, M. Antimicrobial and Cytostatic Activity of Biosynthesized Nanogold Prepared Using Fruit Extract of Ribes Nigrum. Arab. J. Chem. 2019, 12, 3902–3910. [Google Scholar] [CrossRef] [Green Version]
  632. Press, D. One-Step Green Synthesis and Characterization of Leaf Extract-Mediated Biocompatible Silver and Gold Nanoparticles from Memecylon Umbellatum. Int. J. Nanomed. 2013, 8, 1307–1315. [Google Scholar]
  633. Patra, J.K.; Baek, K.-H. Novel Green Synthesis of Gold Nanoparticles Using Citrullus Lanatus Rind and Investigation of Proteasome Inhibitory Activity, Antibacterial, and Antioxidant Potential. Int. J. Nanomed. 2015, 10, 7253–7264. [Google Scholar]
  634. Basavegowda, N.; Idhayadhulla, A.; Lee, Y.R. Preparation of Au and Ag Nanoparticles Using Artemisia Annua and Their in Vitro Antibacterial and Tyrosinase Inhibitory Activities. Mater. Sci. Eng. C 2014, 43, 58–64. [Google Scholar] [CrossRef]
  635. Yuan, C.; Huo, C.; Gui, B.; Cao, W. Green Synthesis of Gold Nanoparticles Using Citrus Maxima Peel Extract and Their Catalytic/Antibacterial Activities. IET Nanobiotechnol. 2017, 11, 523–530. [Google Scholar] [CrossRef] [PubMed]
  636. Vijayan, R.; Joseph, S.; Mathew, B. Anticancer, Antimicrobial, Antioxidant, and Catalytic Activities of Green-Synthesized Silver and Gold Nanoparticles Using Bauhinia Purpurea Leaf Extract. Bioprocess Biosyst. Eng. 2019, 42, 305–319. [Google Scholar] [CrossRef] [PubMed]
  637. Tettey, C.O.; Nagajyothi, P.C.; Lee, S.E.; Ocloo, A.; Minh An, T.N.; Sreekanth, T.V.M.; Lee, K.D. Anti-Melanoma, Tyrosinase Inhibitory and Anti-Microbial Activities of Gold Nanoparticles Synthesized from Aqueous Leaf Extracts of Teraxacum Officinale. Int. J. Cosmet. Sci. 2012, 34, 150–154. [Google Scholar] [CrossRef] [PubMed]
  638. Shankar, S.; Leejae, S.; Jaiswal, L.; Voravuthikunchai, S.P. Metallic Nanoparticles Augmented the Antibacterial Potency of Rhodomyrtus Tomentosa Acetone Extract against Escherichia Coli. Microb. Pathog. 2017, 107, 181–184. [Google Scholar] [CrossRef] [PubMed]
  639. Singh, H.; Du, J.; Singh, P.; Yi, T.H. Ecofriendly Synthesis of Silver and Gold Nanoparticles by Euphrasia Officinalis Leaf Extract and Its Biomedical Applications. Artif. Cells, Nanomed. Biotechnol. 2018, 46, 1163–1170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  640. Emmanuel, R.; Saravanan, M.; Ovais, M. Antimicrobial Efficacy of Drug Blended Biosynthesized Colloidal Gold Nanoparticles from Justicia Glauca against Oral Pathogens: A Nanoantibiotic Approach. Microb. Pathog. 2017, 113, 295–302. [Google Scholar] [CrossRef]
  641. Nagajyothi, P.C.; Lee, S.E.; An, M.; Lee, K.D. Green Synthesis of Silver and Gold Nanoparticles Using Lonicera Japonica Flower Extract. Bull. Korean Chem. Soc. 2012, 33, 2609–2612. [Google Scholar] [CrossRef] [Green Version]
  642. Ramamurthy, C.H.; Padma, M.; Daisy, I.; Mareeswaran, R.; Suyavaran, A.; Kumar, M.S.; Premkumar, K.; Thirunavukkarasu, C. The Extra Cellular Synthesis of Gold and Silver Nanoparticles and Their Free Radical Scavenging and Antibacterial Properties. Colloids Surf. B Biointerfaces 2013, 102, 808–815. [Google Scholar] [CrossRef]
  643. Mohan Kumar, K.; Mandal, B.K.; Sinha, M.; Krishnakumar, V. Terminalia Chebula Mediated Green and Rapid Synthesis of Gold Nanoparticles. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2012, 86, 490–494. [Google Scholar] [CrossRef]
  644. Islam, N.U.; Jalil, K.; Shahid, M.; Rauf, A.; Muhammad, N.; Khan, A.; Shah, M.R.; Khan, M.A. Green Synthesis and Biological Activities of Gold Nanoparticles Functionalized with Salix Alba. Arab. J. Chem. 2019, 12, 2914–2925. [Google Scholar] [CrossRef] [Green Version]
  645. Bindhu, M.R.; Vijaya Rekha, P.; Umamaheswari, T.; Umadevi, M. Antibacterial Activities of Hibiscus Cannabinus Stem-Assisted Silver and Gold Nanoparticles. Mater. Lett. 2014, 131, 194–197. [Google Scholar] [CrossRef]
  646. Kuppusamy, P.; Ichwan, S.J.A.; Parine, N.R.; Yusoff, M.M.; Maniam, G.P.; Govindan, N. Intracellular Biosynthesis of Au and Ag Nanoparticles Using Ethanolic Extract of Brassica Oleracea L. and Studies on Their Physicochemical and Biological Properties. J. Environ. Sci. 2015, 29, 151–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  647. Muthuvel, A.; Adavallan, K.; Balamurugan, K.; Krishnakumar, N. Biosynthesis of Gold Nanoparticles Using Solanum Nigrum Leaf Extract and Screening Their Free Radical Scavenging and Antibacterial Properties. Biomed. Prev. Nutr. 2014, 4, 325–332. [Google Scholar] [CrossRef]
  648. Tamuly, C.; Hazarika, M.; Debnath, R.; Saikia, R. Effect of CTAB in Biosynthesis of Au-Nanoparticles Using Gymnocladus Assamicus and Its Biological Evaluation. Mater. Lett. 2013, 113, 103–106. [Google Scholar] [CrossRef]
  649. Nagaraj, B.; Malakar, B.; Divya, T.K.; Krishnamurthy, N.B.; Liny, P.; Dinesh, R.; Iconaru, S.L.; Ciobanu, C.S. Synthesis of plant mediated gold nanoparticles using flower extracts of Carthamus tinctorius L. (Safflower) and evaluation of their biological activities. Dig. J. Nanomater. Biostruct. 2012, 7, 1289–1295. [Google Scholar]
  650. Dhayalan, M.; Denison, M.I.J.; Anitha Jegadeeshwari, L.; Krishnan, K.; Nagendra Gandhi, N. In Vitro Antioxidant, Antimicrobial, Cytotoxic Potential of Gold and Silver Nanoparticles Prepared Using Embelia Ribes. Nat. Prod. Res. 2017, 31, 465–468. [Google Scholar] [CrossRef]
  651. Geethalakshmi, R.; Sarada, D.V.L. Gold and Silver Nanoparticles from Trianthema Decandra: Synthesis, Characterization, and Antimicrobial Properties. Int. J. Nanomed. 2012, 7, 5375–5384. [Google Scholar] [CrossRef] [Green Version]
  652. Godipurge, S.S.; Yallappa, S.; Biradar, N.J.; Biradar, J.S.; Dhananjaya, B.L.; Hegde, G.; Jagadish, K. Green Strategy for the Facile Synthesis of Biocompatible Au, Ag and Au-Ag Alloy Nanoparticles Using Aerial Parts of R. Hypocrateriformis Extract and Their Biological Evaluation. Enzyme Microb. Technol. 2016, 95, 174–184. [Google Scholar] [CrossRef]
  653. Yallappa, S.; Manjanna, J.; Dhananjaya, B.L. Phytosynthesis of Stable Au, Ag and Au-Ag Alloy Nanoparticles Using J. Sambac Leaves Extract, and Their Enhanced Antimicrobial Activity in Presence of Organic Antimicrobials. Spectrochim. Acta-Part A Mol. Biomol. Spectrosc. 2015, 137, 236–243. [Google Scholar] [CrossRef]
  654. Balasubramani, G.; Ramkumar, R.; Raja, R.K.; Aiswarya, D.; Rajthilak, C.; Perumal, P. Albizia Amara Roxb. Mediated Gold Nanoparticles and Evaluation of Their Antioxidant, Antibacterial and Cytotoxic Properties. J. Clust. Sci. 2017, 28, 259–275. [Google Scholar] [CrossRef]
  655. Basavegowda, N.; Sobczak-Kupiec, A.; Malina, D.; Yathirajan, H.S.; Keerthi, V.R.; Chandrashekar, N.; Dinkar, S.; Liny, P. Plant Mediated Synthesis of Gold Nanoparticles Using Fruit Extracts of Ananas Comosus (L.) (Pineapple) and Evaluation of Biological Activities. Adv. Mater. Lett. 2013, 4, 332–337. [Google Scholar] [CrossRef] [Green Version]
  656. Asariha, M.; Chahardoli, A.; Karimi, N.; Gholamhosseinpour, M.; Khoshroo, A.; Nemati, H.; Shokoohinia, Y.; Fattahi, A. Green Synthesis and Structural Characterization of Gold Nanoparticles from Achillea Wilhelmsii Leaf Infusion and in Vitro. Bull. Mater. Sci. 2020, 43, 57. [Google Scholar] [CrossRef]
  657. Karthik, R.; Chen, S.; Elangovan, A.; Muthukrishnan, P.; Shanmugam, R.; Lou, B.; Karthik, R.; Chen, S.; Elangovan, A.; Muthukrishnan, P.; et al. Phytomediated Biogenic Synthesis of Gold Nanoparticles Using Cerasus Serrulata and Its Utility in Detecting Hydrazine, Microbial Activity and DFT Studies. J. Colloid Interface Sci. 2016, 468, 163–175. [Google Scholar] [CrossRef] [PubMed]
  658. Ullah, U.; Rauf, A.; El, E.; Farhan, S.; Khan, A.; Khan, A.; Majid, S. Green Synthesis, in Vivo and in Vitro Pharmacological Studies of Tamarindus Indica Based Gold Nanoparticles. Bioprocess Biosyst. Eng. 2021, 44, 1185–1192. [Google Scholar] [CrossRef] [PubMed]
  659. Reyes-Becerril, M.; Fernando, R.; Sanchez, F.; López, M.; Angulo, C. Green Synthesis of Gold Nanoparticles Using Turnera Diffusa Willd Enhanced Antimicrobial Properties and Immune Response in Longfin Yellowtail Leukocytes. Aquac. Res. 2021, 52, 3391–3402. [Google Scholar] [CrossRef]
  660. Khan, S.; Runguo, W.; Tahir, K.; Jichuan, Z.; Zhang, L. Catalytic Reduction of 4-Nitrophenol and Photo Inhibition of Pseudomonas Aeruginosa Using Gold Nanoparticles as Photocatalyst. J. Photochem. Photobiol. B Biol. 2017, 170, 181–187. [Google Scholar] [CrossRef]
  661. Fanoro, O.T.; Parani, S.; Maluleke, R.; Lebepe, T.C.; Varghese, J.R.; Mavumengwana, V.; Oluwafemi, O.S. Facile Green, Room-Temperature Synthesis of Gold Nanoparticles Using Combretum Erythrophyllum Leaf Extract: Antibacterial and Cell Viability Studies against Normal and Cancerous Cells. Antibiotics 2021, 10, 893. [Google Scholar] [CrossRef]
  662. Layeghi-Ghalehsoukhteh, S.; Jalaei, J.; Fazeli, M.; Memarian, P.; Shekarforoush, S.S. Evaluation of ‘Green’ Synthesis and Biological Activity of Gold Nanoparticles Using Tragopogon Dubius Leaf Extract as an Antibacterial Agent. IET Nanobiotechnol. 2018, 12, 1118–1124. [Google Scholar] [CrossRef]
  663. El-borady, O.M.; Ayat, M.S.; Shabrawy, M.A.; Millet, P. Green Synthesis of Gold Nanoparticles Using Parsley Leaves Extract and Their Applications as an Alternative Catalytic, Antioxidant, Anticancer, and Antibacterial Agents. Adv. Powder Technol. 2020, 31, 4390–4400. [Google Scholar] [CrossRef]
  664. Fadaka, A.; Aluko, O.; Awawu, S.; Theledi, K. Green Synthesis of Gold Nanoparticles Using Pimenta Dioica Leaves Aqueous Extract and Their Application as Photocatalyst, Antioxidant, and Antibacterial Agents. J. Multidiscip. Appl. Nat. Sci. 2021, 1, 78–88. [Google Scholar] [CrossRef]
  665. Acay, H. Utilization of Morchella Esculenta-Mediated Green Synthesis Golden Nanoparticles in Biomedicine Applications. Prep. Biochem. Biotechnol. 2020, 51, 127–136. [Google Scholar] [CrossRef] [PubMed]
  666. Vinayagam, R.; Santhoshkumar, M.; Eun, K.; David, E.; Gu, S. Bioengineered Gold Nanoparticles Using Cynodon Dactylon Extract and Its Cytotoxicity and Antibacterial Activities. Bioprocess Biosyst. Eng. 2021, 44, 1253–1262. [Google Scholar] [CrossRef] [PubMed]
  667. Moustafa, N.E.; Alomari, A.A. Green Synthesis and Bactericidal Activities of Isotropic and Anisotropic Spherical Gold Nanoparticles Produced Using Peganum Harmala L Leaf and Seed Extracts. Biotechnol. Appl. Biochem. 2019, 66, 664–672. [Google Scholar] [CrossRef] [PubMed]
  668. Ahmad, A.; Wei, Y.; Ullah, S.; Shah, S.I.; Nasir, F.; Shah, A.; Iqbal, Z.; Tahir, K.; Khan, U.A.; Yuan, Q. Synthesis of Phytochemicals-Stabilized Gold Nanoparticles and Their Biological Activities against Bacteria and Leishmania. Microb. Pathog. 2017, 110, 304–312. [Google Scholar] [CrossRef] [PubMed]
  669. Naraginti, S.; Li, Y. Preliminary Investigation of Catalytic, Antioxidant, Anticancer and Bactericidal Activity of Green Synthesized Silver and Gold Nanoparticles Using Actinidia Deliciosa. J. Photochem. Photobiol. B Biol. 2017, 170, 225–234. [Google Scholar] [CrossRef] [PubMed]
  670. Markus, J.; Wang, D.; Kim, Y.J.; Ahn, S.; Mathiyalagan, R.; Wang, C.; Yang, D.C. Biosynthesis, Characterization, and Bioactivities Evaluation of Silver and Gold Nanoparticles Mediated by the Roots of Chinese Herbal Angelica Pubescens Maxim. Nanoscale Res. Lett. 2017, 12, 46. [Google Scholar] [CrossRef] [Green Version]
  671. Islam, N.U.; Amin, R.; Shahid, M.; Amin, M. Gummy Gold and Silver Nanoparticles of Apricot (Prunus Armeniaca) Confer High Stability and Biological Activity. Arab. J. Chem. 2019, 12, 3977–3992. [Google Scholar] [CrossRef] [Green Version]
  672. Reddy, G.R.; Morais, A.B.; Gandhi, N.N. Green Synthesis, Characterization and in Vitro Antibacterial Studies of Gold Nanoparticles by Using Senna Siamea Plant Seed Aqueous Extract at Ambient Conditions. Asian J. Chem. 2013, 25, 8541–8544. [Google Scholar] [CrossRef]
  673. Zha, J.; Dong, C.; Wang, X.; Zhang, X.; Xiao, X.; Yang, X. Green Synthesis and Characterization Monodisperse Gold Nanoparticles Using Ginkgo Biloba Leaf Extract. Opt. Int. J. Light Electron Opt. 2017, 380, 3773–3777. [Google Scholar] [CrossRef]
  674. Francis, G.; Thombre, R.; Leksminarayan, P. Bioinspired Synthesis of Gold Nanoparticles Using Ficus Benghalensis (Indian Banyan) Leaf Extract. Chem. Sci. Trans. 2014, 3, 470–474. [Google Scholar] [CrossRef]
  675. Anbarasu, R.; Selvan, G.; Baskar, S.; Raja, V. Synthesis of Evolvulus Alsinoides Derived Gold Nanoparticles for Medical Applications. Int. J. Adv. Sci. Res. 2016, 2, 38–44. [Google Scholar] [CrossRef] [Green Version]
  676. Jayaseelan, C.; Ramkumar, R.; Abdul, A.; Perumal, P. Green Synthesis of Gold Nanoparticles Using Seed Aqueous Extract of Abelmoschus Esculentus and Its Antifungal Activity. Ind. Crop. Prod. 2013, 45, 423–429. [Google Scholar] [CrossRef]
  677. Villalobos-Noriega, J.M.A.; Rodríguez-León, E.; Rodríguez-beas, C.; Larios-Rodríguez, E.; Plascencia-Jatomea, M.; Martínez-Higuera, A.; Acuña-campa, H.; García-galaz, A.; Mora-monroy, R.; Alvarez-cirerol, F.J.; et al. Au @ Ag Core @ Shell Nanoparticles Synthesized with Rumex Hymenosepalus as Antimicrobial Agent. Nanoscale Res. Lett. 2021, 16, 118. [Google Scholar] [CrossRef] [PubMed]
  678. Qais, F.A.; Ahmad, I.; Altaf, M.; Alotaibi, S.H. Biofabrication of Gold Nanoparticles Using Capsicum Annuum Extract and Its Antiquorum Sensing and Antibiofilm Activity against Bacterial Pathogens. ACS Omega 2021, 25, 16670–16682. [Google Scholar] [CrossRef] [PubMed]
  679. Amina, M.; Al Musayeib, N.M.; Alarfaj, N.A.; El-Tohamy, M.F.; Al-Hamoud, G.A. Antibacterial and Immunomodulatory Potentials of Biosynthesized Ag, Au, Ag-Au Bimetallic Alloy Nanoparticles Using the Asparagus Racemosus Root Extract. Nanomaterials 2020, 10, 2453. [Google Scholar] [CrossRef]
  680. Annamalai, A.; Christina, V.L.P.; Sudha, D.; Kalpana, M.; Lakshmi, P.T.V. Green Synthesis, Characterization and Antimicrobial Activity of Au NPs Using Euphorbia Hirta L. Leaf Extract. Colloids Surf. B Biointerfaces 2013, 108, 60–65. [Google Scholar] [CrossRef]
  681. Ganesan, R.M.; Gurumallesh Prabu, H. Synthesis of Gold Nanoparticles Using Herbal Acorus Calamus Rhizome Extract and Coating on Cotton Fabric for Antibacterial and UV Blocking Applications. Arab. J. Chem. 2019, 12, 2166–2174. [Google Scholar] [CrossRef] [Green Version]
  682. Chen, M.; Chan, C.; Huang, S.; Lin, Y. Green Biosynthesis of Gold Nanoparticles Using Chenopodium Formosanum Shell Extract and Analysis of the Particles ’ Antibacterial Properties. J. Sci. Food Agric. 2019, 99, 3693–3702. [Google Scholar] [CrossRef]
  683. Naidu, K.S.B.; Murugan, N. Sershen Physico-Chemical and Antibacterial Properties of Gold Nanoparticles Synthesized Using Avicennia Marina Seeds Extract. Trans. R. Soc. S. Afr. 2019, 75, 33–39. [Google Scholar] [CrossRef]
  684. Pagno, C.H.; Costa, T.M.H.; de Menezes, E.W.; Benvenutti, E.V.; Hertz, P.F.; Matte, C.R.; Tosati, J.V.; Monteiro, A.R.; Rios, A.O.; Flôres, S.H. Development of Active Biofilms of Quinoa (Chenopodium Quinoa W.) Starch Containing Gold Nanoparticles and Evaluation of Antimicrobial Activity. Food Chem. 2015, 173, 755–762. [Google Scholar] [CrossRef]
  685. Khan, S.; Bakht, J.; Syed, F. green synthesis of gold nanoparticles using Acer pentapomicum leaves extract its characterization, antibacterial, antifungal and antioxidant bioassay. Dig. J. Nanomater. Biostruct. 2018, 13, 579–589. [Google Scholar]
  686. Jiménez, Z.E.; Markus, J.; Kim, Y.; Wang, D.; Soshnikova, V.; Yang, D.C. Ginseng-Berry-Mediated Gold and Silver Nanoparticle Synthesis and Evaluation of Their in Vitro Antioxidant, Antimicrobial, and Cytotoxicity Effects on Human Dermal Fibroblast and Murine Melanoma Skin Cell Lines. Int. J. Nanomed. 2017, 12, 709–723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  687. Vanaraj, S.; Jabastin, J.; Sathiskumar, S.; Preethi, K. Production and Characterization of Bio-AuNPs to Induce Synergistic Effect Against Multidrug Resistant Bacterial Biofilm Production and Characterization of Bio-AuNPs to Induced Synergistic Effect Against Multidrug Resistant Bacterial Biofilm. J. Clust. Sci. 2016, 28, 227–244. [Google Scholar] [CrossRef]
  688. Bawadekji, A.; Oueslati, M.; Ali, A.; Basha, J. Biosynthesis of Gold Nanoparticles Using Pleurotus Ostreatus (Jacq. Ex. Fr.) Kummer Extract and Their Antibacterial and Antifungal Activities. J. Appl. Environ. Biol. Sci. 2018, 8, 142–147. [Google Scholar]
  689. Vidhya, A.T.; Ahmed, J. Cajanus Cajan Mediated Gold Nanoparticle Synthesis, Characterization, Antimicrobial Efficacy and Its Antifouling Application on Metal Coupons. Asian J. Pharm. Technol. Innov. 2017, 5, 41–54. [Google Scholar]
  690. Annavaram, V.; Posa, V.R.; Lakshmi, D.V.; Sumalatha, J.; Somala, A.R. Terminalia Bellirica Fruit Extract Mediated Synthesis of Gold Nanoparticles (AuNP) and Studies on Antimicrobial and Antioxidant Activity. Synth. React. Inorg. Met. Nano-Metal Chem. 2016, 47, 681–687. [Google Scholar] [CrossRef]
  691. Gude, V.; Upadhyaya, K.; Prasad, M.N.; Rao, N. Green Synthesis of Gold and Silver Nanoparticles Using Achyranthes Aspera L. Leaf Extract. Adv. Sci. Eng. Med. 2012, 4, 1–6. [Google Scholar] [CrossRef]
  692. Velammal, S.P.; Devi, T.A.; Amaladhas, T.P. Antioxidant, Antimicrobial and Cytotoxic Activities of Silver and Gold Nanoparticles Synthesized Using Plumbago Zeylanica Bark. J. Nanostruct. Chem. 2016, 6, 247–260. [Google Scholar] [CrossRef] [Green Version]
  693. Sunkari, S.; Gangapuram, B.R.; Dadigala, R.; Bandi, R.; Alle, M.; Guttena, V. Microwave-Irradiated Green Synthesis of Gold Nanoparticles for Catalytic and Anti-Bacterial Activity. J. Anal. Sci. Technol. 2017, 8, 13. [Google Scholar] [CrossRef] [Green Version]
  694. Adewale, A.S.; Yao, B.; Folorunso, A. Green Synthesis, Characterization, and Antibacterial Investigation of Synthesized Gold Nanoparticles (AuNPs) from Garcinia Kola Pulp Extract. Plasmonics 2021, 16, 157–165. [Google Scholar] [CrossRef]
  695. Dudhane, A.A.; Waghmode, S.R.; Dama, L.B.; Vaibhav, P. Synthesis and Characterization of Gold Nanoparticles Using Plant Extract of Terminalia Arjuna with Antibacterial Activity. Int. J. Nanosci. Nanotechnol. 2019, 15, 75–82. [Google Scholar]
  696. Guliani, A.; Kumari, A.; Acharya, A. Green Synthesis of Gold Nanoparticles Using Aqueous Leaf Extract of Populus Alba: Characterization, Antibacterial and Dye Degradation Activity. Int. J. Environ. Sci. Technol. 2021, 18, 4007–4018. [Google Scholar] [CrossRef]
  697. Muniyappan, N.; Pandeeswaran, M.; Amalraj, A. Green Synthesis of Gold Nanoparticles Using Curcuma Pseudomontana Isolated Curcumin: Its Characterization, Antimicrobial, Antioxidant and Anti-Inflammatory Activities. Environ. Chem. Ecotoxicol. 2021, 3, 117–124. [Google Scholar] [CrossRef]
  698. Hatipoğlu, A. Rapid Green Synthesis of Gold Nanoparticles: Synthesis, Characterization, and Antimicrobial Activities. Prog. Nutr. 2021, 23, e2021242. [Google Scholar] [CrossRef]
  699. Al-radadi, N.S. Facile One-Step Green Synthesis of Gold Nanoparticles (AuNp) Using Licorice Root Extract: Antimicrobial and Anticancer Study against HepG2 Cell Line. Arab. J. Chem. 2021, 14, 102956. [Google Scholar] [CrossRef]
  700. Wang, M.; Hu, Y. Green Synthesized Gold Nanoparticles Using Viola Betonicifolia Leaves Extract: Characterization, Antimicrobial, Antioxidant, and Cytobiocompatible Activities. Int. J. Nanomed. 2021, 16, 7319–7337. [Google Scholar] [CrossRef] [PubMed]
  701. Dogan, S.S.; Kocabas, A. Green Synthesis of ZnO Nanoparticles with Veronica Multifida and Their Antibiofilm Activity. Hum. Exp. Toxicol. 2019, 39, 19–327. [Google Scholar]
  702. Abbasi, B.A.; Iqbal, J.; Ahmad, R.; Zia, L.; Kanwal, S.; Mahmood, T.; Wang, C.; Chen, J.-T. Bioactivities of Geranium Wallichianum Leaf Extracts Conjugated with Zinc Oxide Nanoparticles. Biomolecules 2020, 10, 38. [Google Scholar] [CrossRef] [Green Version]
  703. Al-jumaili, A.; Mulvey, P.; Kumar, A.; Prasad, K.; Bazaka, K.; Warner, J.; Jacob, M. V Eco-Friendly Nanocomposites Derived from Geranium Oil and Zinc Oxide in One Step Approach. Sci. Rep. 2019, 9, 5973. [Google Scholar] [CrossRef]
  704. Lalithamba, H.S.; Raghavendra, M.; Uma, K.; Yatish, K.V.; Mousumi, D.; Nagendra, G. Capsicum Annuum Fruit Extract: A Novel Reducing Agent for the Green Synthesis of ZnO Nanoparticles and Their Multifunctional Applications. Acta Cchimica Slov. 2018, 65, 354–364. [Google Scholar] [CrossRef]
  705. Abbas, F.; Maqbool, Q.; Nazar, M.; Jabeen, N.; Hussain, S.Z.; Mehmood, N.; Sheikh, M.S.; Hussain, T.; Iftikhar, S. Green Synthesised Zinc Oxide Nanostructures through Periploca Aphylla Extract Shows Tremendous Antibacterial Potential against Multidrug Resistant Pathogens. IET Nanobiotechnol. 2017, 11, 935–941. [Google Scholar] [CrossRef] [PubMed]
  706. Azizi, S.; Mohamad, R.; Shahri, M.M. Green Microwave-Assisted Combustion Synthesis of Zinc Oxide Nanoparticles with Citrullus Colocynthis (L.) Schrad: Characterization and Biomedical Applications. Molecules 2017, 22, 301. [Google Scholar] [CrossRef] [Green Version]
  707. Gupta, M.; Tomar, R.S.; Kaushik, S.; Mishra, R.K.; Sharma, D. Effective Antimicrobial Activity of Green ZnO Nano Particles of Catharanthus Roseus. Front. Microbiol. 2018, 9, 2030. [Google Scholar] [CrossRef] [PubMed]
  708. Bala, N.; Saha, S.; Chakraborty, M.; Maiti, M.; Das, S.; Basu, R.; Nandy, P. Green Synthesis of Zinc Oxide Nanoparticles Using Hibiscus Subdariffa Leaf Extract: Effect of Temperature on Synthesis, Anti-Bacterial Activity and Anti-Diabetic Activity. RSC Adv. 2014, 5, 4993–5003. [Google Scholar] [CrossRef]
  709. Elumalai, K.; Velmurugan, S.; Ravi, S.; Kathiravan, V.; Ashokkumar, S. Green Synthesis of Zinc Oxide Nanoparticles Using Moringa Oleifera Leaf Extract and Evaluation of Its Antimicrobial Activity. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 143, 158–164. [Google Scholar] [CrossRef] [PubMed]
  710. Ramesh, M.; Anbuvannan, M.; Viruthagiri, G. Green Synthesis of ZnO Nanoparticles Using Solanum Nigrum Leaf Extract and Their Antibacterial Activity. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 136, 864–870. [Google Scholar] [CrossRef]
  711. Hajiashrafi, S.; Motakef-Kazemi, N. Green Synthesis of Zinc Oxide Nanoparticles Using Parsley Extract. Nanomed. Res. J. 2018, 3, 44–50. [Google Scholar] [CrossRef]
  712. Kahraman, O.; Binzet, R.; Turunc, E.; Dogen, A.; Arslan, H. Synthesis, Characterization, Antimicrobial and Electrochemical Activities of Zinc Oxide Nanoparticles Obtained from Sarcopoterium spinosum (L.) Spach Leaf Extract. Mater. Res. Express 2018, 5, 115017. [Google Scholar] [CrossRef]
  713. Sathishkumar, G.; Rajkuberan, C.; Manikandan, K.; Prabukumar, S.; Danieljohn, J.; Sivaramakrishnan, S. Facile Biosynthesis of Antimicrobial Zinc Oxide (ZnO) Nanoflakes Using Leaf Extract of Couroupita Reference: To Appear in: Materials Letters. Mater. Lett. 2016, 188, 383–386. [Google Scholar] [CrossRef]
  714. Yuvakkumar, R.; Suresh, J.; Nathanael, A.J.; Sundrarajan, M.; Hong, S.I. Novel Green Synthetic Strategy to Prepare ZnO Nanocrystals Using Rambutan (Nephelium Lappaceum L.) Peel Extract and Its Antibacterial Applications. Mater. Sci. Eng. C 2014, 41, 17–27. [Google Scholar] [CrossRef]
  715. Jafarirad, S.; Mehrabi, M.; Divband, B.; Kosari-nasab, M. Biofabrication of Zinc Oxide Nanoparticles Using Fruit Extract of Rosa Canina and Their Toxic Potential against Bacteria: A Mechanistic Approach. Mater. Sci. Eng. C 2016, 59, 296–302. [Google Scholar] [CrossRef] [PubMed]
  716. Saha, R.; Karthik, S.; Balu, K.S. Influence of the Various Synthesis Methods on the ZnO Nanoparticles Property Made Using the Bark Extract of Terminalia Arjuna In Fl Uence of the Various Synthesis Methods on the ZnO Nanoparticles Property Made Using the Bark Extract of Terminalia Arjuna. Mater. Chem. Phys. 2018, 209, 208–216. [Google Scholar] [CrossRef]
  717. Vijayakumar, S.; Krishnakumar, C.; Arulmozhi, P.; Mahadevan, S.; Parameswari, N. Microbial Pathogenesis Biosynthesis, Characterization and Antimicrobial Activities of Zinc Oxide Nanoparticles from Leaf Extract of Glycosmis Pentaphylla (Retz.) DC. Microb. Pthogenes. 2018, 116, 44–48. [Google Scholar] [CrossRef] [PubMed]
  718. Sonia, S.; Kumari, H.L.J.; Ruchmani, K.; Sivakumar, M. Antimicrobial and Antioxidant Potentials of Biosynthesized Colloidal Zinc Oxide Nanoparticles for a Fortified Cold Cream Formulation: A Potent Nanocosmeceutical Application. Mater. Sci. Eng. C 2017, 79, 581–589. [Google Scholar] [CrossRef]
  719. Mohammadi, F.; Bayrami, A.; Habibi-yangjeh, A.; Rahim, S. A Comprehensive Study on Antidiabetic and Antibacterial Activities of ZnO Nanoparticles Biosynthesized Using Silybum Marianum L Seed Extract. Mater. Sci. Eng. C 2019, 97, 397–405. [Google Scholar] [CrossRef]
  720. Fuku, X.; Diallo, A.; Maaza, M. Nanoparticles through Green Process of Punica Granatum L. and Their Antibacterial Activities. Int. J. Electrochem. 2016, 2016, 4682967. [Google Scholar] [CrossRef]
  721. Akhter, S.H.; Mahmood, Z.; Ahmad, S.; Mohammad, F. Plant-Mediated Green Synthesis of Zinc Oxide Nanoparticles Using Swertia Chirayita Leaf Extract, Characterization and Its Antibacterial Efficacy Against Some Common Pathogenic Bacteria. Bionanoscience 2018, 8, 811–817. [Google Scholar] [CrossRef]
  722. Dobrucka, R.; Dlugaszewska, J.; Kaczmarek, M. Cytotoxic and Antimicrobial Effects of Biosynthesized ZnO Nanoparticles Using of Chelidonium Majus Extract. Biomed. Microdevices 2018, 20, 5. [Google Scholar] [CrossRef] [Green Version]
  723. Velmurugan, P.; Park, J.-H.; Lee, S.-M.; Yi, Y.-J.; Cho, M.; Jang, J.-S.; Myung, H.; Bang, K.; Oh, B. Eco-Friendly Approach towards Green Synthesis of Zinc Oxide Nanocrystals and Its Potential Applications. Artif. Cells Nanomed. Biotechnol. 2016, 44, 1537–1543. [Google Scholar] [CrossRef]
  724. Elavarasan, N.; Kokila, K.; Inbasekar, G.; Sujatha, V. Evaluation of Photocatalytic Activity, Antibacterial and Cytotoxic Effects of Green Synthesized ZnO Nanoparticles by Sechium Edule Leaf Extract and Cytotoxic Effects of Green Synthesized ZnO. Res. Chem. Intermed. 2017, 43, 3361–3376. [Google Scholar] [CrossRef]
  725. Datta, A.; Patra, C.; Bharadwaj, H.; Kaur, S.; Dimri, N.; Khajuria, R. Green Synthesis of Zinc Oxide Nanoparticles Using Parthenium Hysterophorus Leaf Extract and Evaluation of Their Antibacterial Properties. J. Biotechnol. Biomater. 2017, 7, 3–7. [Google Scholar] [CrossRef]
  726. Lingaraju, K.; Naika, H.R.; Manjunath, K.; Basavaraj, R.B.; Nagabhushana, H.; Nagaraju, G.; Suresh, D. Biogenic Synthesis of Zinc Oxide Nanoparticles Using Ruta Graveolens (L.) and Their Antibacterial and Antioxidant Activities. Appl. Nanosci. 2016, 6, 703–710. [Google Scholar] [CrossRef] [Green Version]
  727. Sharmila, G.; Muthukumaran, C.; Santhiya, K.S.S.; Pradeep, R.S.; Kumar, N.M.; Suriyanarayanan, N.; Hirumarimurugan, M. Biosynthesis, Characterization, and Antibacterial Activity of Zinc Oxide Nanoparticles Derived from Bauhinia Tomentosa Leaf Extract. J. Nanostruct. Chem. 2018, 8, 293–299. [Google Scholar] [CrossRef] [Green Version]
  728. Suresh, D.; Nethravathi, P.C.; Udayabhanu; Rajanaika, H.; Nagabhushana, H.; Sharma, S.C. Green Synthesis of Multifunctional Zinc Oxide (ZnO) Nanoparticles Using Cassia Fistula Plant Extract and Their Photodegradative, Antioxidant and Antibacterial Activities. Mater. Sci. Semicond. Process. 2015, 31, 446–454. [Google Scholar] [CrossRef]
  729. Chandra, H. Phyto-Mediated Synthesis of Zinc Oxide Nanoparticles of Berberis Aristata: Characterization, Antioxidant Activity and Antibacterial Activity with Special Reference to Urinary Tract Pathogens. Mater. Sci. Eng. C 2019, 102, 212–220. [Google Scholar] [CrossRef] [PubMed]
  730. Santhoshkumar, J.; Kumar, S.V.; Rajeshkumar, S. Resource-Efficient Technologies Synthesis of Zinc Oxide Nanoparticles Using Plant Leaf Extract against Urinary Tract Infection Pathogen. Resour. Technol. 2017, 102, 212–220. [Google Scholar] [CrossRef]
  731. Elumalai, K.; Velmurugan, S.; Ravi, S.; Kathiravan, V.; Adaikala Raj, G. Bio-Approach: Plant Mediated Synthesis of ZnO Nanoparticles and Their Catalytic Reduction of Methylene Blue and Antimicrobial Activity. Adv. Powder Technol. 2015, 26, 1639–1651. [Google Scholar] [CrossRef]
  732. Ansari, M.A.; Murali, M.; Prasad, D.; Alzohairy, M.A.; Almatroudi, A.; Alomary, M.N.; Udayashankar, A.C.; Singh, S.B.; Mousa, S.; Asiri, M.; et al. Cinnamomum Verum Bark Extract Mediated Green Synthesis of ZnO Nanoparticles and Their Antibacterial Potentiality. Biomolecules 2020, 10, 336. [Google Scholar] [CrossRef] [Green Version]
  733. Vaishnav, J.; Subha, V.; Kirubanandan, S.; Arulmozhi, M.; Renganathan, S. Green synthesis of zinc oxide nanoparticles by Celosia. J. Optoelectron. Biomed. Mater. 2017, 9, 59–71. [Google Scholar]
  734. Iqbal, J.; Ahsan, B.; Mahmood, T.; Kanwal, S.; Ahmad, R.; Ashraf, M. Plant-Extract Mediated Green Approach for the Synthesis of ZnONPs: Characterization and Evaluation of Cytotoxic, Antimicrobial and Antioxidant Potentials. J. Mol. Struct. 2019, 1189, 315–327. [Google Scholar] [CrossRef]
  735. Blessy, B.J.; Gomez, L.A. Biosynthesis and Characterization of ZnO Nanoparticle Using Cassia Auriculata Flower Extract and Their Antibacterial, Photocatalytic Activity. Int. J. Innov. Res. Sci. Eng. Technol. 2016, 5, 6437–6445. [Google Scholar] [CrossRef]
  736. Anbukkarasi, V.; Srinivasan, R.; Elangovan, N. Antimicrobial Activity of Green Synthesized Zinc Oxide Nanoparticles from Emblica Officinalis. Int. J. Pharm. Sci. Rev. Res. 2015, 33, 110–115. [Google Scholar]
  737. Suriyaprabha, R.; Balu, K.S.; Karthik, S.; Prabhu, M.; Rajendran, V.; Aicher, W.K.; Maaza, M. A Sensitive Re Fi Ning of in Vitro and in Vivo Toxicological Behavior of Green Synthesized ZnO Nanoparticles from the Shells of Jatropha Curcas for Multifunctional Biomaterials Development. Ecotoxicol. Environ. Saf. 2019, 184, 109621. [Google Scholar] [CrossRef] [PubMed]
  738. Prachi, A.M.; Patel, R.; Singh, N.; Negi, D.S.; Rawat, S. Green synthesis of zinc oxide nanoparticles using Rubia cordifolia root extract against different bacterial pathogens. Indo Am. J. Pharm. Res. 2017, 7, 759–765. [Google Scholar]
  739. Mahendra, C.; Murali, M.; Manasa, G.; Pooja, P.; Abhilash, M.R.; Lakshmeesha, T.R.; Satish, A.; Amruthesh, K.N.; Sudarshana, M.S. Antibacterial and Antimitotic Potential of Bio-Fabricated Zinc Oxide Nanoparticles of Cochlospermum Religiosum (L.). Microb. Pathog. 2017, 110, 620–629. [Google Scholar] [CrossRef]
  740. Khajuria, A.K.; Bisht, N.S.; Kumar, G. Synthesis of Zinc Oxide Nanoparticles Using Leaf Extract of Viola Canescens Wall. Ex, Roxb. and Their Antimicrobial Activity. J. Pharmagnosy Phytochem. 2017, 6, 1301–1304. [Google Scholar]
  741. Ananthalakshmi, R.; Rajarathinam, S.R.X.; Lavanya, A.; Sadiq, A.M.; Gomathi, C. Synthesis and Characterization of Zinc Oxide Nanoparticles Using Aqueous Extract of Banana Peel (Musa Acuminata L.). Int. J. Basic Apllied Res. 2018, 7, 98–107. [Google Scholar]
  742. Steffy, K.; Shanthi, G.; Maroky, A.S.; Selvakumar, S. Enhanced Antibacterial Effects of Green Synthesized ZnO NPs Using Aristolochia Indica against Multi-Drug Resistant Bacterial Pathogens from Diabetic Foot Ulcer. J. Infect. Public Health 2017, 11, 463–471. [Google Scholar] [CrossRef]
  743. Asha, P.; Francis, J. One pot green synthesis of Zno nanoparticles using Azolla extract and assessing its biological activities. Int. J. Curr. Res. 2015, 7, 22520–22527. [Google Scholar]
  744. Prabhu, S.; Vaideki, K.; Anitha, S.; Rajendran, R. Synthesis of ZnO Nanoparticles Using Melia Dubia Leaf Extract and Its Characterization. IET Nanobiotechnol. 2017, 11, 62–65. [Google Scholar] [CrossRef]
  745. Shakibaie, M.; Alipour-Esmaeili-Anari, F.; Adeli-Sardou, M.; Ameri, A.; Doostmohammadi, M.; Forootanfar, H.; Ameri, A. Antibacterial and Anti-Biofilm Effects of Microwave-Assisted Biologically Synthesized Zinc Nanoparticles. Nanomed. J. 2019, 6, 223–231. [Google Scholar] [CrossRef]
  746. Vahidi, A.; Vaghari, H.; Najian, Y.; Najian, M.J.; Jafarizadeh-Malmiri, H. Evaluation of Three Different Green Fabrication Methods for the Synthesis of Crystalline ZnO Nanoparticles Using Pelargonium Zonale Leaf Extract. Green Process Synth. 2019, 8, 302–308. [Google Scholar] [CrossRef]
  747. Awwad, A.M.; Amer, M.W.; Salem, N.M.; Abdeen, A.O. Green Synthesis of Zinc Oxide Nanoparticles (ZnO-NPs) Using Ailanthus Altissima Fruit Extracts and Antibacterial Activity. Int. Sci. Organ. 2020, 6, 151–159. [Google Scholar]
  748. Nadeem, A.; Naz, S.; Sarfraz, J.; Mannan, A.; Zia, M. Synthesis, Characterization and Biological Activities of Monometallic and Bimetallic Nanoparticles Using Mirabilis Jalapa Leaf Extract. Biotechnol. Rep. 2019, 24, e00338. [Google Scholar] [CrossRef]
  749. Umar, H.; Kavaz, D.; Rizaner, N. Biosynthesis of Zinc Oxide Nanoparticles Using Albizia Lebbeck Stem Bark, and Evaluation of Its Antimicrobial, Antioxidant, and Cytotoxic Activities on Human Breast Cancer Cell Lines. Int. J. Nanomed. 2019, 14, 87–100. [Google Scholar] [CrossRef] [Green Version]
  750. Yasotha, P.; Kalaiselvi, V.; Vidhya, N.; Ramya, V. Green Synthesis and Characterization of Zinc Oxide Nanoparticles Using Ocimum Tenuiflorum. Int. J. Adv. Sci. Eng. 2020, 2020, 1584–1588. [Google Scholar] [CrossRef]
  751. Suresh, J.; Pradheesh, G.; Alexramani, V.; Sundrarajan, M.; Hong, S.I. Green Synthesis and Characterization of Zinc Oxide Nanoparticle Using Insulin Plant (Costus Pictus D. Don) and Investigation of Its Antimicrobial as Well as Anticancer Activities. Adv. Nat. Sci. Nanosci. Nanotechnol. 2018, 9, 015008. [Google Scholar] [CrossRef]
  752. Prakash, M.J.; Kalyanasundharam, S. Biosynthesis, Characterisation, Free Radical Scavenging Activity and Anti-Bacterial Effect of Plant- Mediated Zinc Oxide Nanoparticles Using Pithecellobium dulce and Lagenaria siceraria Leaf Extract. World Sci. News 2015, 18, 100–117. [Google Scholar]
  753. Shanavas, S.; Duraimurugan, J.; Kumar, G.S.; Ramesh, R.; Acevedo, R.; Anbarasan, P.M.; Maadeswaran, P. Ecofriendly Green Synthesis of ZnO Nanostructures Using Artabotrys Hexapetalu and Bambusa Vulgaris Plant Extract and Investigation on Their Photocatalytic and Antibacterial Activity. Mater. Res. Express 2019, 6, 105098. [Google Scholar] [CrossRef]
  754. Jamdagni, P.; Khatri, P.; Rana, J.S. Green Synthesis of Zinc Oxide Nanoparticles Using Flower Extract of Nyctanthes Arbor-Tristis and Their Antifungal Activity. J. King Saud Univ. Sci. 2018, 30, 168–175. [Google Scholar] [CrossRef] [Green Version]
  755. Anupama, C.; Kaphle, A.; Udayabhanu; Nagaraju, G. Aegle Marmelos Assisted Facile Combustion Synthesis of Multifunctional ZnO Nanoparticles: Study of Their Photoluminescence, Photo Catalytic and Antimicrobial Activities. J. Mater. Sci. Mater. Electron. 2018, 29, 4238–4249. [Google Scholar] [CrossRef]
  756. Padalia, H.; Chanda, S. Characterization, Antifungal and Cytotoxic Evaluation of Green Synthesized Zinc Oxide Nanoparticles Using Ziziphus Nummularia Leaf Extract. Artif. Cells Nanomed. Biotechnol. 2017, 45, 1751–1761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  757. Narendhran, S.; Sivaraj, R. Biogenic ZnO Nanoparticles Synthesized Using L. Aculeata Leaf Extract And Their Antifungal Activity against Plant Fungal Pathogens. Bull. Mater. Sci. 2016, 39, 1–5. [Google Scholar] [CrossRef]
  758. Ramachandrappa, L.T.; Kalagatur, N.K.; Mudili, V.; Mohan, C.D.; Shobith, R.; Prasad, B.D.; Ashwini, B.S.; Hashem, A.; Alqarawi, A.A.; Malik, J.A.; et al. Biofabrication of Zinc Oxide Nanoparticles With Syzygium Aromaticum Flower Buds Extract and Finding Its Novel Application in Controlling the Growth and Mycotoxins of Fusarium Graminearum. Front. Microbiol. 2019, 10, 1244. [Google Scholar] [CrossRef] [Green Version]
  759. Shobha, N.; Nanda, N.; Giresha, A.S.; Manjappa, P.; Dharmappa, K.K.; Nagabhushana, B.M. Synthesis and Characterization of Zinc Oxide Nanoparticles Utilizing Seed Source of Ricinus Communis and Study of Its Antioxidant, Antifungal and Anticancer Activity. Mater. Sci. Eng. C 2018, 97, 842–850. [Google Scholar] [CrossRef] [PubMed]
  760. Sirumbayee, E.; Anusuya, S. Preparation of Zinc Oxide Nanoparticles Using Azima Tetracantha Lam. Leaf Extract and Its Potential for the Removal of Contaminants from Water. J. Nanosci. Technol. 2020, 6, 862–865. [Google Scholar]
  761. Madhumitha, G.; Fowsiya, J.; Gupta, N.; Kumar, A.; Singh, M. Green Synthesis, Characterization and Antifungal and Photocatalytic Activity of Pithecellobium Dulce Peel–Mediated ZnO Nanoparticles. J. Phys. Chem. Solids 2019, 127, 43–51. [Google Scholar] [CrossRef]
  762. Nandhini, M.; Rajini, S.B.; Udayashankar, A.C.; Niranjana, S.R.; Lund, O.S.; Shetty, H.S.; Prakash, H.S. Biofabricated Zinc Oxide Nanoparticles as an Eco-Friendly Alternative for Growth Promotion and Management of Downy Mildew of Pearl Millet. Crop Prot. 2019, 121, 103–112. [Google Scholar] [CrossRef]
  763. Sharma, D.; Sabela, I.M.; Kanchi, S.; Mdluli, S.P.; Singh, G.; Stenstr, T.A.; Bisetty, K. Biosynthesis of ZnO Nanoparticles Using Jacaranda Mimosifolia Flowers Extract: Synergistic Antibacterial Activity and Molecular Simulated Facet Specific Adsorption Studies. Photochem. Photobiol. B Biol. 2016, 162, 199–207. [Google Scholar] [CrossRef] [Green Version]
  764. Velmurugan, P.; Shim, J.; Oh, B. Prunus x Yedoensis Tree Gum Mediated Synthesis of Platinum Nanoparticles with Antifungal Activity against Phytopathogens. Mater. Lett. 2016, 174, 61–65. [Google Scholar] [CrossRef]
  765. Kumar, P.V.; Jelastin, S.M.; Prakash, K.S. Journal of Environmental Chemical Engineering Green Synthesis Derived Pt-Nanoparticles Using Xanthium Strumarium Leaf Extract and Their Biological Studies. J. Environ. Chem. Eng. 2019, 7, 103146. [Google Scholar] [CrossRef]
  766. Jeyapaul, U.; Kala, M.J.; Bosco, A.J.; Piruthiviraj, P.; Easuraja, M. An Eco-Friendly Approach for Synthesis of Platinum Nanoparticles Using Leaf Extracts of Jatropa Gossypifolia and Jatropa Glandulifera and Their Antibacterial Activity. Orient. J. Chem. 2018, 34, 779–790. [Google Scholar] [CrossRef] [Green Version]
  767. Ali, N.H.; Mohammed, A.M. Biosynthesis and Characterization of Platinum Nanoparticles Using Iraqi zahidi Dates and Evaluation of Their Biological Applications. Biotechnol. Rep. 2021, 30, e00635. [Google Scholar] [CrossRef] [PubMed]
  768. Fanoro, O.T.; Parani, S.; Maluleke, R.; Lebepe, T.C.; Varghese, R.J.; Mgedle, N.; Mavumengwana, V.; Oluwafemi, O.S. Biosynthesis of Smaller-Sized Platinum Nanoparticles Using the Leaf Extract of Combretum Erythrophyllum and Its Antibacterial Activities. Antibiotics 2021, 10, 1275. [Google Scholar] [CrossRef] [PubMed]
  769. Selvi, A.M.; Palanisamy, S.; Jeyanthi, S.; Vinosha, M.; Mohandoss, S.; Tabarsa, M.; You, S.; Kannapiran, E.; Prabhu, N.M. Synthesis of Tragia Involucrata Mediated Platinum Nanoparticles for Comprehensive Therapeutic Applications: Antioxidant, Antibacterial and Mitochondria-Associated Apoptosis in HeLa Cells. Process Biochem. 2020, 20, 21–33. [Google Scholar] [CrossRef]
  770. Eltaweil, A.S.; Fawzy, M.; Hosny, M.; El-monaem, E.M.A.; Tamer, T.M.; Omer, A.M. Potential Antimicrobial, Antioxidant, and Catalytic Applications Green Synthesis of Platinum Nanoparticles Using Atriplex Halimus Leaves for Potential Antimicrobial, Antioxidant, and Catalytic Applications. Arab. J. Chem. 2021, 15, 103517. [Google Scholar] [CrossRef]
  771. Ghadiri, A.M.; Fatahi, Y.; Dinarvand, R.; Webster, T.J. High-Gravity-Assisted Green Synthesis of Palladium Nanoparticles: The Flowering of Nanomedicine. Nanomed. Nanotechnol. Biol. Med. 2020, 30, 102297. [Google Scholar] [CrossRef]
  772. Attar, A.; Yapaoz, M.A. Biosynthesis of Palladium Nanoparticles Using Diospyros Kaki Leaf Extract and Determination of Antibacterial Efficacy. Prep. Biochem. Biotechnol. 2018, 48, 629–634. [Google Scholar] [CrossRef]
  773. Sharmila, G.; Haries, S.; Farzana Fathima, M.; Geetha, S.; Manoj Kumar, N.; Muthukumaran, C. Enhanced Catalytic and Antibacterial Activities of Phytosynthesized Palladium Nanoparticles Using Santalum Album Leaf Extract. Powder Technol. 2017, 320, 22–26. [Google Scholar] [CrossRef]
  774. Vijilani, C.; Bindhu, M.R.; Fincy, F.C.; Mohamed, S.; Alsahi, S.; Sabitha, S.; Saravanakumar, K.; Sandhanasamy, D.; Umadevi, M.; Aljaafreh, M.J.; et al. Antimicrobial and Catalytic Activities of Biosynthesized Gold, Silver and Palladium Nanoparticles from Solanum Nigurum Leaves. J. Photochem. Photobiol. B Biol. 2019, 202, 111713. [Google Scholar] [CrossRef]
  775. Tahir, K.; Nazir, S.; Li, B.; Ahmad, A.; Nasir, T.; Khan, A.U.; Asim, S.; Shah, A.; Ul, Z.; Khan, H.; et al. Sapium sebiferum leaf extract mediated synthesis of palladium nanoparticles and in vitro investigation of their bacterial and photocatalytic activities. J. Photochem. Photobiol. B Biol. 2016, 164, 164–173. [Google Scholar] [CrossRef] [PubMed]
  776. Prakashkumar, N.; Vignesh, M.; Brindhadevi, K.; Phuong, N.; Pugazhendhi, A.; Suganthy, N. Progress in Organic Coatings Enhanced Antimicrobial, Antibiofilm and Anticancer Activities of Biocompatible Neem Gum Coated Palladium Nanoparticles. Prog. Org. Coat. 2021, 151, 106098. [Google Scholar] [CrossRef]
  777. Kora, A.J.; Rastogi, L. Green Synthesis of Palladium Nanoparticles Using Gum Ghatti (Anogeissus latifolia) and Its Application as an Antioxidant and Catalyst. Arab. J. Chem. 2018, 11, 1097–1106. [Google Scholar] [CrossRef] [Green Version]
  778. Gnanasekar, S.; Murugaraj, J.; Dhivyabharathi, B.; Vilwanathan, R.; Sivaperumal, S. Antibacterial and Cytotoxicity Effects of Biogenic Palladium Nanoparticles Synthesized Using Fruit Extract of Couroupita Guianensis. J. Econ. Financ. Adm. Sci. 2017, 16, 59–65. [Google Scholar] [CrossRef]
  779. Bhakyaraj, K.; Kumaraguru, S.; Gopinath, K.; Sabitha, V.; Kaleeswarran, P.R.; Karthika, V.; Sudha, A.; Muthukumaran, U.; Jayakumar, K.; Mohan, S.; et al. Eco-friendly synthesis of palladium nanoparticles using Melia azedarach leaf extract and their evaluation for antimicrobial and larvicidal activities. J. Clust. Sci. 2017, 28, 463–476. [Google Scholar] [CrossRef]
  780. Sonbol, H.; Ameen, F.; Alyahya, S.; Almansob, A.; Alwakeel, S. Padina Boryana Mediated Green Synthesis of Crystalline Palladium Nanoparticles as Potential Nanodrug against Multidrug Resistant Bacteria and Cancer Cells. Sci. Rep. 2021, 11, 5444. [Google Scholar] [CrossRef]
  781. Kalaiselvi, A.; Mohana, S.; Madhumitha, G.; Ramalingam, C. Synthesis and Characterization of Palladium Nanoparticles Using Catharanthus Roseus Leaf Extract and Its Application in the Photo-Catalytic Degradation. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 135, 116–119. [Google Scholar] [CrossRef]
  782. Babu, R.; Chidambaram, K. Watermelon Rind-Mediated Green Synthesis of Noble Palladium Nanoparticles: Catalytic Application Watermelon Rind-Mediated Green Synthesis of Noble Palladium Nanoparticles: Catalytic Application. Appl. Nanosci. 2015, 5, 223–228. [Google Scholar] [CrossRef] [Green Version]
  783. Veisi, H.; Ghorbani-vaghei, R.; Hemmati, S.; Haji, M. Green and Effective Route for the Synthesis of Monodispersed Palladium Nanoparticles Using Herbal Tea Extract (Stachys Lavandulifolia) as Reductant, Stabilizer and Capping Agent, and Their Application as Homogeneous and Reusable Catalyst in Suzuki Cou. Appl. Organomet. Chem. 2014, 29, 26–32. [Google Scholar] [CrossRef]
  784. Manoj, L.; Vishwakarma, V. Phytochemical Synthesis of Palladium-Gold Nanoparticles Using in-Vitro Grown Hypericin Rich Shoot Culture of Hypericum Hookerianum. Int. J. ChemTech Res. 2016, 9, 34–38. [Google Scholar]
  785. Zeleke, T.D. Copper Nanoparticles Synthesized Using Echinops Sp. Root Extract for Antimicrobial Applications. Int. J. Nano Dimens 2021, 12, 145–155. [Google Scholar]
  786. Amin, F.; Khattak, B.; Alotaibi, A.; Qasim, M.; Ahmad, I.; Ullah, R.; Bourhia, M.; Gul, A.; Zahoor, S.; Ahmad, R. Green Synthesis of Copper Oxide Nanoparticles Using Aerva Javanica Leaf Extract and Their Characterization and Investigation of In Vitro Antimicrobial Potential and Cytotoxic Activities. BMC Complement. Altern. Med. 2021, 2021, 89–97. [Google Scholar] [CrossRef] [PubMed]
  787. Murthy, H.C.A.; Desalegn, T.; Kassa, M.; Abebe, B.; Assefa, T. Synthesis of Green Copper Nanoparticles Using Medicinal Plant Hagenia Abyssinica (Brace) JF. Gmel. Leaf Extract: Antimicrobial Properties. J. Nanomater. 2020, 2020, 3924081. [Google Scholar] [CrossRef]
  788. Rajesh, K.M.; Ajitha, B.; Reddy, Y.A.K.; Suneetha, Y.; Reddy, P.S. Assisted Green Synthesis of Copper Nanoparticles Using Syzygium Aromaticum Bud Extract: Physical, Optical and Antimicrobial Properties. Opt. Int. J. Light Electron Opt. 2018, 154, 593–600. [Google Scholar] [CrossRef]
  789. Kothai, S.; Umamaheswari, R. Green Synthesis, Characterization of Copper Nanoparticles Derived from Ocimum Sanctum Leaf Extract and Their Antimicrobial Activities. J. Chem. Chem. Sci. 2018, 8, 984–992. [Google Scholar] [CrossRef]
  790. Rai, A.; Lall, R. Antimicrobial, Antioxidant and Cytotoxic Activity of Green Synthesized Copper Nanoparticle of Parthenium hysterophorus L. Int. J. Multidiscip. Res. Anal. 2021, 4, 101–116. [Google Scholar] [CrossRef]
  791. Abboud, Y.; Saffaj, T.; Chagraoui, A.; El Bouari, A.; Brouzi, K.; Tanane, O.; Ihssane, B. Biosynthesis, Characterization and Antimicrobial Activity of Copper Oxide Biosynthesis, Characterization and Antimicrobial Activity of Copper Oxide Nanoparticles (CONPs) Produced Using Brown Alga Extract (Bifurcaria Bifurcata). Appl. Nanosci. 2014, 4, 571–576. [Google Scholar] [CrossRef] [Green Version]
  792. Subhankari, I.; Nayak, P. Antimicrobial Activity of Copper Nanoparticles Synthesised by Ginger (Zingiber Officinale) Extract. World J. Nano Sci. Technol. 2013, 2, 10–13. [Google Scholar] [CrossRef]
  793. Gopinath, M.; Subbaiya, R.; Selvam, M.M.; Suresh, D. Synthesis of Copper Nanoparticles from Nerium Oleander Leaf Aqueous Extract and Its Antibacterial Activity. Int. J. Curr. Microbiol. Appl. Sci. 2014, 3, 814–818. [Google Scholar]
  794. Hassanien, R.; Husein, D.Z.; Al-Hakkani, M.F. Biosynthesis of Copper Nanoparticles Using Aqueous Tilia Extract: Antimicrobial and Anticancer Activities. Heliyon 2018, 4, e01077. [Google Scholar] [CrossRef] [Green Version]
  795. Joseph, A.T.; Prakash, P.; Narvi, S.S. Phytofabrication and Characterization of Copper Nanoparticles Using Allium Sativum and Its Antibacterial Activity. Int. J. Sci. Eng. Technol. 2016, 4, 463–472. [Google Scholar]
  796. Vinod Vellora, T.; Miroslav Černík, P. Green Synthesis of Copper Oxide Nanoparticles Using Gum Karaya as a Biotemplate and Their Antibacterial Application. Int. J. Nanomed. 2013, 8, 889–898. [Google Scholar]
  797. Ali, K.; Ahmed, B.; Ansari, S.M.; Saquib, Q.; Al-khedhairy, A.A. Comparative in Situ ROS Mediated Killing of Bacteria with Bulk Analogue, Eucalyptus Leaf Extract (ELE)-Capped and Bare Surface Copper Oxide Nanoparticles. Mater. Sci. Eng. C 2019, 100, 747–758. [Google Scholar] [CrossRef] [PubMed]
  798. Sutradhar, P.; Saha, M.; Maiti, D. Microwave Synthesis of Copper Oxide Nanoparticles Using Tea Leaf and Coffee Powder Extracts and Its Antibacterial Activity. J. Nanostruct. Chem. 2014, 86, 4–9. [Google Scholar] [CrossRef] [Green Version]
  799. Sivaraj, R.; Rahman, P.K.S.M.; Rajiv, P.; Narendhran, S.; Venckatesh, R. Biosynthesis and Characterization of Acalypha Indica Mediated Copper Oxide Nanoparticles and Evaluation of Its Antimicrobial and Anticancer Activity. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 129, 255–258. [Google Scholar] [CrossRef]
  800. Das, P.E.; Yousef, I.A.A.; Majdalawieh, A.F.; Narasimhan, S. Green Synthesis of Encapsulated Copper Nanoparticles Using a Hydroalcoholic Extract of Moringa Oleifera Leaves and Assessment of Their Antioxidant and Antimicrobial Activities. Molecules 2020, 25, 555. [Google Scholar] [CrossRef] [Green Version]
  801. Angrasan, J.K.V.M.; Subbaiya, R. Original Research Article Biosynthesis of Copper Nanoparticles by Vitis Vinifera Leaf Aqueous Extract and Its Antibacterial Activity. Int. J. Curr. Microbiol. Appl. Sci. 2014, 3, 768–774. [Google Scholar]
  802. Arya, A.; Gupta, K.; Chundawat, T.S.; Vaya, D. Biogenic Synthesis of Copper and Silver Nanoparticles Using Green Alga Botryococcus Braunii and Its Antimicrobial Activity. Bioinorg. Chem. Appl. 2018, 2018, 7879403. [Google Scholar] [CrossRef] [Green Version]
  803. Kumar Vijay, P.P.; Ummey, S.; Pratap, K.; Kalyani, R.L.; Pammi, S.V. Green Synthesis of Copper Oxide Nanoparticles Using Aloe Vera Leaf Extract and Its Antibacterial Activity Against Fish Bacterial Pathogens. BioNanoScience 2015, 5, 63–122. [Google Scholar] [CrossRef]
  804. Sharma, G.; Kr, D.G.; Jasuja, N.D.; C, S.J. Pterocarpus Marsupium Derived Phyto-Synthesis of Copper Oxide Nanoparticles and Their Antimicrobial Activities. J. Microb. Biochem. Technol. 2016, 7, 140. [Google Scholar] [CrossRef] [Green Version]
  805. Das, P.; Ghosh, S.; Ghosh, R.; Dam, S.; Baskey, M. Madhuca Longifolia Plant Mediated Green Synthesis of Cupric Oxide Nanoparticles: A Promising Environmentally Sustainable Material for Waste Water Treatment and Efficient Antibacterial Agent. J. Photochem. Photobiol. B Biol. 2018, 189, 66–73. [Google Scholar] [CrossRef] [PubMed]
  806. Jayandran, M.; Haneefa, M.M.; Balasubramanian, V. Green Synthesis of Copper Nanoparticles Using Natural Reducer and Stabilizer and an Evaluation of Antimicrobial Activity. J. Chem. Pharm. Res. 2015, 7, 251–259. [Google Scholar]
  807. Gültekİn, D.D.; Güngör, A.A.; Önem, H.; Babagİl, A. Synthesis of Copper Nanoparticles Using a Different Method: Determination of Their Antioxidant and Antimicrobial Activity. J. Turkish. Chem. Soc. 2016, 3, 623–636. [Google Scholar] [CrossRef] [Green Version]
  808. Saranyaadevi, K.; Subha, V.; Ravindran, R.S.E.; Renganathan, S. Synthesis and Characterization of Copper Nanoparticle Using Capparis Zeylanica Leaf Extract. Int. J. ChemTech Res. 2014, 6, 4533–4541. [Google Scholar]
  809. Subbaiya, R.; Selvam, M.M. Green Synthesis of Copper Nanoparticles from Hibicus Rosasinensis and Their Antimicrobial, Antioxidant Activities. Res. J. Pharm. Biol. Chem. Sci. 2015, 6, 1183–1190. [Google Scholar]
  810. Mane, V.A.; Patil, N.P.; Gaikwad, S.S. extracellular synthesis of copper nanoparticles using different plant extract. Int. J. Appl. Nat. Sci. 2019, 5, 33–38. [Google Scholar]
  811. Acharyulu, N.P.S.; Dubey, R.S.; Swaminadham, V.; Kalyani, R.L.; Kollu, P.; Pammi, S.V.N. Green Synthesis of CuO Nanoparticles Using Phyllanthus Amarus Leaf Extract and Their Antibacterial Activity Against Multidrug Resistance Bacteria. Int. J. Eng. Res. Technol. 2014, 3, 639–641. [Google Scholar]
  812. Gondwal, M.; Pant, G.J. Synthesis and Catalytic and Biological Activities of Silver and Copper Nanoparticles Using Cassia Occidentalis. Int. J. Biomater. 2018, 2018, 6735426. [Google Scholar] [CrossRef] [Green Version]
  813. Hassan, D.; Fouda, A.; Radwan, A.A.; Salem, S.S.; Barghoth, M.G.; Awad, M.A.; Abdo, A.M.; El, M.S. Endophytic actinomycetes Streptomyces spp mediated biosynthesis of copper oxide nanoparticles as a promising tool for biotechnological applications. J. Biol. Inorg. Chem. 2019, 24, 377–393. [Google Scholar] [CrossRef]
  814. Khan, A.S.; Noreen, F.; Kanwal, S.; Ibqal, A.; Hussain, G. Green Synthesis of ZnO and Cu-Doped ZnO Nanoparticles from Leaf Extracts of Abutilon Indicum, Clerodendrum Infortunatum, Clerodendrum Inerme and Investigation of Their Biological and Photocatalytic Activities. Mater. Sci. Eng. C 2018, 82, 46–59. [Google Scholar] [CrossRef]
  815. Maqbool, Q.; Iftikhar, S.; Nazar, M.; Abbas, F.; Saleem, A. Green Fabricated CuO Nanobullets via Olea Europaea Leaf Extract Shows Auspicious Antimicrobial Potential. IET Nanobiotechnol. 2017, 11, 463–468. [Google Scholar] [CrossRef] [PubMed]
  816. Sivaraj, R.; Rahman, P.K.S.M.; Rajiv, P.; Abdul, H.; Venckatesh, R. Biogenic Copper Oxide Nanoparticles Synthesis Using Tabernaemontana Divaricate Leaf Extract and Its Antibacterial Activity against Urinary Tract Pathogen. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 133, 178–181. [Google Scholar] [CrossRef] [PubMed]
  817. Rajeshkumar, S.; Rinitha, G. Nanostructural Characterization of Antimicrobial and Antioxidant Copper Nanoparticles Synthesized Using Novel Persea Americana Seeds. OpenNano 2018, 3, 18–27. [Google Scholar] [CrossRef]
  818. Saif, S.; Tahir, A.; Asim, T.; Chen, Y. Plant Mediated Green Synthesis of CuO Nanoparticles: Comparison of Toxicity of Engineered and Plant Mediated CuO Nanoparticles towards Daphnia Magna. Nanomaterials 2016, 6, 205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  819. Ullah, H.; Wilfred, C.D.; Shaharun, M.S. Green Synthesis of Copper Nanoparticle Using Ionic Liquid-Based Extraction from Polygonum Minus and Their Applications. Environ. Technol. 2019, 40, 3705–3712. [Google Scholar] [CrossRef] [PubMed]
  820. Zangeneh, M.; Ghaneialvar, H.; Akbaribazm, M.; Ghanimatdan, M. Novel Synthesis of Falcaria Vulgaris Leaf Extract Conjugated Copper Nanoparticles with Potent Cytotoxicity, Antioxidant, Antifungal, Antibacterial, and Cutaneous Wound Healing Activities under In Vitro and In Vivo Condition. J. Photochem. Photobiol. B Biol. 2019, 197, 111556. [Google Scholar] [CrossRef]
  821. Sharma, P.; Pant, S.; Dave, V.; Tak, K.; Sadhu, V. Green Synthesis and Characterization of Copper Nanoparticles by Tinospora Cardifolia to Produce Nature-Friendly Copper Nano-Coated Fabric and Their Antimicrobial Evaluation. J. Microbiol. Methods 2019, 160, 107–116. [Google Scholar] [CrossRef]
  822. Awwad, A.; Albiss, B.; Salem, N. Antibacterial Activity of Synthesized Copper Oxide Nanoparticles Using Malva sylvestris Leaf Extract. SMU Med. J. 2015, 2, 91–101. [Google Scholar]
  823. Sravanthi, M.; Kular, D.M.; Usha, B.; Ravichandra, M. Biological synthesis and characterization of copper oxide nanoparticles using Antigonon leptopus leaf extract and their antibacterial proprerties. Int. J. Adv. Res. 2018, 4, 589–602. [Google Scholar] [CrossRef] [Green Version]
  824. Khatamifar, M.; Fatemi, S.J. Green Synthesis of Pure Copper Oxide Nanoparticles Using Quercus Infectoria Galls Extract, Thermal Behavior and Their Antimicrobial Effects. Part. Sci. Technol. 2021, 1, 18–26. [Google Scholar] [CrossRef]
  825. Shende, S.; Ingle, A.P.; Gade, A.; Rai, M.; Copper, Á. Green Synthesis of Copper Nanoparticles by Citrus Medica Linn. (Idilimbu) Juice and Its Antimicrobial Activity. World J. Microbiol. Biotechnol. 2015, 31, 865–873. [Google Scholar] [CrossRef] [PubMed]
  826. Khatami, M.; Heli, H.; Jahani, P.M.; Azizi, H.; Nobre, A.L. Copper/Copper Oxide Nanoparticles Synthesis Using Stachys Lavandulifolia and Its Antibacterial Activity. IET Nanobiotechnol. 2017, 11, 709–713. [Google Scholar] [CrossRef]
  827. Lee, H.; Song, J.Y.; Kim, B.S. Biological Synthesis of Copper Nanoparticles Using Magnolia Kobus Leaf Extract and Their Antibacterial Activity. J. Chem. Technol. Biotechnol. 2013, 88, 1971–1977. [Google Scholar] [CrossRef]
  828. Thiruvengadam, M.; Min, I.; Thandapani, C.; Mohammad, G.; Ansari, A. Synthesis, Characterization and Pharmacological Potential of Green Synthesized Copper Nanoparticles. Bioprocess Biosyst. Eng. 2019, 42, 1769–1777. [Google Scholar] [CrossRef] [PubMed]
  829. Mali, S.C.; Dhaka, A.; Githala, C.K.; Trivedi, R. Green Synthesis of Copper Nanoparticles Using Celastrus Paniculatus Willd. Leaf Extract and Their Photocatalytic and Antifungal Properties. Biotechnol. Rep. 2020, 27, e00518. [Google Scholar] [CrossRef]
  830. Naradala, J. Antibacterial Activity of Copper Nanoparticles Synthesized by Bambusa Arundinacea Leaves Extract. Biointerface Resaerch Appl. Chem. 2021, 12, 1230–1236. [Google Scholar]
  831. Senthil, M.; Ramesh, C. Biogenic synthesis of Fe3O4 nanoparticles using Tridax procumbens leaf extract and its antibacterial activity on Pseudomonas aeruginosa. Dig. J. Nanomater. Biostruct. 2012, 7, 1655–1660. [Google Scholar]
  832. Henam, S.D.; Ahmad, F.; Shah, M.A.; Parveen, S.; Wani, A.H. Microwave Synthesis of Nanoparticles and Their Antifungal Activities. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 213, 337–341. [Google Scholar] [CrossRef]
  833. Amutha, S.; Sridhar, S. Green Synthesis of Magnetic Iron Oxide Nanoparticle Using Leaves of Glycosmis Mauritiana and Their Antibacterial Activity against Human Pathogens. J. Innov. Pharm. Biol. Sci. 2018, 5, 22–26. [Google Scholar]
  834. Naseem, T.; Farrukh, M.A. Antibacterial Activity of Green Synthesis of Iron Nanoparticles Using Lawsonia Inermis and Gardenia Jasminoides Leaves Extract. J. Chem. 2015, 2015, 912342. [Google Scholar] [CrossRef] [Green Version]
  835. Majid, A.; Naz, F.; Jamro, H.A.; Ansari, B.; Abbasi, S.; Lal, S.; Ujjan, S.A. Facile Green Synthesis of Iron Oxide Nanoparticles Using Phoenix Dactylifera L. Seed Extract and Their Antibacterial Applications. J. Pharm. Res. Int. 2021, 33, 21–29. [Google Scholar] [CrossRef]
  836. Ahmad, W.; Jaiswal, K.K.; Amjad, M.; Jaiswal, K.K.; Amjad, M. Euphorbia Herita Leaf Extract as a Reducing Agent in a Facile Green Synthesis of Iron Oxide Nanoparticles and Antimicrobial Activity Evaluation Iron Oxide Nanoparticles and Antimicrobial Activity Evaluation. Inorg. Nano-Metal Chem. 2020, 51, 1147–1154. [Google Scholar] [CrossRef]
  837. Hosseen, S.; Yusuf, M.; Chandra, S.; Das, T.; Saha, O.; Rahaman, M.; Islam, J. Green Synthesis of Iron Oxide Nanoparticle Using Carica Papaya Leaf Extract: Application for Photocatalytic Degradation of Remazol Yellow RR Dye and Antibacterial Activity. Heliyon 2020, 6, e04603. [Google Scholar] [CrossRef]
  838. Jamzad, M.; Kamari, M. Green Synthesis of Iron Oxide Nanoparticles by the Aqueous Extract of Laurus Nobilis L. Leaves and Evaluation of the Antimicrobial Activity. J. Nanostruct. Chem. 2020, 10, 193–201. [Google Scholar] [CrossRef]
  839. Chauhan, S.; Sheo, L.; Upadhyay, B. Biosynthesis of Iron Oxide Nanoparticles Using Plant Derivatives of Lawsonia Inermis (Henna) and Its Surface Modification for Biomedical Application. Nanotechnol. Environ. Eng. 2019, 4, 8. [Google Scholar] [CrossRef]
  840. Tyagi, P.K.; Gupta, S.; Tyagi, S.; Kumar, M.; Pandiselvam, R.; Durna, S.; Sharifi-rad, J.; Gola, D.; Arya, A. Green Synthesis of Iron Nanoparticles from Spinach Leaf and Banana Peel Aqueous Extracts and Evaluation of Antibacterial Potential. J. Nanomater. 2021, 11, 4871453. [Google Scholar] [CrossRef]
  841. Vitta, Y.; Figueroa, M.; Ciangherotti, C. Synthesis of Iron Nanoparticles from Aqueous Extract of Eucalyptus Robusta Sm and Evaluation of Antioxidant and Antimicrobial Activity. Mater. Sci. Energy Technol. 2019, 3, 97–103. [Google Scholar] [CrossRef]
  842. Shaker, L.; Alimardani, V.; Mohammad, A. Green Synthesis of Iron-Based Nanoparticles Using Chlorophytum Comosum Leaf Extract: Methyl Orange Dye Degradation and Antimicrobial Properties. Heliyon 2021, 7, e06159. [Google Scholar] [CrossRef]
  843. Arasu, M.V.; Arokiyaraj, S.; Viayaraghavan, P.; Kumar, J.; Duraipandiyan, V.; Al-dhabi, N.A.; Kaviyarasu, K. One Step Green Synthesis of Larvicidal, and Azo Dye Degrading Antibacterial Nanoparticles by Response Surface Methodology. J. Photochem. Photobiol. B Biol. 2019, 190, 154–162. [Google Scholar] [CrossRef]
  844. Groiss, S.; Selvaraj, R.; Thivaharan, V.; Ramesh, V. Structural Characterization, Antibacterial and Catalytic Effect of Iron Oxide Nanoparticles Synthesised Using the Leaf Extract of Cynometra Ramiflora. J. Mol. Struct. 2016, 1128, 572–578. [Google Scholar] [CrossRef]
  845. Yadav, J.; Kumar, S.; Budhwar, L.; Yadav, A.; Yadav, M. Characterization and Antibacterial Activity of Synthesized Silver and Iron Nanoparticles Using Aloe Vera. J. Nanomed. Nanotechnol. 2016, 7, 1000384. [Google Scholar] [CrossRef]
  846. Mirza, A.U.; Kareem, A.; Nami, S.A.A.; Khan, S.M.; Rehman, S.; Bhat, S.A. Biogenic Synthesis of Iron Oxide Nanoparticles Using Agrewia Optiva and Prunus Persica Phyto Species: Characterization, Antibacterial and Antioxidant Activity. J. Photochem. Photobiol. B Biol. 2018, 185, 262–274. [Google Scholar] [CrossRef] [PubMed]
  847. Muhammad, W.; Aslam, M.; Nazir, M.; Siddiquah, A. Mediated Novel Bioinspired Lead Oxide (PbO) and Iron Oxide (Fe2O3) Nanoparticles: In-Vitro Biological Applications, Biocompatibility and Their Potential towards HepG2 Cell Line. Mater. Sci. Eng. C 2019, 103, 109740. [Google Scholar] [CrossRef] [PubMed]
  848. Urabe, A.A.; Aziz, W.J. Assessment of antimicrobial activity phytofabricated iron oxide nanoparticles. Plant Arch. 2019, 19, 600–604. [Google Scholar]
  849. Johnson, A.; Uwa, P. Eco-Friendly Synthesis of Iron Nanoparticles Using Uvaria Chamae: Characterization and Biological Activity. Inorg. Nano-Metal Chem. 2019, 49, 431–442. [Google Scholar] [CrossRef]
  850. Zangeneh, M.M. Falcaria Vulgaris Leaf Aqueous Extract Mediated Synthesis of Iron Nanoparticles and Their Therapeutic Potentials under in Vitro and in Vivo Condition. Appl. Organomet. Chem. 2019, 33, e5246. [Google Scholar] [CrossRef]
  851. Farouk, F.; Abdelmageed, M.; Azam, M.; Azzazy, H.M.E. Synthesis of Magnetic Iron Oxide Nanoparticles Using Pulp and Seed Aqueous Extract of Citrullus Colocynth and Evaluation of Their Antimicrobial Activity. Biotechnol. Lett. 2019, 7, 231–240. [Google Scholar] [CrossRef]
  852. Ahmad, H.; Rajagopal, K.; Shah, A.H.; Bhat, A.H. Study of Bio-Fabrication of Iron Nanoparticles and Their Fungicidal Property against Phytopathogens of Apple Orchards. IET Nanobiotechnol. 2016, 11, 230–235. [Google Scholar] [CrossRef]
  853. Khalil, A.T.; Ovais, M.; Ullah, I.; Ali, M.; Khan, Z.; Maaza, M.; Talha, A.; Ovais, M.; Ullah, I.; Ali, M.; et al. Green Chemistry Letters and Reviews Biosynthesis of Iron Oxide (Fe2O3) Nanoparticles via Aqueous Extracts of Sageretia Thea (Osbeck.) and Their Pharmacognostic Properties. Green Chem. Lett. Rev. 2017, 10, 186–201. [Google Scholar] [CrossRef] [Green Version]
  854. Suganya, D.; Rajan, M.R.; Ramesh, R. Green synthesis of iron oxide nanoparticles from leaf of Passiflora foetida and its antibacterial activity. Int. J. Curr. Res. 2016, 8, 225–229. [Google Scholar]
Figure 1. Antibiotic resistance strategies in microorganisms. Mechanisms by which bacteria (and fungi) can resist antimicrobial molecules include: (i) target alterations and modifications through genetic mutations or post-translational modifications, (ii) increased active efflux of antibiotic out of the cell through efflux pumps, a type of membrane transporter located within the microbial membrane or wall, (iii) inactivation, destruction or degradation of the antibiotic through hydrolysis or modification by different enzymes (e.g., extended-spectrum β-lactamases) that can add specific chemical moieties, such as phosphoryl groups, (iv) decreased influx of antibiotic into the bacteria, e.g., through charges in the structure of the cell wall, (v) reduced permeability of the membrane that surrounds the bacterial cell. Created with BioRender.com (accessed on 1 March 2022).
Figure 1. Antibiotic resistance strategies in microorganisms. Mechanisms by which bacteria (and fungi) can resist antimicrobial molecules include: (i) target alterations and modifications through genetic mutations or post-translational modifications, (ii) increased active efflux of antibiotic out of the cell through efflux pumps, a type of membrane transporter located within the microbial membrane or wall, (iii) inactivation, destruction or degradation of the antibiotic through hydrolysis or modification by different enzymes (e.g., extended-spectrum β-lactamases) that can add specific chemical moieties, such as phosphoryl groups, (iv) decreased influx of antibiotic into the bacteria, e.g., through charges in the structure of the cell wall, (v) reduced permeability of the membrane that surrounds the bacterial cell. Created with BioRender.com (accessed on 1 March 2022).
Nanomaterials 12 01841 g001
Figure 2. Developmental stages involved in microbial biofilm formation (From [58] with permission from Frontiers in Microbiology).
Figure 2. Developmental stages involved in microbial biofilm formation (From [58] with permission from Frontiers in Microbiology).
Nanomaterials 12 01841 g002
Figure 3. Overview of the synthesis of metal nanoparticles.
Figure 3. Overview of the synthesis of metal nanoparticles.
Nanomaterials 12 01841 g003
Figure 4. Illustrative presentation of green synthesis of nanocellulose/metal or metal oxide hybrid nanocomposites. (I) Different types of nanocellulose in dispersion; (II) Electron microscope images of MNPs in cellulose (a and b for SEM images, and c and d for TEM images, respectively): white and black arrows point to MNPs and defibrillated cellulose, respectively (Adapted from [107,118] with permission from The Royal Society of Chemistry and Scientific Reports).
Figure 4. Illustrative presentation of green synthesis of nanocellulose/metal or metal oxide hybrid nanocomposites. (I) Different types of nanocellulose in dispersion; (II) Electron microscope images of MNPs in cellulose (a and b for SEM images, and c and d for TEM images, respectively): white and black arrows point to MNPs and defibrillated cellulose, respectively (Adapted from [107,118] with permission from The Royal Society of Chemistry and Scientific Reports).
Nanomaterials 12 01841 g004
Figure 5. Different mechanisms of action of MNPs in microbial cells. The combination in a single nanomaterial of a multitude of cellular effects may have a tremendous impact in fighting multi-drug-resistant microorganisms (From [129] with permission from Frontiers in Microbiology).
Figure 5. Different mechanisms of action of MNPs in microbial cells. The combination in a single nanomaterial of a multitude of cellular effects may have a tremendous impact in fighting multi-drug-resistant microorganisms (From [129] with permission from Frontiers in Microbiology).
Nanomaterials 12 01841 g005
Figure 6. Overview of the different applications of antimicrobial MNPs.
Figure 6. Overview of the different applications of antimicrobial MNPs.
Nanomaterials 12 01841 g006
Figure 7. (A) Percentage of bacteria citations (n = 2065). Others (8.8%) include ca. 70 bacterial species, such as Acinetobacter baumannii, Bacillus megaterium, Enterobacter cloacae, Klebsiella planticola, Pseudomonas putida, Staphylococcus saprophyticus and Shigella dysenteriae. (B) Percentage of fungi citations (n = 326). Others (20.0%) include ca. 15 fungal species, such as Aspergillus terreus, Candida krusei, Candida freundii, Fusarium oxysporum, Penicillium italicum, Penicillium notatum and Phanerochaete sordida.
Figure 7. (A) Percentage of bacteria citations (n = 2065). Others (8.8%) include ca. 70 bacterial species, such as Acinetobacter baumannii, Bacillus megaterium, Enterobacter cloacae, Klebsiella planticola, Pseudomonas putida, Staphylococcus saprophyticus and Shigella dysenteriae. (B) Percentage of fungi citations (n = 326). Others (20.0%) include ca. 15 fungal species, such as Aspergillus terreus, Candida krusei, Candida freundii, Fusarium oxysporum, Penicillium italicum, Penicillium notatum and Phanerochaete sordida.
Nanomaterials 12 01841 g007
Figure 8. (A) Percentage of microbiological analysis citations (n = 635). (B) Percentage of inoculum size citations (n = 635). (C) Percentage of microbial strain source citations (n = 2391). Others (5.4%) include CMCC (China Medical Culture Collection), KACC (Korean Agricultural Culture Collection), KCCM (Korean Culture Center of Microorganisms) and PTCC (Persian Type Culture Collection) (NM* = not mentioned). (D) Percentage of positive control citations (n = 752).
Figure 8. (A) Percentage of microbiological analysis citations (n = 635). (B) Percentage of inoculum size citations (n = 635). (C) Percentage of microbial strain source citations (n = 2391). Others (5.4%) include CMCC (China Medical Culture Collection), KACC (Korean Agricultural Culture Collection), KCCM (Korean Culture Center of Microorganisms) and PTCC (Persian Type Culture Collection) (NM* = not mentioned). (D) Percentage of positive control citations (n = 752).
Nanomaterials 12 01841 g008
Table 4. Antimicrobial green-synthesized zinc oxide nanoparticles.
Table 4. Antimicrobial green-synthesized zinc oxide nanoparticles.
Plant TypePart UsedOperative Conditions for SynthesisNP Characteristics
(Shape and Size)
Microbiological Analyzes (Operative Conditions)Refs.
Methods,
Incubation Temperature, Incubation Time,
pH,
Inoculum Density,
Positive Control
Tested Bacteria and FungiMIC, ZOI
or PI *
Cassia alataLeavesZinc acetate 10 mM/plant extract 10% (1:1 v/v)
80 °C
2 h
pH 12
Spherical
60–80 nm
Dilution
37 °C
24 h
pH NM
1 × 105 CFU/mL
No control
E. coli20 μg/mL[212]
Trifolium pratenseFlowersZinc oxide 500 mM/plant extract 2.25% (1:1 v/v)
90 °C
24 h
pH 6
Hexagonal
60–70 nm
Diffusion
35 ± 1 °C
18 h
pH NM
5 × 105 CFU/mL
No control
S. aureus ATCC 4163
E. coli ATCC 25922
P. aeruginosa ATCC 6749
S. aureus (clinical strain)
P. aeruginosa (clinical strain)
31
31
28
31
29 mm
[213]
Pongamia pinnataSeed Zinc acetate 20 mM/plant extract 20% (4:50 v/v)
60 °C
2 h
pH 12
Spherical
30–40 nm
Diffusion
37 °C
24 h
pH NM
Inoculum size NM
Ciprofloxacin 5 μg
P. aeruginosa HQ 693274.1
Bacillus licheniformis M235407.1
Vibrio parahaemolyticus HQ 693275.1
14
17
12 mm
[214]
Plectranthus amboinicusLeavesZinc nitrate 0.05 mM/plant extract 12% (1:5 v/v)
150 °C
6 h
pH NM
Hexagonal
20–50 nm
Diffusion
37 °C
24 h
pH 7.4
1 × 105 CFU/mL
No control
S. aureus ATCC 3359113 mm [215]
Stevia rebaudianaLeavesZinc acetate 100 mM/plant extract 14% (1:1 v/v)
70–80 °C
2 h
pH NM
Rectangular
10–90 nm
Dilution
37 °C
24 h
pH NM
1.5 × 108 CFU/mL
No control
S. aureus
E. coli
2
2 µg/mL
[216]
Silybum marianumSeed Zinc sulfate 1 mM/plant extract 6% (1:50 v/v)
37 °C
24 h
pH 12
Flowers
60 nm
Diffusion
37 °C
24 h
pH NM
5 × 106 CFU/mL
Cefixime **
Roxithromycin **
S. aureus ATCC 6538
K. pneumoniae ATCC 1705
B. subtilis ATCC 6633
E. coli ATCC 25922
P. aeruginosa ATCC 15442
20
17
9
10
17 mm
[217]
Linum usitatissimumRoot Zinc nitrate 0.1 mM/plant extract 10% (1:10 w/v)
60 °C
3 h
pH NM
Hexagonal
35 nm
Diffusion
37 °C
24 h
pH NM
Inoculum size NM
Amoxicillin 10 µg/mL
S. aureus ATCC 6538
E. coli ATCC 15224
K. pneumoniae ATCC 4619
14
14
12 mm
[218]
Anchusa italicFlowersZinc acetate 100 mM/plant extract 25% (1:10 v/v)
70 °C
6 h
pH NM
Hexagonal
7.6 ± 2.0 nm
Diffusion
37 °C
24 h
pH NM
1 × 108 CFU/mL
No control
Bacillus megaterium
S. aureus
E. coli
Salmonella typhimurium
13.6
14.6
13
14.4 mm
[219]
Conyza canadensisLeavesZinc nitrate 150 mM/plant extract 6% (1:2 v/v)
80 °C
20 min
pH NM
Spherical
10–50 nm
Diffusion
37 °C
24 h
pH NM
Inoculum size NM
Ciprofloxacin 0.5 mg
E. coli
S. aureus
16
14 mm
[220]
* MIC = minimal inhibition concentration; ZOI = zone of inhibition; PI = percentage of inhibition. ** The quantity or concentration is not mentioned. NM = not mentioned.
Table 5. Green platinum nanoparticles exhibiting antimicrobial activity.
Table 5. Green platinum nanoparticles exhibiting antimicrobial activity.
Plant TypePart UsedOperative Conditions for SynthesisNP Characteristics
(Shape and Size)
Microbiological Analyzes (Operative Conditions)Refs.
Methods,
Incubation Temperature, Incubation Time,
pH,
Inoculum Density,
Positive Control
Tested Bacteria and FungiMIC, DOI
or PI *
Garcinia mangostanaFruit Hexachloroplatinic acid 1 mM/plant extract 3% (1:1 v/v)
50–70 °C
15 min
pH NM
Spherical
20–25 nm
Diffusion
35 °C
24–48 h
pH NM
1 × 105 CFU/mL
Penicillin G 2 μg
Methicillin 5 μg
Vancomycin 30 μg
Gentamicin 50 μg
Streptomycin 10 μg
Ciprofloxacin 5 μg
Azithromycin 30 μg
Clotrimoxazol 25 μg
Staphylococcus spp.
Bacillus spp.
Pseudomonas spp.
Klebsiella spp.
10
0
12
11 mm
[224]
Citrus sinensisPeel Hexachloroplatinic acid 10 mM/plant extract 10% (9:1 v/v)
80 °C
24 h
pH NM
Spherical
50 nm
Diffusion
30 ± 1 °C
24 h
pH 4
Inoculum size NM
No control
Aeromonas hydrophila4 mm[225]
Sechium eduleFruit Platinum (II) chloride 1 mM/plant extract 12.5% (1:1 v/v)
100 ± 5 °C
12 h
pH 9
Spherical
28 nm
Diffusion
37 °C
24 h
pH NM
5 × 105 CFU/mL Ciprofloxacin 30 μg Cefprozil 30 μg
B. subtilis
E. coli
25
24 mm
[226]
Spinacia oleraceaLeaves Hexachloroplatinic acid 20 mM/plant extract 75% (2:1 v/v)
100 °C
24 h
pH NM
Rod
154 nm
Diffusion
37 °C24 h
pH NM
1 × 105 CFU/mL
No control
S. typhi MTCC 09813 mm[227]
Taraxacum laevigatumPowderHexachloroplatinic acid 10 mM/plant extract 5% (5:1 v/v)
90 °C
10 min
pH NM
Spherical
2–7 nm
Diffusion
37 °C
24 h
pH NM
5 × 105 CFU/mL
Streptomycin **
B. subtilis
P. aeruginosa
18
15 mm
[228]
Cerbera manghasLeavesHexachloroplatinic acid 1 mM/plant extract 2% (19:1 v/v)
25 °C
2 h
pH NM
Spherical
9–12 nm
Diffusion
37 °C
24 h
pH NM
1 × 108 CFU/mL
Streptomycin 0.25 mg/mL
Vibrio cholerae
S. aureus
Streptococcus pyogenes
S. typhi
E. coli
20
19
13
12
11 mm
[229]
Prunus yedoensisGumHexachloroplatinic acid 100 mM/plant extract 25% (5:1 v/v)
80 °C
5 h
pH NM
Spherical and oval
10–50 nm
Diffusion
37 °C
48 h
pH NM
Inoculum size NM
Nystatin **
Phytophthora capsici
Phytophthora drechsleri
Didymella bryoniae
Colletotrichum acutatum
Cladosporium fulvum
0
0
0
15
18 mm
[230]
Curcuma longaSeedHexachloroplatinic acid 1 mM/plant extract 1% (1:1 v/v)
80 °C
2 h
pH 10
Spherical
9 nm
Dilution
37 °C
3 h
pH NM
1 × 108 CFU/mL
No control
E. coli CD-496
E. coli CD-2
E. coli CD-3
E. coli CD-19
E. coli CD-549
S. aureus CD-1578
MRSA CD 489
16
16
16
16
16
64
32 nM
[231]
* MIC = minimal inhibition concentration; ZOI = zone of inhibition; PI = percentage of inhibition. ** The quantity or concentration is not mentioned. NM = not mentioned; MRSA = methicillin-resistant S. aureus.
Table 6. Green palladium nanoparticles with antimicrobial activity.
Table 6. Green palladium nanoparticles with antimicrobial activity.
Plant TypePart UsedOperative Conditions for SynthesisNp
Characteristics
(Shape and Size)
Microbiological Analyzes (Operative Conditions)Refs.
Methods,
Incubation Temperature, Incubation Time,
pH,
Inoculum Density,
Positive Control
Tested Bacteria and FungiMIC, DOI
or PI *
Moringa oleiferaPeel Palladium acetate 10 mM/plant extract 10% (4:1 v/v)
80 °C
5 min
pH NM
Spherical
27 nm
Diffusion
37 °C
24 h
pH NM
Inoculum size NM
Amoxicillin **
S. aureus
E. coli
1
1 mm
[232]
Prunus yedoensisLeavesPalladium chloride 1 mM/plant extract 25% (9:1 v/v)
80 °C
30 min
pH NM
Spherical
50–150 nm
Diffusion
37 °C
24 h
pH NM
Inoculum size NM
Amoxicillin **
B. subtilis
P. aeruginosa
6
5 mm
[230]
Cissus quadrangularisStem Palladium chloride 0.05 mM/plant extract 10% (1:5 v/v)
37 °C
10 min
pH NM
Spherical
12–26 nm
Diffusion
37 °C
24 h
pH NM
Inoculum size NM
No control
E. coli17 mm[233]
Camellia sinensisLeavesPalladium chloride 1 mM/plant extract 1% (1:1 v/v)
40 °C
30 min
pH NM
Spherical
6–18 nm
Diffusion
37 °C
24 h
pH NM
1 × 108 CFU/mL
Streptomycin **
S. epidermidis S273
E. coli E266
17
14 mm
[234]
Garcinia pedunculataLeavesPalladium acetate 1 mM/plant extract 20% (2:1 v/v)
121 °C
15 min
pH NM
Spherical
2–4 nm
Diffusion
37 °C
24 h
pH NM
Inoculum size NM
No control
Cronobacter sakazakii AMD040.3 mm[235]
Phoenix dactyliferaLeavesPalladium chloride 3 mM/plant extract 10% (5:1 v/v)
37 °C
10 min
pH NM
Spherical
2–5 nm
Diffusion
37 °C
24 h
pH NM
Inoculum size NM
No control
P. aeruginosa26 mm[236]
Arabidopsis thalianaLeavesPalladium chloride 5 mM/plant extract 1% (10:1 v/v)
80 °C
24 h
pH NM
Spherical
20–40 nm
Diffusion
37 °C
24 h
pH NM
Inoculum size NM
No control
S. aureus29 mm[237]
Acacia senegalensisGumTetrachloropalladic acid 1 mM/plant extract 0.2% (1:1 v/v)
100 °C
6 h
pH NM
Spherical
10 nm
Diffusion
37 °C
24 h
pH NM
0.5 × 105 CFU/mL
No control
Bacillus cereus
S. aureus
Streptococcus agalatiae
18
16
17 mm
[238]
Bauhinia variegateBarkPalladium chloride 1 mM/plant extract 10% (4:1 v/v)
60 °C
30 min
pH NM
Irregular
2–9 nm
Diffusion
37 °C
24 h
pH NM
Inoculum size NM
No control
B. subtilis MTCC 441
S. aureus MTCC 737
E. coli MTCC 1687
C. albicans MTCC 183
16
6
1
7 mm
[239]
Allium cepaBulbPalladium chloride 10 mM/plant extract 10% (1:5 v/v)
100 °C
2 h
pH NM
Spherical
19 nm
Diffusion
37 °C
24 h
pH NM
1 × 106 CFU/mL
No control
Bacillus cereus
S. aureus
Micrococcus spp.
E. coli
Klebsiella spp.
Proteus spp.
36
27
40
22
18
17 mm
[240]
Filicium decipiensLeavesPalladium chloride 1 mM/plant extract 10% (9:1 v/v)
37 °C
96 h
pH NM
Spherical
2–22 nm
Diffusion
37 °C
24 h
pH NM
1 × 105 CFU/mL
Levofloxacin **
B. subtilis
S. aureus
E. coli
P. aeruginosa
12
12
27
24 mm
[241]
Phyllanthus emblicaSeedPalladium acetate 870 mM/plant extract 10% (4:1 v/v)
60 °C
3 h
pH NM
Spherical
28 nm
Diffusion
37 °C
24 h
pH NM
Inoculum size NM
Streptomycin 50 µg/mL
B. subtilis
S. aureus
P. aeruginosa
Proteus mirabilis
8.9
8.2
7.6
4.3 mm
[242]
Eucommia ulmoidesBarkPalladium chloride 10 mM/plant extract 20% (5:1 v/v)
80 °C
30 min
pH 6
Spherical 2 nmDiffusion
37 °C
24 h
pH NM
Inoculum size NM
No control
S. aureus
E. coli
2529 mm[243]
Delonix regiaLeavesPalladium chloride 0.5 mM/plant extract 25% (9:1 v/v)
28 °C
3 h
pH NM
Spherical
2–4 nm
Diffusion
37 °C
24 h
pH NM
Inoculum size NM
No control
Streptococcus mitis12 mm[244]
Coriandrum sativumSeedPalladium chloride 10 mM/plant extract 5% (1:5 v/v)
60 °C
3 h
pH NM
Spherical
113 nm
Diffusion
37 °C
18 h
pH NM
5 × 108 CFU/mL
Streptomycin 50 µg/mL
S. aureus
E. coli
Salmonella enterica
13
8.5
10 mm
[245]
Piper betleLeavesPalladium chloride 1 mM/plant extract 20% (1:10 v/v)
30 °C
1 h
pH NM
Spherical
4 nm
Diffusion
30 °C
48 h
pH NM
Inoculum size NM
Clotrimazol 1 mg/mL
A. niger34 mm[246]
Rosmarinus officinalisLeavesPalladium acetate 100 mM/plant extract 10% (2:1 v/v)
37 °C
24 h
pH NM
Spherical
15 nm
Diffusion
37 °C
20 h
pH NM
1 × 106 CFU/mL
Ciprofloxacin **
S. aureus
E. coli
S. epidermidis
Micrococcus luteus
24
25
21
20 mm
[247]
Difusion
32 °C
1 week
pH NM
1 × 106 CFU/mL
Nystatin **
C. albicans
Candida parapsilolis
Candida glabrata
Candida krusei
0
0
0
0 mm
Boswellia serrataGumPalladium chloride 1 mM/plant extract 0.5% (1:1 v/v)
121 °C
30 min
pH NM
Spherical
2–9 nm
Diffusion
37 °C
24 h
pH NM
1 × 106 CFU/mL
Gentamicin 10 µg
S. aureus ATCC 25923
P. aeruginosa ATCC 27853
2628 mm[248]
Coffea arabicaPowderPalladium chloride 100 mM/plant extract 8% (1:5 v/v)
60 °C
3 h
pH NM
Spherical
20–60 nm
Diffusion
37 °C
24 h
pH NM
2 × 108 CFU/mL
Ampicillin **
Enterococcus faecalis
S. typhi
S. epidermidis
12
12
12 mm
[249]
Morus albaFruitPalladium chloride 2 mM/plant extract 20% (5:1 v/v)
80 °C
3 h
pH NM
Spherical and non-regular
50–150 nm
Diffusion
37± °C
24 h
pH NM
1.5 × 108 CFU/mL
Amoxicillin **
Listeria monocytogenes ATCC 19115
E. coli O157:H7
26
29 mm
[120]
* MIC = minimal inhibition concentration; ZOI = zone of inhibition; PI = percentage of inhibition. ** The quantity or concentration is not mentioned. NM = not mentioned.
Table 7. Green copper nanoparticles exhibiting antimicrobial activity.
Table 7. Green copper nanoparticles exhibiting antimicrobial activity.
Plant TypePart UsedOperative Conditions for SynthesisNP Characteristics
(Shape and Size)
Microbiological Analyzes (Operative Conditions)Refs.
Methods,
Incubation Temperature, Incubation Time,
pH,
Inoculum Density,
Positive Control
Tested Bacteria and FungiMIC, DOI or PI *
Cymbopogon citratusLeavesCopper (II) sulfate 0.25 mM/plant extract 50% (2:1 v/v)
60 °C
3 h
pH 12
Spherical, hexagonal and oval
12–14 nm
Diffusion
37 °C
24 h
pH NM
1 × 107 CFU/mL
No control
E. coli ESβL-336
MSSA
MRSA
20
18
16 mm
[251]
Ziziphus spina-christiFruits Copper (II) sulfate 20 mM/plant extract 6% (1:10 v/v)
80 °C
1 h
pH NM
Spherical
9 nm
Diffusion
37 °C
24 h
pH NM
Inoculum size NM
No control
E. coli
S. aureus
2
2 mm
[252]
Enicostemma axillareLeavesCopper (II) sulfate 5 mM/plant extract 10% (10:1 v/v)
50 °C
24 h
pH 7
Spherical
44 nm
Diffusion
37 °C
24 h
pH NM
Inoculum size NM
No control
E. coli
P. aeruginosa
K. pneumoniae
S. aureus
Proteus vulgaris
4
6
8
11
8 mm
[253]
Phyllanthus emblicaFruits Copper (II) sulfate 20 mM/plant extract 50% (3:1 v/v)
80 °C
15 min
pH 10
Flakes
15–30 nm
Diffusion
37 °C
24 h
pH NM
Inoculum size NM
Ciprofloxacin 25 μg
E. coli
S. aureus
14
14 mm
[254]
Carica papayaLeavesCopper (II) sulfate 5 mM/plant extract 10% (9:1 v/v)
60 °C
10 min
pH NM
Rod
40 nm
Diffusion
37 °C
24 h
pH NM
Inoculum size NM
No control
E. coli
S. aureus
P. aeruginosa
9
9
10 mm
[255]
Sida acutaLeavesCopper (II) sulphate 1000 mM/plant extract 4% (2:1 v/v)
100 °C
5–7 h
pH NM
Spherical
50 nm
Diffusion
37 °C
24 h
pH NM
Inoculum size NM
No control
E. coli
Proteus vulgaris
15
11 mm
[256]
Prosopis cinerariaLeavesCopper (I) acetate 5 mM/plant extract 10% (1:1 v/v)
Room temperature
24 h
pH NM
Hexagonal
19–32 nm
Diffusion
37 °C
24 h
pH NM
Inoculum size NM
Cefotaxim **
Proteus vulgaris
P. aeruginosa
K. pneumoniae
E. coli
S. aureus
S. epidermidis
17
18
22
22
19
23 mm
[257]
Syzygium aromaticumBudsCopper (II) acetate 1 mM/plant extract 100% (5:1 v/v)
30 °C
15 min
pH NM
Spherical
20 nm
Diffusion
37 °C
24 h
pH NM
Inoculum size NM
No control
Staphylococcus spp.
E. coli
Pseudomonas spp.
Bacillus spp.
5
6
7
8 mm
[258]
Diffusion
37 °C
72 h
pH NM
Inoculum size NM
No control
A. niger
A. flavus
Penicillium spp.
5
5
6 mm
Ruellia tuberosaLeavesCopper (II) sulfate 1 mM/plant extract 5% (1:1 v/v)
100 °C
7–8 h
pH NM
Nanorod
20–100 nm
Diffusion
37 °C
24 h
pH NM
Inoculum size NM
Streptomycin **
S. aureus
K. pneumoniae
E. coli
13
14
18 mm
[259]
Punica granatumPeels Copper (II) sulfate 50 mM/plant extract 10% (1:1 v/v)
80 °C
10 min
pH NM
Spherical
15–20 nm
Diffusion
37 °C
24 h
pH NM
Inoculum size NM
Streptomycin **
P. aeruginosa MTCC 424
Salmonella enterica MTCC 1253
Micrococcus luteus MTCC 1809
Enterobactera erogenes MTCC 2823
19
20
20
19 mm
[260]
Asparagus adscendensLeavesCopper (II) sulfate 1 mM/plant extract 5% (10:1 v/v)
100 °C
1 h
pH NM
Spherical
10–15 nm
Diffusion
37 °C
24 h
pH NM
1 × 108 CFU/mL
Ampicillin 25 µg/mL
E. coli
B. subtilis
S. typhi
K. pneumoniae
S. aureus
20
18
21
18
17 mm
[261]
Gloriosa superbaLeavesCopper (II) sulfate 1 mM/plant extract 5% (4:1 v/v)
60 °C
3–4 min
pH NM
Spherical
5–10 nm
Diffusion
37 °C
24–36 h
pH NM
Inoculum size NM
Ciprofloxacin 0.5 µg/µL
Klebsiella aerogenes NCIM 2098
E. coli NCIM 5051
S. aureus NCIM 5022
Pseudomonas desmolyticum NCIM 2028
15
13
6
5 mm
[262]
Cassia auriculataLeavesCopper (II) sulfate1 mM/plant extract 5% (4:1 v/v)
Room temperature
5 h
pH NM
Clusters
38 nm
Diffusion
37 °C
24 h
pH NM
1 × 108 CFU/mL
Amoxicillin **
E. coli
P. aeruginosa
S. aureus
Proteus mirabilis
Bacillus cereus
K. pneumoniae
16
10
14
16
18
14 mm
[263]
Bersama abyssinicaLeavesCopper (I) acetate 100 mM/plant extract 10% (1:1 v/v)
80 °C
2 h
pH NM
Spherical
31 nm
Diffusion
37 °C
24 h
pH NM
Inoculum size NM
Gentamicin **
S. aureus
B. subtilis
E. coli
P. aeruginosa
12
6
14
6 mm
[264]
Datura innoxiaLeavesCopper (II) sulfate 1 mM/plant extract 5% (1:1 v/v)
100 °C
1 h
pH NM
Nanoclusters
90–200 nm
Diffusion
37 °C
24 h
pH NM
Inoculum size NM
Plantomycin *
Xanthomos oryzae pv. oryzae24 mm[265]
Zingiber officinaleRhizome Copper (II) sulfate 5 mM/plant extract 30% (5:3 v/v)
60 °C
4 h
pH NM
Spherical
31 nm
Diffusion
37 °C
24 h
pH NM
Inoculum size NM
Ciprofloxacin **
E. coli22 mm[266]
Vaccinium arctostaphylosFruit Copper (II) acetate/plant extract 5% (1:20 w/v)
60 °C
24 h
pH 10
Spherical
14 nm
Diffusion
37 °C
24 h
pH NM
Inoculum size NM
Nitrofurantoïn **
E. coli22 mm[267]
Cissus arnotianaLeavesCopper (II) sulphate 10 mM/plant extract 1% (9:1 v/v)
60 °C
4 h
pH NM
Spherical 60–90 nm Diffusion
37 °C
18 h
pH NM
Inoculum size NM
Ampicillin **
E. coli
Streptococcus spp.
Rhizobium spp.
Klebsiella spp.
22
20.2
16.3
18.3 mm
[268]
* MIC = minimal inhibition concentration; ZOI = zone of inhibition; PI = percentage of inhibition. ** The quantity or concentration is not mentioned. NM = not mentioned; MRSA = methicillin-resistant S. aureus; MSSA = methicillin-susceptible S. aureus.
Table 8. Antimicrobial green-synthesized iron nanoparticles.
Table 8. Antimicrobial green-synthesized iron nanoparticles.
Plant TypePart UsedOperative Conditions for SynthesisNP Characteristics
(Shape and Size)
Microbiological Analyzes (Operative Conditions)Refs.
Methods,
Incubation Temperature, Incubation Time,
pH,
Inoculum Density,
Positive Control
Tested Bacteria and FungiMIC, DOI
or PI *
Withania coagulansBerriesIron (III) chloride 2000 mM/plant extract 12% (5:1 v/v)
90 °C
30 min
pH NM
Rod
16 nm
Diffusion
37 °C
24 h
pH NM
Inoculum size NM
No control
P. aeruginosa
S. aureus
24
23 mm
[269]
Acacia niloticaPodsIron (II) sulfate 100 mM/plant extract 10% (3:2 v/v)
Room temperature
24 h
pH 6
Irregular
39 nm
Diffusion
30 °C
24 h
pH NM
Inoculum size NM
No control
E. coli
MRSA
S. typhi
S. aureus
C. albicans
17
24
23
25
25 mm
[270]
Musa ornateFlowersIron (III) chloride 1 mM/plant extract 10% (1:1 v/v)
70–80 °C
1 h
pH NM
Spherical
20–40 nm
Diffusion
37 °C
24 h
pH NM
Inoculum size NM
No control
Streptococcus agalactiae
S. aureus
Salmonella enterica
E. coli
28
32
0
0 mm
[271]
Skimmia laureolaLeavesIron (III) chloride 100 mM/plant extract 10% (1:1 v/v)
Room temperature
30 min
pH NM
Spherical
56–350 nm
Diffusion
37 °C
24 h
pH NM
Inoculum size NM
Streptomycin 200 ppm
Ralstornia solanacearum18 mm[272]
Lagenaria sicerariaLeavesIron (III) chloride 10 mM/plant extract 5% (1:1 v/v)
40 °C
60 min
pH NM
Cubic
30–100 nm
Diffusion
37 °C
24 h
pH NM
Inoculum size NM
Ampicillin 20 mg/mL
S. aureus
E. coli
14
17 mm
[273]
Trigonella foenum-graecumSeedIron (II) chloride 1000 mM/plant extract 5% (1:2 v/v)
Room temperature
2 h
pH 10
Spherical
∼20 nm
Diffusion
37 °C
24 h
pH NM
Inoculum size NM
No control
E. coli ATCC 11775
S. aureus ATCC 6538
22
24 mm
[148]
Dodonaea vicosaLeavesIron (III) chloride 10 mM/plant extract 20% (2:1 v/v)
50 °C
1 h
pH NM
Spherical
50–60 nm
Diffusion
37 °C
24 h
pH NM
Inoculum size NM
No control
E. coli MTCC 443
K. pneumoniae NCIM 2079
B. subtilis MTCC 441
S. aureus MTCC 4032
Pseudomonas fluorescens MTCC 121
8
10
12
14
24 mm
[274]
Couroupita guianensisPeelIron (III) chloride 100 mM/plant extract 5% (1:1 v/v)
80 °C
30 min
pH 10
Spherical
7–80 nm
Diffusion
37 °C
24 h
pH NM
1 × 105 CFU/mL
Streptomycin 1 mg
S. aureus MTCC 96
E. coli MTCC 2939
S. typhi MTCC 3917
K. pneumoniae MTCC 530
8
15
15
12 mm
[275]
Psidium guajavaFruit Iron (III) chloride 500 mM/plant extract 4% (4:1 v/v)
100 °C
1 h
pH NM
Hexagonal
27 nm
Diffusion
37 °C
18–24 h
pH NM
Inoculum size NM
Gentamicin 10 μg
Bacillus cereus
E. coli
K. pneumoniae
S. aureus
14
17
10
14 mm
[276]
Punica granatumPeel Iron (III) chloride 150 mM/plant extract 4.6% (5:2 v/v)
20 °C
5 h
pH NM
Spherical
20–90 nm
Diffusion
30 °C
24 h
pH NM
Inoculum size NM
Streptomycin **
P. aeruginosa22 mm[277]
Argemone mexicanaLeavesIron (III) chloride 25 mM/plant extract 3% (1:1 v/v)
45 °C
12 h
pH NM
Spherical
10–30 nm
Diffusion
37 °C
24 h
pH NM
1 × 106 CFU/mL
Streptomycin 30 µg
E. coli MTCC 443
B. subtilis MTCC 425
Proteus mirabilis MTCC 441
13
18
10 mm
[278]
Ruellia tuberosaLeavesIron (II) sulphate 1000 mM/plant extract 5% (1:1 v/v)
80 °C
30 min
pH NM
Hexagonal 53 nm Diffusion
37 °C
24 h
pH NM
1 × 106 CFU/mL
Streptomycin **
K.pneumoniae
E. coli
S.aureus
13
16
11 mm
[279]
Leucas asperaLeavesIron (III) chloride 5 mM/plant extract 20% (1:1 v/v)
80 °C
15 min
pH NM
Irregular rhombic
117 nm
Diffusion
37 °C
24 h
pH NM
Inoculum size NM
Ampicillin 10 µg
E. coli
K. pneumoniae
Proteus mirabilis
Salmonella enterica
Shigella flexneri
Vibrio cholera
P. aeruginosa
Bacillus cereus
S. aureus
Listeria monocytogens
10
10
11
19
22
10
20
00
11
12 mm
[280]
Eichhornia crassipesLeavesFerrous sulphate 100 mM/plant extract 5% (1:1 v/v)
55 °C
2 h
pH 10
Rod
10–100 nm
Diffusion
37 °C
24 h
pH NM
Inoculum size NM
No control
S. aureus
Pseudomonas fluorescens
E. coli
23
23
20 mm
[281]
Sida cordifoliaWhole the plantIron nitrate 10 mM/plant extract 5% (2:1 v/v)
60 °C
5 min
pH NM
Spherical
10–22 nm
Diffusion
37 °C
24 h
pH NM
Inoculum size NM
No control
B. subtilis
S. aureus
E. coli
K. pneumoniae
17
15
15
19 mm
[282]
Trigonella foenum-graecumSeedIron (III) chloride 10 mM/plant extract 0.04% (1:20 v/v)
30 °C
15 min
pH NM
Spherical
11 nm
Diffusion
37 °C
24 h
pH NM
Inoculum size NM
Streptomycin **
E. coli
S. aureus
22
19 mm
[283]
Piliostigma thonningiiFlowersIron (II) chloride 1 mM/plant extract 20% (9:1 v/v)
80 °C
2 min
pH NM
Spherical
20–100 nm
Diffusion
37 °C
24 h
pH NM
Inoculum size NM
Gentamycin **
E. coli
S. aureus
21
20 mm
[284]
* MIC = minimal inhibition concentration; ZOI = zone of inhibition; PI = percentage of inhibition. ** The quantity or concentration is not mentioned. NM = not mentioned; MRSA = methicillin-resistant S. aureus.
Table 9. Experimental conditions for antimicrobial susceptibility testing methods as recommended by CLSI (Adapted from [303,318,365,368,369,370,371,372]).
Table 9. Experimental conditions for antimicrobial susceptibility testing methods as recommended by CLSI (Adapted from [303,318,365,368,369,370,371,372]).
MethodsMicroorganismGrowth MediumFinal Inoculum SizeIncubation
Temperature
Incubation
Time 1
Disk diffusionBacteriaMHA1–2 × 108 CFU/mL35 ± 2 °C16–18 h
FungiMHA + GMB (Yeast)1–5 × 106 CFU/mL (yeast)35 ± 2 °C20–24 h
Non-supplemented MHA (molds)0.4–5 × 106 CFU/mL (molds)
Broth dilutionBacteriaMHB5 × 105 CFU/mL35 ± 2 °C20 h 2
FungiRPMI 1640 (yeast)0.5–2.5 × 103 CFU/mL (yeast)35 °C24–48 h (yeast) 3
RPMI 1640 (molds)0.4–5 × 104 CFU/mL (molds)35 °C48 h (molds) 4
Agar dilutionBacteriaMHA1 × 104 CFU/spot35 ± 2 °C16–20 h
Time-kill testBacteriaMHB5 × 105 CFU/mL35 ± 2 °C0, 4, 18 and 24 h
1 MHA: Mueller–Hinton agar; MHB: Mueller–Hinton broth; GMB: glucose (2%) and methylene blue (0.5 mg/mL); RPMI 1640: Roswell Park Memorial Institute medium. 2 The USP recommends incubating Escherichia coli, Pseudomonas aeruginosa and Staphylococus aureus at 32.5 ± 2.5 °C for 18–24 h. In contrast, Candida albicans should be incubated at 22.5 ± 2.5 °C for 44–52 h, and Aspergillus niger at 22.5 ± 2.5 °C for 6–10 days. 3 24–48 h for microdilution and 46–50 h for macrodilution.4 48 h for both microdilution and macrodilution.
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Luzala, M.M.; Muanga, C.K.; Kyana, J.; Safari, J.B.; Zola, E.N.; Mbusa, G.V.; Nuapia, Y.B.; Liesse, J.-M.I.; Nkanga, C.I.; Krause, R.W.M.; et al. A Critical Review of the Antimicrobial and Antibiofilm Activities of Green-Synthesized Plant-Based Metallic Nanoparticles. Nanomaterials 2022, 12, 1841. https://doi.org/10.3390/nano12111841

AMA Style

Luzala MM, Muanga CK, Kyana J, Safari JB, Zola EN, Mbusa GV, Nuapia YB, Liesse J-MI, Nkanga CI, Krause RWM, et al. A Critical Review of the Antimicrobial and Antibiofilm Activities of Green-Synthesized Plant-Based Metallic Nanoparticles. Nanomaterials. 2022; 12(11):1841. https://doi.org/10.3390/nano12111841

Chicago/Turabian Style

Luzala, Miryam M., Claude K. Muanga, Joseph Kyana, Justin B. Safari, Eunice N. Zola, Grégoire V. Mbusa, Yannick B. Nuapia, Jean-Marie I. Liesse, Christian I. Nkanga, Rui W. M. Krause, and et al. 2022. "A Critical Review of the Antimicrobial and Antibiofilm Activities of Green-Synthesized Plant-Based Metallic Nanoparticles" Nanomaterials 12, no. 11: 1841. https://doi.org/10.3390/nano12111841

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop