Soft Magnetic Properties of Ultra-Strong and Nanocrystalline Pearlitic Wires
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Saturation Magnetization
3.2. Coercivity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Raabe, D.; Choi, P.-P.; Li, Y.; Kostka, A.; Sauvage, X.; Lecouturier, F.; Hono, K.; Kirchheim, R.; Pippan, R.; Embury, D. Metallic Composites Processed via Extreme Deformation: Toward the Limits of Strength in Bulk Materials. MRS Bull. 2010, 35, 982–991. [Google Scholar] [CrossRef]
- Hono, K.; Ohnuma, M.; Murayama, M.; Nishida, S.; Yoshie, A.; Takahashi, T. Cementite Decomposition in Heavily Drawn Pearlite Steel Wire. Scr. Mater. 2001, 44, 977–983. [Google Scholar] [CrossRef]
- Li, Y.J.; Choi, P.; Goto, S.; Borchers, C.; Raabe, D.; Kirchheim, R. Evolution of Strength and Microstructure during Annealing of Heavily Cold-Drawn 6.3 GPa Hypereutectoid Pearlitic Steel Wire. Acta Mater. 2012, 60, 4005–4016. [Google Scholar] [CrossRef]
- Herbig, M.; Raabe, D.; Li, Y.J.; Choi, P.; Zaefferer, S.; Goto, S. Atomic-Scale Quantification of Grain Boundary Segregation in Nanocrystalline Material. Phys. Rev. Lett. 2014, 112, 126103. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.J.; Choi, P.; Borchers, C.; Westerkamp, S.; Goto, S.; Raabe, D.; Kirchheim, R. Atomic-Scale Mechanisms of Deformation-Induced Cementite Decomposition in Pearlite. Acta Mater. 2011, 59, 3965–3977. [Google Scholar] [CrossRef]
- Li, Y.J.; Choi, P.; Borchers, C.; Chen, Y.Z.; Goto, S.; Raabe, D.; Kirchheim, R. Atom Probe Tomography Characterization of Heavily Cold Drawn Pearlitic Steel Wire. Ultramicroscopy 2011, 111, 628–632. [Google Scholar] [CrossRef]
- Li, Y.; Raabe, D.; Herbig, M.; Choi, P.-P.; Goto, S.; Kostka, A.; Yarita, H.; Borchers, C.; Kirchheim, R. Segregation Stabilizes Nanocrystalline Bulk Steel with Near Theoretical Strength. Phys. Rev. Lett. 2014, 113, 106104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herzer, G. Grain Size Dependence of Coercivity and Permeability in Nanocrystalline Ferromagnets. IEEE Trans. Magn. 1990, 26, 1397–1402. [Google Scholar] [CrossRef]
- Herzer, G. Soft Magnetic Nanocrystalline Materials. Scr. Metall. Mater. 1995, 33, 1741–1756. [Google Scholar] [CrossRef]
- Kayser, F.X.; Litwinchuk, A.; Stowe, G.L. The Densities of High-Purity Iron-Carbon Alloys in the Spheroidized Condition. MTA 1975, 6, 55–58. [Google Scholar] [CrossRef]
- Topolovec, S.; Krenn, H.; Würschum, R. Electrochemical Cell for In Situ Electrodeposition of Magnetic Thin Films in a Superconducting Quantum Interference Device Magnetometer. Rev. Sci. Instrum. 2015, 86, 063903. [Google Scholar] [CrossRef]
- Osborn, J.A. Demagnetizing Factors of the General Ellpsoid. Phys. Rev. 1945, 67, 351–357. [Google Scholar] [CrossRef]
- Hohenwarter, A.; Völker, B.; Kapp, M.W.; Li, Y.; Goto, S.; Raabe, D.; Pippan, R. Ultra-Strong and Damage Tolerant Metallic Bulk Materials: A Lesson from Nanostructured Pearlitic Steel Wires. Sci. Rep. 2016, 6, 33228. [Google Scholar] [CrossRef] [PubMed]
- Nečas, D.; Klapetek, P. Gwyddion: An Open-Source Software for SPM Data Analysis. Cent. Eur. J. Phys. 2012, 10, 181–188. [Google Scholar] [CrossRef]
- Coey, J.M.D. Magnetism and Magnetic Materials; Cambridge University Press: Cambridge, UK, 2010; ISBN 978-0-511-67743-4. [Google Scholar]
- Duman, E.; Acet, M.; Hülser, T.; Wassermann, E.F.; Rellinghaus, B.; Itié, J.P.; Munsch, P. Large Spontaneous Magnetostrictive Softening below the Curie Temperature of Fe3C Invar Particles. J. Appl. Phys. 2004, 96, 5668–5672. [Google Scholar] [CrossRef]
- Dick, A.; Körmann, F.; Hickel, T.; Neugebauer, J. Ab Initio Based Determination of Thermodynamic Properties of Cementite Including Vibronic, Magnetic, and Electronic Excitations. Phys. Rev. B 2011, 84, 125101. [Google Scholar] [CrossRef]
- Gorkunov, E.S.; Grachev, S.V.; Smirnov, S.V.; Somova, V.M.; Zadvorkin, S.M.; Kar’kina, L.E. Relation of Physical-Mechanical Properties to the Structural Condition of Severely Deformed Patented Carbon Steels at Drawing. Russ. J. Nondestruct. Test. 2005, 41, 65–79. [Google Scholar] [CrossRef]
- Medvedeva, N.I.; Kar’kina, L.E.; Ivanovskii, A.L. Electronic Structure and Magnetic Properties of the α and γ Phases of Iron, Their Solutions with Carbon, and Cementite. Phys. Met. Metallogr. 2006, 101, 440. [Google Scholar] [CrossRef]
- Cadeville, M.C.; Lerner, C.; Friedt, J.M. Electronic Structure of Interstitial Carbon in Ferromagnetic Transition Metals Prepared by Splat-Quenching. Physica B+C 1977, 86–88, 432–434. [Google Scholar] [CrossRef]
- Suzuki, K.; Parsons, R.; Zang, B.; Onodera, K.; Kishimoto, H.; Shoji, T.; Kato, A. Nanocrystalline Soft Magnetic Materials from Binary Alloy Precursors with High Saturation Magnetization. AIP Adv. 2019, 9, 035311. [Google Scholar] [CrossRef]
- Hono, K.; Sepehri-Amin, H. Strategy for High-Coercivity Nd–Fe–B Magnets. Scr. Mater. 2012, 67, 530–535. [Google Scholar] [CrossRef]
- Klein, H.-P.; Kneller, E. Variation of Magnetocrystalline Anisotropy of Iron with Field and Temperature. Phys. Rev. 1966, 144, 372–374. [Google Scholar] [CrossRef]
- Westerstrand, B.; Nordblad, P.; Nordborg, L. The Magnetocrystalline Anisotropy Constants of Iron and Iron-Silicon Alloys. Phys. Scr. 1975, 11, 383–386. [Google Scholar] [CrossRef]
- Puzei, I.M.; Sadchikov, V.V. Dependence of the Magnetic-Anisotropy Energy in Iron on the Magnetic Field. Sov. Phys. JETP 1990, 70, 137–139. [Google Scholar]
- Herzer, G. The Random Anisotropy Model. In Properties and Applications of Nanocrystalline Alloys from Amorphous Precursors; Idzikowski, B., Švec, P., Miglierini, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; Volume 184, pp. 15–34. ISBN 978-1-4020-2963-9. [Google Scholar]
- Ul’yanov, A.I.; Elsukov, E.P.; Chulkina, A.A.; Zagainov, A.V.; Arsent’eva, N.B.; Konygin, G.N.; Novikov, V.F.; Isakov, V.V. The Role of Cementite in the Formation of Magnetic Hysteresis Properties of Plastically Deformed High-Carbon Steels: I. Magnetic Properties and Structural State of Cementite. Russ. J. Nondestruct. Test. 2006, 42, 452–459. [Google Scholar] [CrossRef]
- Chulkina, A.A.; Ul’yanov, A.I.; Arsent’eva, N.B.; Zagainov, A.V.; Gorkunov, E.S.; Zadvorkin, S.M.; Somova, V.M. The Role of Cementite in the Formation of Magnetic Hysteresis Properties of Plastically Deformed High-Carbon Steels: II. Magnetic Properties of Patented Wire Made of Steel 70. Russ. J. Nondestruct. Test. 2006, 42, 460–467. [Google Scholar] [CrossRef]
- Chulkina, A.A.; Ul’yanov, A.I.; Gorkunov, E.S. The Role of Cementite in the Formation of Magnetic Hysteresis Properties of Plastically Deformed High-Carbon Steels: III. Magnetic Properties of Patented Wire Made of Steel 25. Russ. J. Nondestruct. Test. 2008, 44, 309–317. [Google Scholar] [CrossRef]
- English, A.T. Influence of Temperature and Microstructure on Coercive Force of 0.8% Steel. Acta Met. 1967, 15, 1573–1580. [Google Scholar] [CrossRef]
- Stückler, M.; Weissitsch, L.; Wurster, S.; Felfer, P.; Krenn, H.; Pippan, R.; Bachmaier, A. Magnetic Dilution by Severe Plastic Deformation. AIP Adv. 2020, 10, 015210. [Google Scholar] [CrossRef]
- Li, Y.J.; Kostka, A.; Choi, P.; Goto, S.; Ponge, D.; Kirchheim, R.; Raabe, D. Mechanisms of Subgrain Coarsening and Its Effect on the Mechanical Properties of Carbon-Supersaturated Nanocrystalline Hypereutectoid Steel. Acta Mater. 2015, 84, 110–123. [Google Scholar] [CrossRef]
- Zhang, X.; Hansen, N.; Godfrey, A.; Huang, X. Dislocation-Based Plasticity and Strengthening Mechanisms in Sub-20 Nm Lamellar Structures in Pearlitic Steel Wire. Acta Mater. 2016, 114, 176–183. [Google Scholar] [CrossRef] [Green Version]
- Djaziri, S.; Li, Y.; Nematollahi, G.A.; Grabowski, B.; Goto, S.; Kirchlechner, C.; Kostka, A.; Doyle, S.; Neugebauer, J.; Raabe, D.; et al. Deformation-Induced Martensite: A New Paradigm for Exceptional Steels. Adv. Mater. 2016, 28, 7753–7757. [Google Scholar] [CrossRef] [PubMed]
- Taniyama, A.; Takayama, T.; Arai, M.; Hamada, T. Structure Analysis of Ferrite in Deformed Pearlitic Steel by Means of X-ray Diffraction Method with Synchrotron Radiation. Scr. Mater. 2004, 51, 53–58. [Google Scholar] [CrossRef]
- Liu, J.; Schliep, K.; He, S.-H.; Ma, B.; Jing, Y.; Flannigan, D.J.; Wang, J.-P. Iron Nanoparticles with Tunable Tetragonal Structure and Magnetic Properties. Phys. Rev. Mater. 2018, 2, 054415. [Google Scholar] [CrossRef]
- Using SQUID VSM Superconducting Magnets at Low Fields, Application Note 1500-011; Quantum Design: Tokyo, Japan, 2010.
- Yamamoto, S.; Terai, T.; Fukuda, T.; Sato, K.; Kakeshita, T.; Horii, S.; Ito, M.; Yonemura, M. Magnetocrystalline Anisotropy of Cementite Pseudo Single Crystal Fabricated under a Rotating Magnetic Field. J. Magn. Magn. Mater. 2018, 451, 1–4. [Google Scholar] [CrossRef]
- Nikolić, V.; Riesch, J.; Pippan, R. The Effect of Heat Treatments on Pure and Potassium Doped Drawn Tungsten Wires: Part I—Microstructural Characterization. Mater. Sci. Eng. A 2018, 737, 422–433. [Google Scholar] [CrossRef] [Green Version]
- Guo, N.; Luan, B.; Wang, B.; Liu, Q. Microstructure and Texture Evolution in Fully Pearlitic Steel during Wire Drawing. Sci. China Technol. Sci. 2013, 56, 1139–1146. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wurster, S.; Stückler, M.; Weissitsch, L.; Krenn, H.; Hohenwarter, A.; Pippan, R.; Bachmaier, A. Soft Magnetic Properties of Ultra-Strong and Nanocrystalline Pearlitic Wires. Nanomaterials 2022, 12, 23. https://doi.org/10.3390/nano12010023
Wurster S, Stückler M, Weissitsch L, Krenn H, Hohenwarter A, Pippan R, Bachmaier A. Soft Magnetic Properties of Ultra-Strong and Nanocrystalline Pearlitic Wires. Nanomaterials. 2022; 12(1):23. https://doi.org/10.3390/nano12010023
Chicago/Turabian StyleWurster, Stefan, Martin Stückler, Lukas Weissitsch, Heinz Krenn, Anton Hohenwarter, Reinhard Pippan, and Andrea Bachmaier. 2022. "Soft Magnetic Properties of Ultra-Strong and Nanocrystalline Pearlitic Wires" Nanomaterials 12, no. 1: 23. https://doi.org/10.3390/nano12010023
APA StyleWurster, S., Stückler, M., Weissitsch, L., Krenn, H., Hohenwarter, A., Pippan, R., & Bachmaier, A. (2022). Soft Magnetic Properties of Ultra-Strong and Nanocrystalline Pearlitic Wires. Nanomaterials, 12(1), 23. https://doi.org/10.3390/nano12010023