Asymmetric Interfaces in Epitaxial Off-Stoichiometric Fe3+xSi1−x/Ge/Fe3+xSi1−x Hybrid Structures: Effect on Magnetic and Electric Transport Properties
Abstract
:1. Introduction
2. Sample Synthesis and Experimental Details
3. Results and Discussion
3.1. Structural Properties
3.1.1. Analysis of Epitaxial Orientation Relationships
3.1.2. Estimation of Lattice Distortions
3.1.3. Characterisation of the Element Depth Distribution
3.1.4. Surface Morphology and Dislocation Characteristics
3.2. Magnetic Properties
3.3. Transport Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bhatti, S.; Sbiaa, R.; Hirohata, A.; Ohno, H.; Fukami, S.; Piramanayagam, S.N. Spintronics based random access memory: A review. Mater. Today 2017, 20, 530–548. [Google Scholar] [CrossRef]
- Jansen, R. Silicon spintronics. Nat. Mater. 2012, 11, 400–408. [Google Scholar] [CrossRef]
- Liu, W.; Wong, P.K.J.; Xu, Y. Hybrid spintronic materials: Growth, structure and properties. Prog. Mater. Sci. 2019, 99, 27–105. [Google Scholar] [CrossRef]
- Tanaka, M.; Sugahara, S. MOS-Based Spin Devices for Reconfigurable Logic. IEEE Trans. Electron Devices 2007, 54, 961–976. [Google Scholar] [CrossRef]
- Nikonov, D.E.; Young, I.A. Overview of Beyond-CMOS Devices and a Uniform Methodology for Their Benchmarking. Proc. IEEE 2013, 101, 2498–2533. [Google Scholar] [CrossRef] [Green Version]
- Wollmann, L.; Nayak, A.K.; Parkin, S.S.P.; Felser, C. Heusler 4.0: Tunable Materials. Annu. Rev. Mater. Res. 2017, 47, 247–270. [Google Scholar] [CrossRef] [Green Version]
- Draganyuk, O.N.; Zhandun, V.S.; Zamkova, N.G. Half-metallicity in Fe2MnSi and Mn2FeSi heusler compounds: A comparative ab initio study. Mater. Chem. Phys. 2021, 271, 124897. [Google Scholar] [CrossRef]
- Kumar, A.; Pan, F.; Husain, S.; Akansel, S.; Brucas, R.; Bergqvist, L.; Chaudhary, S.; Svedlindh, P. Temperature-dependent Gilbert damping of Co2FeAl thin films with different degree of atomic order. Phys. Rev. B 2017, 96, 224425. [Google Scholar] [CrossRef] [Green Version]
- Srinivas, K.; Raja, M.M.; Rao, D.S.; Kamat, S.V. Effect of sputtering pressure and power on composition, surface roughness, microstructure and magnetic properties of as-deposited Co2FeSi thin films. Thin Solid Film. 2014, 558, 349–355. [Google Scholar] [CrossRef]
- Liu, Y.C.; Chen, Y.W.; Tseng, S.C.; Chang, M.T.; Lo, S.C.; Lin, Y.H.; Cheng, C.K.; Hung, H.Y.; Hsu, C.H.; Kwo, J.; et al. Epitaxial ferromagnetic Fe3Si on GaAs(111)A with atomically smooth surface and interface. Appl. Phys. Lett. 2015, 107, 122402. [Google Scholar] [CrossRef]
- Sakai, S.; Kawano, M.; Ikawa, M.; Sato, H.; Yamada, S.; Hamaya, K. Low-temperature growth of fully epitaxial CoFe/Ge/Fe3Si layers on Si for vertical-type semiconductor spintronic devices. Semicond. Sci. Technol. 2017, 32, 094005. [Google Scholar] [CrossRef]
- Shiihara, T.; Oki, S.; Sakai, S.; Ikawa, M.; Yamada, S.; Hamaya, K. Epitaxial growth of Sb-doped Ge layers on ferromagnetic Fe3Si for vertical semiconductor spintronic devices. Semicond. Sci. Technol. 2018, 33, 104008. [Google Scholar] [CrossRef]
- Gaucher, S.; Jenichen, B.; Kalt, J.; Jahn, U.; Trampert, A.; Herfort, J. Growth of Fe3Si/Ge/Fe3Si trilayers on GaAs(001) using solid-phase epitaxy. Appl. Phys. Lett. 2017, 110, 102103. [Google Scholar] [CrossRef] [Green Version]
- Toriumi, A.; Nishimura, T. Germanium CMOS potential from material and process perspectives: Be more positive about germanium. Jpn. J. Appl. Phys. 2018, 57, 010101. [Google Scholar] [CrossRef] [Green Version]
- Hamaya, K.; Fujita, Y.; Yamada, M.; Kawano, M.; Yamada, S.; Sawano, K. Spin transport and relaxation in germanium. J. Phys. D Appl. Phys. 2018, 51, 393001. [Google Scholar] [CrossRef]
- Froning, F.N.M.; Camenzind, L.C.; van der Molen, O.A.H.; Li, A.; Bakkers, E.P.A.M.; Zumbühl, D.M.; Braakman, F.R. Ultrafast hole spin qubit with gate-tunable spin–orbit switch functionality. Nat. Nanotechnol. 2021, 16, 308–312. [Google Scholar] [CrossRef]
- Wang, Z.; Marcellina, E.; Hamilton, A.R.; Cullen, J.H.; Rogge, S.; Salfi, J.; Culcer, D. Optimal operation points for ultrafast, highly coherent Ge hole spin-orbit qubits. npj Quantum Inf. 2021, 7, 54. [Google Scholar] [CrossRef]
- Yamada, S.; Tanikawa, K.; Miyao, M.; Hamaya, K. Atomically Controlled Epitaxial Growth of Single-Crystalline Germanium Films on a Metallic Silicide. Cryst. Growth Des. 2012, 12, 4703–4707. [Google Scholar] [CrossRef] [Green Version]
- Jenichen, B.; Herfort, J.; Jahn, U.; Trampert, A.; Riechert, H. Epitaxial Fe3Si/Ge/Fe3Si thin film multilayers grown on GaAs(001). Thin Solid Film. 2014, 556, 120–124. [Google Scholar] [CrossRef]
- Kawano, M.; Yamada, S.; Tanikawa, K.; Sawano, K.; Miyao, M.; Hamaya, K. An ultra-thin buffer layer for Ge epitaxial layers on Si. Appl. Phys. Lett. 2013, 102, 121908. [Google Scholar] [CrossRef]
- Karel, J.; Juraszek, J.; Minar, J.; Bordel, C.; Stone, K.H.; Zhang, Y.N.; Hu, J.; Wu, R.Q.; Ebert, H.; Kortright, J.B.; et al. Effect of chemical order on the magnetic and electronic properties of epitaxial off-stoichiometry FexSi1−x thin films. Phys. Rev. B 2015, 91, 144402. [Google Scholar] [CrossRef] [Green Version]
- Karel, J.; Bouma, D.S.; Martinez, J.; Zhang, Y.N.; Gifford, J.A.; Zhang, J.; Zhao, G.J.; Kim, D.R.; Li, B.C.; Huang, Z.Y.; et al. Enhanced spin polarization of amorphous FexSi1−x thin films revealed by Andreev reflection spectroscopy. Phys. Rev. Mater. 2018, 2, 064411. [Google Scholar] [CrossRef]
- Mehl, M.J. A Brief History of Strukturbericht Symbols and Other Crystallographic Classification Schemes. J. Phys. Conf. Ser. 2019, 1290, 012016. [Google Scholar] [CrossRef]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [Green Version]
- Volkov, N.V.; Tarasov, A.S.; Rautskii, M.V.; Lukyanenko, A.V.; Bondarev, I.A.; Varnakov, S.N.; Ovchinnikov, S.G. Magneto-transport phenomena in metal/SiO2/n(p)-Si hybrid structures. J. Magn. Magn. Mater. 2018, 451, 143–158. [Google Scholar] [CrossRef] [Green Version]
- Fultz, B.; Howe, J. Diffraction Contrast in TEM Images. In Transmission Electron Microscopy and Diffractometry of Materials; Springer: Berlin/Heidelberg, Germany, 2012; pp. 337–421. [Google Scholar]
- Layadi, A. Effect of multiaxial stress in thin films on the ferromagnetic resonance mode characteristics. J. Appl. Phys. 2020, 127, 223907. [Google Scholar] [CrossRef]
- Gueye, M.; Zighem, F.; Belmeguenai, M.; Gabor, M.; Tiusan, C.; Faurie, D. Ferromagnetic resonance in thin films submitted to multiaxial stress state: Application of the uniaxial equivalent stress concept and experimental validation. J. Phys. D Appl. Phys. 2016, 49, 265001. [Google Scholar] [CrossRef]
- Dahlqvist, M.; Rosen, J. Impact of strain, pressure, and electron correlation on magnetism and crystal structure of Mn2GaC from first-principles. Sci. Rep. 2020, 10, 11384. [Google Scholar] [CrossRef] [PubMed]
- Edington, J.W. Electron Diffraction in the Electron Microscope. In Electron Diffraction in the Electron Microscope; Macmillan Education: London, UK, 1975; pp. 1–77. [Google Scholar]
- Klinger, M. More features, more tools, more CrysTBox. J. Appl. Crystallogr. 2017, 50, 1226–1234. [Google Scholar] [CrossRef]
- Frentrup, M.; Hatui, N.; Wernicke, T.; Stellmach, J.; Bhattacharya, A.; Kneissl, M. Determination of lattice parameters, strain state and composition in semipolar III-nitrides using high resolution X-ray diffraction. J. Appl. Phys. 2013, 114, 213509. [Google Scholar] [CrossRef]
- Visotin, M.A.; Tarasov, I.A.; Fedorov, A.S.; Varnakov, S.N.; Ovchinnikov, S.G. Prediction of orientation relationships and interface structures between α-, β-, γ-FeSi2 and Si phases. Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 2020, 76, 469–482. [Google Scholar] [CrossRef]
- Sandalov, I.; Zamkova, N.; Zhandun, V.; Tarasov, I.; Varnakov, S.; Yakovlev, I.; Solovyov, L.; Ovchinnikov, S. Effect of electron correlations on the Fe3Si and α−FeSi2 band structure and optical properties. Phys. Rev. B 2015, 92, 205129. [Google Scholar] [CrossRef]
- Tarasov, A.S.; Lukyanenko, A.V.; Tarasov, I.A.; Bondarev, I.A.; Smolyarova, T.E.; Kosyrev, N.N.; Komarov, V.A.; Yakovlev, I.A.; Volochaev, M.N.; Solovyov, L.A.; et al. Approach to form planar structures based on epitaxial Fe1−xSix films grown on Si(111). Thin Solid Film. 2017, 642, 20–24. [Google Scholar] [CrossRef] [Green Version]
- Ingber, L. Adaptive simulated annealing (ASA): Lessons learned. Control Cybern. 2000, 25, 32–54. [Google Scholar]
- Lagarias, J.C.; Reeds, J.A.; Wright, M.H.; Wright, P.E. Convergence Properties of the Nelder--Mead Simplex Method in Low Dimensions. SIAM J. Optim. 1998, 9, 112–147. [Google Scholar] [CrossRef] [Green Version]
- Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G.L.; Cococcioni, M.; Dabo, I.; et al. Quantum Espresso: A Modular and Open-Source Software Project for Quantum Simulations of Materials. J. Phys. Condens. Matter 2009, 21, 395502. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [Green Version]
- Tarasov, A.S.; Lukyanenko, A.V.; Rautskii, M.V.; Bondarev, I.A.; Smolyakov, D.A.; Tarasov, I.A.; Yakovlev, I.A.; Varnakov, S.N.; Ovchinnikov, S.G.; Baron, F.A.; et al. Spin-dependent electrical hole extraction from low doped p-Si via the interface states in a Fe3Si/p-Si structure. Semicond. Sci. Technol. 2019, 34, 035024. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Li, J.; Li, S.; Chen, H.; Liu, D.; Kang, J. X-ray reflectivity and atomic force microscopy studies of MOCVD grown AlxGa1−xN/GaN superlattice structures. J. Semicond. 2011, 32, 043006. [Google Scholar] [CrossRef]
- Kim, Y.; Yoon, S.; Ko, D.; Sohn, H. Influence of Si precursor type on the surface roughening of SiGe epitaxial layers deposited by ultrahigh vacuum chemical vapor deposition method. J. Vac. Sci. Technol. A Vac. Surf. Film. 2017, 35, 041403. [Google Scholar] [CrossRef]
- Gu, X.F.; Furuhara, T.; Zhang, W.Z. PTCLab: Free and open-source software for calculating phase transformation crystallography. J. Appl. Crystallogr. 2016, 49, 1099–1106. [Google Scholar] [CrossRef]
- Tarasov, I.A.; Smolyarova, T.E.; Nemtsev, I.V.; Yakovlev, I.A.; Volochaev, M.N.; Solovyov, L.A.; Varnakov, S.N.; Ovchinnikov, S.G. Tailoring the preferable orientation relationship and shape of α-FeSi2nanocrystals on Si(001): The impact of gold and the Si/Fe flux ratio, and the origin of α/Si boundaries. CrystEngComm 2020, 22, 3943–3955. [Google Scholar] [CrossRef]
- Bhukta, A.; Levi, G.; Horvitz, D.; Kohn, A.; Goldfarb, I. Self-organized exchange-spring magnet in epitaxial β-Fe(Ni)Si2/Si system. Appl. Surf. Sci. 2021, 562, 150071. [Google Scholar] [CrossRef]
- Bellucci, S. Self-Assembly of Nanostructures: The INFN Lectures; Springer: Berlin/Heidelberg, Germany, 2011; Volume 3, ISBN 9781461407423. [Google Scholar]
- Wang, X.S.; Goldberg, J.L.; Bartelt, N.C.; Einstein, T.L.; Williams, E.D. Terrace-width distributions on vicinal Si(111). Phys. Rev. Lett. 1990, 65, 2430–2433. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Liao, Y.-F.; Wu, D.-N.; Xiao, W.-J.; Xie, Q. The Degree-of-Order Dependent Electronic Structures and Magnetic Properties of Fe3Si Alloys. Phys. Status Solidi 2020, 257, 1900667. [Google Scholar] [CrossRef]
- Zamkova, N.G.; Zhandun, V.S.; Ovchinnikov, S.G.; Sandalov, I.S. Effect of local environment on moment formation in iron silicides. J. Alloys Compd. 2017, 695, 1213–1222. [Google Scholar] [CrossRef] [Green Version]
- Belyaev, B.A.; Izotov, A.V.; Leksikov, A.A. Magnetic imaging in thin magnetic films by local spectrometer of ferromagnetic resonance. IEEE Sens. J. 2005, 5, 260–267. [Google Scholar] [CrossRef]
- Yakovlev, I.A.; Tarasov, I.A.; Lyashchenko, S.A. High uniaxial magnetic anisotropy of the Fe1−xSix films synthesized by MBE. J. Magn. Magn. Mater. 2017, 440, 161–163. [Google Scholar] [CrossRef]
- Zakeri, K.; Barsukov, I.; Utochkina, N.K.; Römer, F.M.; Lindner, J.; Meckenstock, R.; von Hörsten, U.; Wende, H.; Keune, W.; Farle, M.; et al. Magnetic properties of epitaxial Fe3Si/Mg(001) thin films. Phys. Rev. B 2007, 76, 214421. [Google Scholar] [CrossRef]
- Ando, Y.; Hamaya, K.; Kasahara, K.; Ueda, K.; Nozaki, Y.; Sadoh, T.; Maeda, Y.; Matsuyama, K.; Miyao, M. Magnetic properties of epitaxially grown Fe3Si/Ge(111) layers with atomically flat heterointerfaces. J. Appl. Phys. 2009, 105, 07B102. [Google Scholar] [CrossRef]
- Komogortsev, S.V.; Varnakov, S.N.; Satsuk, S.A.; Yakovlev, I.A.; Ovchinnikov, S.G. Magnetic anisotropy in Fe films deposited on SiO2/Si(001) and Si(001) substrates. J. Magn. Magn. Mater. 2014, 351, 104–108. [Google Scholar] [CrossRef]
- Zhang, M.-L.; Ye, J.; Liu, R.; Mi, S.; Xie, Y.; Liu, H.-L.; Van Haesendonck, C.; Chen, Z.-Y. Study of magnetization reversal and anisotropy of single crystalline ultrathin Fe/MgO (001) film by magneto-optic Kerr effect. Chin. Phys. B 2016, 25, 047503. [Google Scholar] [CrossRef]
- Liu, Y.C.; Chang, P.; Huang, S.Y.; Chang, L.J.; Lin, W.C.; Lee, S.F.; Hong, M.; Kwo, J. Magnetization reversal processes of epitaxial Fe3Si films on GaAs(001). J. Appl. Phys. 2011, 109, 07D508. [Google Scholar] [CrossRef]
- Lösche, A. N. F. MOTT, E. A. DAVIS. Electronic Processes in Non-Crystalline Materials Clarendon-Press, Oxford 1971 437 Seiten. £ 7,50. Krist. Und Tech. 1972, 7, K55–K56. [Google Scholar] [CrossRef]
- Adkins, C.J. Conduction in granular metals-variable-range hopping in a Coulomb gap? J. Phys. Condens. Matter 1989, 1, 1253–1259. [Google Scholar] [CrossRef]
- Sheng, P.; Abeles, B.; Arie, Y. Hopping Conductivity in Granular Metals. Phys. Rev. Lett. 1973, 31, 44–47. [Google Scholar] [CrossRef] [Green Version]
- Kittle, C. Introduction to Solid State Physics; Willey: New Delhi, India, 2009; pp. 628–629. ISBN 978-0-471-41526-8. [Google Scholar]
- Lee, P.A.; Ramakrishnan, T.V. Disordered electronic systems. Rev. Mod. Phys. 1985, 57, 287–337. [Google Scholar] [CrossRef]
Residual | δa,b, nm | δc, nm | δα,β, deg. | δγ, deg. | |
---|---|---|---|---|---|
True values of quantities | −1.991 × 10−3 | 4.2908 × 10−2 | −0.07512 | 0.12 | |
Solutions | 2.13 × 10−10 ± 6.44 × 10−11 | −1.991 × 10−3 ± 5.99 × 10−8 | 4.279 × 10−2 ± 1.69 × 10−5 | −0.07629 ± 0.0017 | 0.1212 ± 0.0017 |
9.34 × 10−10 ± 2.48 × 10−10 | −1.991 × 10−3 ± 2.31 × 10−7 | 6.205 × 10−2 ± 7.46 × 10−5 | 0.114 ± 0.0074 | −0.0668 ± 0.0072 |
Residual | δa, nm | δb, nm | δc, nm | δα, deg. | δβ, deg. | δγ, deg. | ||
---|---|---|---|---|---|---|---|---|
Sample #6 cubic | ||||||||
Solutions found | δa ≠ δb = δc, δα = δβ = δγ | 1.11 × 10−6 ± 1.31 × 10−16 1.11 × 10−6 ± 6.11 × 10−12 1.18 × 10−6 ± 4.67 × 10−11 | −1.199 × 10−3 ± 2.55 × 10−11 −1.200 × 10−3 ± 3.66 × 10−7 −1.148 × 10−3 ± 1.34 × 10−6 | 2.657 × 10−3 ± 1.29 × 10−13 2.655 × 10−3 ± 6.14 × 10−9 2.656 × 10−3 ± 3.31 × 10−8 | −0.0165 ± 2.15 × 10−9 −0.0173 ± 1.17 × 10−5 8.181 × 10−4 ± 5.72 × 10−6 | |||
δa ≠ δb = δc, δα = 0; δβ ≠ δγ | 1.50 × 10−8 ± 7.49 × 10−14 | −1.368 × 10−3 ± 1.82 × 10−10 | 1.00 × 10−3 ± 3.33 × 10−10 | 0 | 0.0163 ± 4.07 × 10−6 | 0.0208 ± 4.06 × 10−6 | ||
1.50 × 10−8 ± 1.25 × 10−13 | −1.368 × 10−3 ± 2.75 × 10−9 | 1.00 × 10−3 ± 3.49 × 10−9 | 0 | −0.0442 ± 2.26 × 10−6 | 0.0814 ± 2.17 × 10−6 | |||
1.50 × 10−8 ± 3.62 × 10−14 | −1.368 × 10−3 ± 4.39 × 10−11 | 1.00 × 10−3 ± 7.15 × 10−11 | 0 | 0.0605 ± 2.87 × 10−6 | −0.0234 ± 2.88 × 10−6 | |||
1.50 × 10−8 ± 8.83 × 10−14 | −1.368 × 10−3 ± 9.75 × 10−10 | 1.00 × 10−3 ± 3.00 × 10−9 | 0 | 0.0794 ± 1.00 × 10−5 | −0.0422 ± 1.01 × 10−5 | |||
1.50 × 10−8 ± 8.22 × 10−14 | −1.368 × 10−3 ± 1.22 × 10−10 | 1.00 × 10−3 ± 1.35 × 10−10 | 0 | 0.0255 ± 8.56 × 10−6 | 0.0627 ± 8.57 × 10−6 | |||
δa ≠ δb = δc, δα ≠ δβ = −δγ | 6.49 × 10−7 ± 4.54 × 10−17 3.54 × 10−7 ± 8.57 × 10−19 3.54 × 10−7 ± 4.98 × 10−18 3.54 × 10−7 ± 5.47 × 10−19 | −1.341 × 10−3 ± 4.77 × 10−10 −1.368 × 10−3 ± 1.20 × 10−11 −1.368 × 10−3 ± 5.72 × 10−10 −1.368 × 10−3 ± 2.25 × 10−12 | −2.27 × 10−6 ± 1.45 × 10−14 1.20 × 10−3 ± 1.05 × 10−7 5.95 × 10−4 ± 2.86 × 10−7 1.44 × 10−3 ± 3.47 × 10−8 | −0.175 ± 2.71 × 10−12 0.032 ± 2.12 × 10−5 −0.085 ± 5.80 × 10−5 0.085 ± 6.96 × 10−6 | 0.0003 ± 6.71 × 10−4 0.0002 ± 4.51 × 10−6 0.0002 ± 2.52 × 10−6 0.0002 ± 3.65 × 10−7 | −0.0003 ± 6.71 × 10−4 −0.0002 ± 4.51 × 10−6 −0.0002 ± 2.52 × 10−6 −0.0002 ± 3.65 × 10−7 | ||
3.54 × 10−7 ± 2.82 × 10−20 3.54 × 10−7 ± 3.92 × 10−20 | −1.367 × 10−3 ± 2.86 × 10−10 −1.367 × 10−3 ± 2.76 × 10−10 | 1.00 × 10−3± 3.79 × 10−8 1.00 × 10−3± 4.07 × 10−8 | 0.001 ± 7.64 × 10−6 0.001 ± 8.20 × 10−6 | −0.087 ± 9.32 × 10−6 0.087 ± 9.14 × 10−6 | 0.087 ± 9.32 × 10−6 −0.087 ± 9.14 × 10−6 | |||
δa ≠ δb = δc, δα ≠ δβ ≠ δγ | 1.07 × 10−6 ± 8.82 × 10−12 1.50 × 10−8 ± 8.84 × 10−15 1.50 × 10−8 ± 4.83 × 10−15 1.50 × 10−8 ± 3.30 × 10−15 | −1.341 × 10−3 ± 1.33 × 10−7 −1.368 × 10−3 ± 2.12 × 10−9 −1.368 × 10−3 ± 3.57 × 10−9 −1.368 × 10−3 ± 2.58 × 10−9 | −7.99 × 10−8 ± 2.46 × 10−9 1.10 × 10−3 ± 1.39 × 10−6 6.69 × 10−4 ± 5.75 × 10−7 1.37 × 10−3 ± 4.99 × 10−7 | −0.145 ± 4.93 × 10−7 0.018 ± 2.80 × 10−4 −0.070 ± 1.15 × 10−4 0.071 ± 1.00 × 10−4 | 0.012 ± 3.10 × 10−4 0.012 ± 1.78 × 10−4 0.012 ± 8.63 × 10−5 0.012 ± 1.014 × 10−4 | 0.024 ± 3.21 × 10−4 0.025 ± 1.78 × 10−4 0.026 ± 8.63 × 10−5 0.025 ± 1.012 × 10−4 | ||
1.50 × 10−8 ± 3.02 × 10−14 | −1.368 × 10−3 ± 6.76 × 10−9 | 1.01 × 10−3 ± 3.04 × 10−6 | −0.001 ± 6.13 × 10−4 | −0.060 ± 1.87 × 10−4 | 0.097 ± 1.87 × 10−4 | |||
1.50 × 10−8 ± 8.20 × 10−15 | −1.368 × 10−3 ± 2.26 × 10−9 | 1.02 × 10−3 ± 1.12 × 10−5 | 0.001 ± 2.26 × 10−4 | 0.070 ± 1.22 × 10−4 | −0.033 ± 1.23 × 10−4 | |||
1.50 × 10−8 ± 8.97 × 10−13 1.50 × 10−8 ± 1.57 × 10−13 | −1.368 × 10−3 ± 1.77 × 10−8 −1.368 × 10−3 ± 1.10 × 10−8 | 9.94 × 10−4 ± 1.63 × 10−5 9.97 × 10−4 ± 1.25 × 10−5 | −0.005 ± 3.3 × 10−3 −0.004 ± 2.5 × 10−3 | 0.090 ± 6.70 × 10−4 −0.048 ± 4.38 × 10−4 | −0.053 ± 6.69 × 10−4 0.085 ± 4.37 × 10−4 | |||
Sample #6 hexagonal | ||||||||
δa = δb ≠ δc, δα ≠ δβ ≠ δγ = 0 | 1.05 × 10−6 ± 7.75 × 10−16 | 0.0539 ± 1.88 × 10−10 | −0.1532 ± 4.84 × 10−11 | −4.74 × 10−4 ± 6.26 × 10−11 | 0.1439 ± 3.2 × 10−11 | 0 | ||
1.50 × 10−8 ± 1.51 × 10−12 | 0.0539 ± 2.90 × 10−8 | −0.1534 ± 7.37 × 10−8 | 0.1068 ± 4 × 10−6 | 0.1355 ± 2.25 × 10−6 | 0 | |||
2.98 × 10−6 ± 2.13 × 10−15 | 0.0538 ± 1.7 × 10−9 | −0.1529 ± 7.43 × 10−11 | 0.1217 ± 1.69 × 10−10 | −2.32 × 10−4 ± 8.47 × 10−11 | 0 | |||
δa = δb ≠ δc, δα = −δβ ≠ δγ = 0; | 2.79 × 10−6 ± 2.09 × 10−15 4.43 × 10−6 ± 1.98 × 10−14 | 0.0538 ± 8.61 × 10−10 0.0538 ± 8.64 × 10−9 | −0.1529 ± 1.00 × 10−11 −0.1529 ± 1.00 × 10−10 | −0.1373 ± 2.43 × 10−10 4.57 × 10−4 ± 1.86 × 10−9 | 0.1373 ± 2.43 × 10−10 −4.57 × 10−4 ± 1.86 × 10−9 | 0 0 | ||
Sample #7 cubic–zone axis [001] | ||||||||
δa ≠ δb, δc = 0, δα = δβ = 0, ≠ δγ | 8.43 × 10−7 ± 4.45 × 10−14 | 5.45 × 10−4 ± 3.17 × 10−11 | −4.55 × 10−4 ± 7.09 × 10−11 | - | - | - | −1.177 ± 8.67 × 10−8 | |
9.64 × 10−5 ± 1.39 × 10−7 8.09 × 10−5 ± 9.11 × 10−8 | −1.29 × 10−6 ± 7.88 × 10−7 3.16 × 10−4 ± 2.43 × 10−7 | −1.83 × 10−4 ± 3.77 × 10−7 1.64 × 10−6 ± 5.15 × 10−7 | - - | - - | - - | −1.176 ± 9.71 × 10−6 −1.174 ± 4.34 × 10−6 | ||
Sample #7 cubic–zone axis [−111] | ||||||||
δa ≠ δb ≠ δc, δα ≠ δβ ≠ δγ | 1.79 × 10−5 ± 6.77 × 10−20 | −6.00 × 10−3 ± 2.60 × 10−18 | 2.13 × 10−4 ± 1.897 × 10−19 | 1.1 × 10−3 ± 8.67 × 10−19 | 1.87 × 10−4 ± 1.89 × 10−19 | −0.9996 ± 4.22 × 10−19 | 4.9 × 10−4 ± 1.73 × 10−18 | |
1.79 × 10−5 ± 1.29 × 10−10 | 5.10 × 10−3 ± 5.79 × 10−5 | 4.61 × 10−5 ± 1.31 × 10−4 | −1.1 × 10−3 ± 8.57 × 10−4 | 0.248 ± 0.0923 | −0.1129 ± 0.0706 | 1.1023 ± 0.0545 |
Scanning Area (μm) | Mean Value (nm) | RMS Roughness, Sq (nm) | Average Roughness Sa (nm) | Median, nm | Maximum Height Sz (nm) | |
---|---|---|---|---|---|---|
#6 | 2 × 2 | 6.90 | 1.42 | 1.01 | 7.34 | 11.196 |
#6 | 20 × 20 | 1.198 | 0.284 | 0.228 | 1.22 | 2.44 |
#7 | 2 × 2 | 7.05 | 2.20 | 1.87 | 7.69 | 12.69 |
#7 | 20 × 20 | 4.58 | 1.12 | 0.91 | 4.61 | 9.21 |
Ge | Anisotropy | |||||||
---|---|---|---|---|---|---|---|---|
Magnetization Saturation | Uniaxial | Four-Fold | Six-Fold | |||||
Sample | Ms, kA/m | Hk2, mT | αk2, deg. | Hk4, mT | Tk4, deg. | Hk6, mT | αk6, deg. | |
4 nm | 1st line | 1034.04 | 0.153 | 0 | 0.043 | −41.29 | 0.058 | −85.55 |
2nd line | 835.99 | 1.925 | 7.13 | 0.117 | −81.27 | 0.058 | −115.09 | |
7 nm | 1st line | 955.13 | 0.366 | 0 | 0.046 | −73.49 | 0.033 | −52.04 |
2nd line | 814.07 | 5.613 | −65.13 | 1.085 | −25.42 | 0.210 | −97.22 | |
3rd line | 935.24 | 0.378 | −23.39 | 0.0078 | −76.28 | 0.043 | −59.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tarasov, A.S.; Tarasov, I.A.; Yakovlev, I.A.; Rautskii, M.V.; Bondarev, I.A.; Lukyanenko, A.V.; Platunov, M.S.; Volochaev, M.N.; Efimov, D.D.; Goikhman, A.Y.; et al. Asymmetric Interfaces in Epitaxial Off-Stoichiometric Fe3+xSi1−x/Ge/Fe3+xSi1−x Hybrid Structures: Effect on Magnetic and Electric Transport Properties. Nanomaterials 2022, 12, 131. https://doi.org/10.3390/nano12010131
Tarasov AS, Tarasov IA, Yakovlev IA, Rautskii MV, Bondarev IA, Lukyanenko AV, Platunov MS, Volochaev MN, Efimov DD, Goikhman AY, et al. Asymmetric Interfaces in Epitaxial Off-Stoichiometric Fe3+xSi1−x/Ge/Fe3+xSi1−x Hybrid Structures: Effect on Magnetic and Electric Transport Properties. Nanomaterials. 2022; 12(1):131. https://doi.org/10.3390/nano12010131
Chicago/Turabian StyleTarasov, Anton S., Ivan A. Tarasov, Ivan A. Yakovlev, Mikhail V. Rautskii, Ilya A. Bondarev, Anna V. Lukyanenko, Mikhail S. Platunov, Mikhail N. Volochaev, Dmitriy D. Efimov, Aleksandr Yu. Goikhman, and et al. 2022. "Asymmetric Interfaces in Epitaxial Off-Stoichiometric Fe3+xSi1−x/Ge/Fe3+xSi1−x Hybrid Structures: Effect on Magnetic and Electric Transport Properties" Nanomaterials 12, no. 1: 131. https://doi.org/10.3390/nano12010131
APA StyleTarasov, A. S., Tarasov, I. A., Yakovlev, I. A., Rautskii, M. V., Bondarev, I. A., Lukyanenko, A. V., Platunov, M. S., Volochaev, M. N., Efimov, D. D., Goikhman, A. Y., Belyaev, B. A., Baron, F. A., Shanidze, L. V., Farle, M., Varnakov, S. N., Ovchinnikov, S. G., & Volkov, N. V. (2022). Asymmetric Interfaces in Epitaxial Off-Stoichiometric Fe3+xSi1−x/Ge/Fe3+xSi1−x Hybrid Structures: Effect on Magnetic and Electric Transport Properties. Nanomaterials, 12(1), 131. https://doi.org/10.3390/nano12010131