Synthesis of Copper Nanoparticles from Cu2+-Spiked Wastewater via Adsorptive Separation and Subsequent Chemical Reduction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of PEI@CNF Aerogel
2.3. Continuous Cu2+ Adsorption–Elution Experiments
2.4. Reduction of Cu2+ to Cu0 NPs
2.5. Characterization
3. Results and Discussion
3.1. Enrichment of Cu2+ from Wastewater Using PEI@CNF Aerogel
3.2. Reduction of Cu2+ to Cu0 NPs by Hydrazine
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- United State Environmental Protection Agency. National Primary Drinking Water Regulations; Inorganic Chemicals, Copper, United State Environmental Protection Agency: Washington, DC, USA, 2017.
- USGS. Annual Publications, Mineral Commodity Summaries; Copper, (USGS): Reston, VA, USA, 2021.
- Ojha, N.K.; Zyryanov, G.V.; Majee, A.; Charushin, V.N.; Chupakhin, O.; Santra, S. Copper nanoparticles as inexpensive and efficient catalyst: A valuable contribution in organic synthesis. Coord. Chem. Rev. 2017, 353, 1–57. [Google Scholar] [CrossRef]
- Godoy-Gallardo, M.; Eckhard, U.; Delgado, L.M.; Puente, Y.J.d.R.; Hoyos-Nogués, M.; Gil, F.J.; Perez, R.A. Antibacterial approaches in tissue engineering using metal ions and nanoparticles: From mechanisms to applications. Bioact. Mater. 2021, 6, 4470–4490. [Google Scholar] [CrossRef] [PubMed]
- Rajesh, K.; Ajitha, B.; Reddy, Y.A.K.; Suneetha, Y.; Reddy, P.S. Assisted green synthesis of copper nanoparticles using Syzygium aromaticum bud extract: Physical, optical and antimicrobial properties. Optik 2018, 154, 593–600. [Google Scholar] [CrossRef]
- Andal, V.; Buvaneswari, G. Effect of reducing agents in the conversion of Cu2O nanocolloid to Cu nanocolloid. Eng. Sci. Technol. Int. J. 2017, 20, 340–344. [Google Scholar] [CrossRef] [Green Version]
- Gawande, M.B.; Goswami, A.; Felpin, F.-X.; Asefa, T.; Huang, X.; Silva, R.; Zou, X.; Zboril, R.; Varma, R.S. Cu and Cu-based nanoparticles: Synthesis and applications in catalysis. Chem. Rev. 2016, 116, 3722–3811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chou, Y.-H.; Yu, J.-H.; Liang, Y.-M.; Wang, P.-J.; Li, C.-W.; Chen, S.-S. Recovery of Cu(II) by chemical reduction using sodium dithionite. Chemosphere 2015, 141, 183–188. [Google Scholar] [CrossRef] [PubMed]
- Medvedeva, X.; Vidyakina, A.; Li, F.; Mereshchenko, A.; Klinkova, A. Reductive and coordinative effects of hydrazine in structural transformations of copper hydroxide nanoparticles. Nanomaterials 2019, 9, 1445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Begletsova, N.; Selifonova, E.; Chumakov, A.; Al-Alwani, A.; Zakharevich, A.; Chernova, R.; Glukhovskoy, E. Chemical synthesis of copper nanoparticles in aqueous solutions in the presence of anionic surfactant sodium dodecyl sulfate. Colloids Surf. A Phys. Eng. Asp. 2018, 552, 75–80. [Google Scholar] [CrossRef]
- Xiong, J.; Wang, Y.; Xue, Q.; Wu, X. Synthesis of highly stable dispersions of nanosized copper particles using l-ascorbic acid. Green Chem. 2011, 13, 900–904. [Google Scholar] [CrossRef]
- Granata, G.; Onoguchi, A.; Tokoro, C. Preparation of copper nanoparticles for metal-metal bonding by aqueous reduction with d-glucose and PVP. Chem. Eng. Sci. 2019, 209, 115210. [Google Scholar] [CrossRef]
- Golden, J.H.; Small, R.; Pagan, L.; Shang, C.; Ragavan, S. Evaluating and treating CMP wastewater. Semicond. Int. 2000, 23, 85, 86, 88, 90, 92, 94, 98. [Google Scholar]
- Lai, C.L.; Lin, S.H. Electrocoagulation of chemical mechanical polishing (CMP) wastewater from semiconductor fabrication. Chem. Eng. J. 2003, 95, 205–211. [Google Scholar] [CrossRef]
- Hong, H.-J.; Ban, G.; Kim, H.S.; Jeong, H.S.; Park, M.S. Fabrication of cylindrical 3D cellulose nanofibril(CNF) aerogel for continuous removal of copper(Cu2+) from wastewater. Chemosphere 2021, 278, 130288. [Google Scholar] [CrossRef]
- Cheng, D.; Feng, D.; Xia, S. The directional reaction of hydrazine with silver complexes. Part 3. Synthesis and characterization of a copper(I)-hydrazine intermediate complex, Na(N2H4)CuCl2. Transit. Met. Chem. 2000, 25, 635–638. [Google Scholar] [CrossRef]
- Brown, D.B.; Donner, J.A.; Hall, J.W.; Wilson, S.R.; Wilson, R.B.; Hodgson, D.J.; Hatfield, W.E. Interaction of hydrazine with copper(II) chloride in acidic solutions. Formation, spectral and magnetic properties, and structures of copper(II), copper(I), and mixed-valence species. Inorg. Chem. 1979, 18, 2635–2641. [Google Scholar] [CrossRef]
- Nakui, H.; Okitsu, K.; Maeda, Y.; Nishimura, R. The effect of pH on sonochemical degradation of hydrazine. Ultrason. Sonochem. 2007, 14, 627–632. [Google Scholar] [CrossRef] [PubMed]
- Moliner, A.M. Hydrazine Chemistry in Aqueous and Soil Environments. Ph.D. Thesis, University of Florida, Gainesville, FL, USA, 1988. [Google Scholar]
- Wołowicz, A.; Staszak, K. Study of surface properties of aqueous solutions of sodium dodecyl sulfate in the presence of hydrochloric acid and heavy metal ions. J. Mol. Liq. 2020, 299. [Google Scholar] [CrossRef]
Property | ||
---|---|---|
PEI content (wt%) | 33.9 | |
Compressive strength (MPa) | 0.6 | |
BET surface area (m2/g) | 3.69 | |
Cu2+ adsorption capacity | (mg/g) | ~120 |
(mg/cm3) | 7.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, H.-J.; Ryu, J. Synthesis of Copper Nanoparticles from Cu2+-Spiked Wastewater via Adsorptive Separation and Subsequent Chemical Reduction. Nanomaterials 2021, 11, 2051. https://doi.org/10.3390/nano11082051
Hong H-J, Ryu J. Synthesis of Copper Nanoparticles from Cu2+-Spiked Wastewater via Adsorptive Separation and Subsequent Chemical Reduction. Nanomaterials. 2021; 11(8):2051. https://doi.org/10.3390/nano11082051
Chicago/Turabian StyleHong, Hye-Jin, and Jungho Ryu. 2021. "Synthesis of Copper Nanoparticles from Cu2+-Spiked Wastewater via Adsorptive Separation and Subsequent Chemical Reduction" Nanomaterials 11, no. 8: 2051. https://doi.org/10.3390/nano11082051
APA StyleHong, H.-J., & Ryu, J. (2021). Synthesis of Copper Nanoparticles from Cu2+-Spiked Wastewater via Adsorptive Separation and Subsequent Chemical Reduction. Nanomaterials, 11(8), 2051. https://doi.org/10.3390/nano11082051