Coupled Investigation of Contact Potential and Microstructure Evolution of Ultra-Thin AlOx for Crystalline Si Passivation
Abstract
:1. Introduction
2. Experimental Procedure
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vermang, B.; Cornagliotti, E.; Prajapati, V.; John, J.; Poortmans, J.; Mertens, R. Assessment of the illumination dependency of Al2O3 and SiO2 rear-passivated p-type silicon solar cells. Phys. Status Solidi RRL Rapid Res. Lett. 2012, 6, 259–261. [Google Scholar] [CrossRef]
- Zhang, X.; Cuevas, A. Plasma hydrogenated, reactively sputtered aluminium oxide for silicon surface passivation. Phys. Status Solidi RRL Rapid Res. Lett. 2013, 7, 619–622. [Google Scholar] [CrossRef]
- Repo, P.; Talvitie, H.; Li, S.; Skarp, J.; Savin, H. Silicon Surface Passivation by Al2O3: Effect of ALD Reactants. Energy Procedia 2011, 8, 681–687. [Google Scholar] [CrossRef] [Green Version]
- Kotipalli, R.; Delamare, R.; Poncelet, O.; Tang, X.; Francis, L.A.; Flandre, D. Passivation effects of atomic-layer-deposited aluminum oxide. EPJ Photovolt. 2013, 4, 45107. [Google Scholar] [CrossRef]
- Töfflinger, J.A.; Laades, A.; Korte, L.; Leendertz, C.; Montañez, L.M.; Stürzebecher, U.; Sperlich, H.-P.; Rech, B. PECVD-AlOx/SiNx passivation stacks on wet chemically oxidized silicon: Constant voltage stress investigations of charge dynamics and interface defect states. Sol. Energy Mater. Sol. Cells 2015, 135, 49–56. [Google Scholar] [CrossRef]
- Lee, Y.S.; Gershon, T.; Todorov, T.K.; Wang, W.; Winkler, M.T.; Hopstaken, M.; Gunawan, O.; Kim, J. Atomic Layer Deposited Aluminum Oxide for Interface Passivation of Cu2ZnSn(S,Se)4 Thin-Film Solar Cells. Adv. Energy Mater. 2016, 6, 1600198. [Google Scholar] [CrossRef]
- Dingemans, G.; Kessels, W.M.M. Status and prospects of Al2O3-based surface passivation schemes for silicon solar cells. J. Vac. Sci. Technol. A 2012, 30, 040802. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Bi, Q.; Ali, H.; Davis, K.; Schoenfeld, W.V.; Weber, K. High-Performance TiO2-Based Electron-Selective Contacts for Crystalline Silicon Solar Cells. Adv. Mater. 2016, 28, 5891–5897. [Google Scholar] [CrossRef]
- Töfflinger, J.A.; Laades, A.; Leendertz, C.; Montañez, L.M.; Korte, L.; Stürzebecher, U.; Sperlich, H.-P.; Rech, B. PECVD-AlOx/SiNx Passivation Stacks on Silicon: Effective Charge Dynamics and Interface Defect State Spectroscopy. Energy Procedia 2014, 55, 845–854. [Google Scholar] [CrossRef] [Green Version]
- Hoex, B.; Schmidt, J.; Bock, R.; Altermatt, P.P.; van de Sanden, M.C.M.; Kessels, W.M.M. Excellent passivation of highly doped p-type Si surfaces by the negative-charge-dielectric Al2O3. Appl. Phys. Lett. 2007, 91, 112107. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Zhou, C.; Zhang, X.; Zhang, P.; Dou, Y.; Wang, W.; Cao, X.; Wang, B.; Tang, Y.; Zhou, S. Passivation mechanism of thermal atomic layer-deposited Al2O3 films on silicon at different annealing temperatures. Nanoscale Res. Lett. 2013, 8, 114. [Google Scholar] [CrossRef] [Green Version]
- Pawlik, M.; Vilcot, J.P.; Halbwax, M.; Aureau, D.; Etcheberry, A.; Slaoui, A.; Schutz-Kuchly, T.; Cabal, R. Electrical and Chemical Studies on Al2O3 Passivation Activation Process. Energy Procedia 2014, 60, 85–89. [Google Scholar] [CrossRef] [Green Version]
- Kühnhold-Pospischil, S.; Saint-Cast, P.; Richter, A.; Hofmann, M. Activation energy of negative fixed charges in thermal ALD Al2O3. Appl. Phys. Lett. 2016, 109, 061602. [Google Scholar] [CrossRef]
- Lebreton, F.; Zauner, A.; Bulkin, P.; Silva, F.; Filonovich, S.; Cabarrocas, P.R. Benefits of a thermal drift during atomic layer deposition of Al2O3 for C-Si passivation. In Proceedings of the 2017 IEEE 44th Photovoltaic Specialist Conference (PVSC), Washington, DC, USA, 25–30 June 2017; pp. 1237–1240. [Google Scholar]
- Xie, M.; Yu, X.; Qiu, X.; Yang, D. Light-soaking enhanced passivation of Al2O3 on crystalline silicon surface. Solar Energy Mater. Sol. Cells 2019, 191, 350–355. [Google Scholar] [CrossRef]
- Heikkinen, I.T.S.; Koutsourakis, G.; Virtanen, S.; Yli-Koski, M.; Wood, S.; Vähänissi, V.; Salmi, E.; Castro, F.A.; Savin, H. AlOx surface passivation of black silicon by spatial ALD: Stability under light soaking and damp heat exposure. J. Vac. Sci. Technol. A 2020, 38, 022401. [Google Scholar] [CrossRef]
- Desthieux, A.; Sreng, M.; Bulkin, P.; Florea, I.; Drahi, E.; Bazer-Bachi, B.; Vanel, J.-C.; Silva, F.; Posada, J.; Cabarrocas, P.R. Detection of stable positive fixed charges in AlOx activated during annealing with in situ modulated PhotoLuminescence. Solar Energy Mater. Sol. Cells 2021, 230, 111172. [Google Scholar] [CrossRef]
- Liao, B.; Stangl, R.; Ma, F.; Mueller, T.; Lin, F.; Aberle, A.G.; Bhatia, C.S.; Hoex, B. Excellentc-Si surface passivation by thermal atomic layer deposited aluminum oxide after industrial firing activation. J. Phys. D Appl. Phys. 2013, 46, 385102. [Google Scholar] [CrossRef]
- Hsu, C.-H.; Cho, Y.-S.; Wu, W.-Y.; Lien, S.-Y.; Zhang, X.-Y.; Zhu, W.-Z.; Zhang, S.; Chen, S.-Y. Enhanced Si Passivation and PERC Solar Cell Efficiency by Atomic Layer Deposited Aluminum Oxide with Two-step Post Annealing. Nanoscale Res. Lett. 2019, 14, 139. [Google Scholar] [CrossRef] [PubMed]
- Noircler, G.; Lebreton, F.; Drahi, E.; de Coux, P.; Warot-Fonrose, B. STEM-EELS investigation of c-Si/a-AlOx interface for solar cell applications. Micron 2021, 145, 103032. [Google Scholar] [CrossRef]
- Hoex, B.; Schmidt, J.; van de Sanden, M.C.M.; Kessels, W.M.M. Crystalline silicon surface passivation by the negative-charge-dielectric Al2O3. In Proceedings of the 2008 IEEE 33rd Photovoltaic Specialists Conference, San Diego, CA, USA, 11–16 May 2008; pp. 1–4. [Google Scholar]
- Terlinden, N.M.; Dingemans, G.; van de Sanden, M.C.M.; Kessels, W.M.M. Role of field-effect on c-Si surface passivation by ultrathin (2–20 nm) atomic layer deposited Al2O3. Appl. Phys. Lett. 2010, 96, 112101. [Google Scholar] [CrossRef] [Green Version]
- Dou, Y.N.; He, Y.; Huang, C.Y.; Zhou, C.L.; Ma, X.G.; Chen, R.; Chu, J.H. Role of surface fixed charge in the surface passivation of thermal atomic layer deposited Al2O3 on crystalline-Si. Appl. Phys. A 2012, 109, 673–677. [Google Scholar] [CrossRef]
- Melitz, W.; Shen, J.; Kummel, A.C.; Lee, S. Kelvin probe force microscopy and its application. Surf. Sci. Rep. 2011, 66, 1–27. [Google Scholar] [CrossRef]
- Garrillo, P.A.F.; Grévin, B.; Chevalier, N.; Borowik, Ł. Calibrated work function mapping by Kelvin probe force microscopy. Rev. Sci. Instrum. 2018, 89, 043702. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Hultqvist, A.; Zhang, T.; Jiang, L.; Ruan, C.; Yang, L.; Cheng, Y.; Edoff, M.; Johansson, E.M.J. Al2O3 Underlayer Prepared by Atomic Layer Deposition for Efficient Perovskite Solar Cells. ChemSusChem 2017, 10, 3810–3817. [Google Scholar] [CrossRef] [Green Version]
- Ludeke, R. Electrical characterization of gate oxides by scanning probe microscopies. J. Non Cryst. Solids 2002, 303, 150–161. [Google Scholar] [CrossRef]
- Khosla, R.; Rolseth, E.G.; Kumar, P.; Vadakupudhupalayam, S.S.; Sharma, S.K.; Schulze, J. Charge Trapping Analysis of Metal/Al2O3/SiO2/Si, Gate Stack for Emerging Embedded Memories. IEEE Trans. Device Mater. Reliab. 2017, 17, 80–89. [Google Scholar] [CrossRef]
- Collins, L.; Kilpatrick, J.I.; Weber, S.A.L.; Tselev, A.; Vlassiouk, I.V.; Ivanov, I.N.; Jesse, S.; Kalinin, S.V.; Rodriguez, B.J. Open loop Kelvin probe force microscopy with single and multi-frequency excitation. Nanotechnology 2013, 24, 475702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sugimura, H.; Ishida, Y.; Hayashi, K.; Takai, O.; Nakagiri, N. Potential shielding by the surface water layer in Kelvin probe force microscopy. Appl. Phys. Lett. 2002, 80, 1459–1461. [Google Scholar] [CrossRef]
- Guerra-Nuñez, C.; Döbeli, M.; Michler, J.; Utke, I. Reaction and Growth Mechanisms in Al2O3 deposited via Atomic Layer Deposition: Elucidating the Hydrogen Source. Chem. Mater. 2017, 29, 8690–8703. [Google Scholar] [CrossRef]
- Dingemans, G.; Einsele, F.; Beyer, W.; van de Sanden, M.C.M.; Kessels, W.M.M. Influence of annealing and Al2O3 properties on the hydrogen-induced passivation of the Si/SiO2 interface. J. Appl. Phys. 2012, 111, 093713. [Google Scholar] [CrossRef] [Green Version]
- Jeurgens, L.P.H.; Sloof, W.G.; Tichelaar, F.D.; Mittemeijer, E.J. Thermodynamic stability of amorphous oxide films on metals: Application to aluminum oxide films on aluminum substrates. Phys. Rev. B 2000, 62, 4707–4719. [Google Scholar] [CrossRef] [Green Version]
- Polak, L.; Wijngaarden, R.J. Two competing interpretations of Kelvin probe force microscopy on semiconductors put to test. Phys. Rev. B 2016, 93, 195320. [Google Scholar] [CrossRef] [Green Version]
TMA | Purge | H2O | Purge | |
---|---|---|---|---|
Time (s) | 0.015 | 3 | 0.015 | 3 |
Samples | As-Deposited | Annealed in Vacuum | ||
---|---|---|---|---|
Morphology | CPD | Morphology | CPD | |
1.5 nm | | | | |
5 nm | | | | |
10 nm | | | | |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, Z.; An, J.; Gong, R.; Zeng, Y.; Ye, J.; Yu, L.; Florea, I.; Roca i Cabarrocas, P.; Chen, W. Coupled Investigation of Contact Potential and Microstructure Evolution of Ultra-Thin AlOx for Crystalline Si Passivation. Nanomaterials 2021, 11, 1803. https://doi.org/10.3390/nano11071803
Zheng Z, An J, Gong R, Zeng Y, Ye J, Yu L, Florea I, Roca i Cabarrocas P, Chen W. Coupled Investigation of Contact Potential and Microstructure Evolution of Ultra-Thin AlOx for Crystalline Si Passivation. Nanomaterials. 2021; 11(7):1803. https://doi.org/10.3390/nano11071803
Chicago/Turabian StyleZheng, Zhen, Junyang An, Ruiling Gong, Yuheng Zeng, Jichun Ye, Linwei Yu, Ileana Florea, Pere Roca i Cabarrocas, and Wanghua Chen. 2021. "Coupled Investigation of Contact Potential and Microstructure Evolution of Ultra-Thin AlOx for Crystalline Si Passivation" Nanomaterials 11, no. 7: 1803. https://doi.org/10.3390/nano11071803
APA StyleZheng, Z., An, J., Gong, R., Zeng, Y., Ye, J., Yu, L., Florea, I., Roca i Cabarrocas, P., & Chen, W. (2021). Coupled Investigation of Contact Potential and Microstructure Evolution of Ultra-Thin AlOx for Crystalline Si Passivation. Nanomaterials, 11(7), 1803. https://doi.org/10.3390/nano11071803