Elucidation of the Crystal Growth Characteristics of SnO2 Nanoaggregates Formed by Sequential Low-Temperature Sol-Gel Reaction and Freeze Drying
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of SnO2 Nanoaggregates
2.2. Structure Characterization of SnO2 Nanoaggregates
3. Results
3.1. XRD Patterns and XPS Spectra of the Obtained Powder Samples
3.2. Proposed Growth Mechanism of SnO2 Based on TEM Analysis and Its Optical Property
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wang, H.; Rogach, A.-L. Hierarchical SnO2 nanostructures: Recent advances in design, synthesis, and applications. Chem. Mater. 2014, 26, 123–133. [Google Scholar] [CrossRef]
- Periyasamy, M.; Kar, A. Modulating the properties of SnO2 nanocrystals: Morphological effects on structural, photoluminescence, photocatalytic, electrochemical and gas sensing properties. J. Mater. Chem. C. 2020, 8, 4604–4635. [Google Scholar] [CrossRef]
- Wang, B.-J.; Ma, S.-Y.; Pei, S.-T.; Xu, X.-L.; Cao, P.-F.; Zhang, J.-L.; Zhang, R.; Xu, X.-H.; Han, T. High specific surface area SnO2 prepared by calcining Sn-MOFs and their formaldehyde-sensing characteristics. Sens. Actuators B Chem. 2020, 321, 128560. [Google Scholar] [CrossRef]
- Zhao, Q.; Ma, L.; Zhang, Q.; Wang, C.; Xu, X. SnO2-Based Nanomaterials: Synthesis and Application in Lithium-Ion Batteries and Supercapacitors. J. Nanomater. 2015, 850147. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Kim, M.-C.; Kim, S.-B.; Kim, Y.-S.; Choi, J.-H.; Park, K.-W. Porous SnO2 nanostructure with a high specific surface area for improved electrochemical performance. RSC Adv. 2020, 10, 10519–10525. [Google Scholar] [CrossRef] [Green Version]
- Matysiak, W.; Tański, T.; Smok, W.; Polishchuk, O. Synthesis of hybrid amorphous/crystalline SnO2 1D nanostructures: Investigation of morphology, structure and optical properties. Sci. Rep. 2020, 10, 14802. [Google Scholar] [CrossRef]
- Wan, W.; Li, Y.; Ren, X.; Zhao, Y.; Gao, F.; Zhao, H. 2D SnO2 Nanosheets: Synthesis, Characterization, Structures, and Excellent Sensing Performance to Ethylene Glycol. Nanomaterials 2018, 8, 112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uchiyama, H.; Shirai, Y.; Kozuka, H. Hydrothermal synthesis of flower-like SnO2 particles consisting of single crystalline nano rods through crystal growth in the presence of poly(acrylic acid). RSC Adv. 2012, 2, 4839–4843. [Google Scholar] [CrossRef]
- Lu, Z.; Zhao, Z.; Yang, L.; Wang, S.; Liu, H.; Feng, W.; Zhao, Y.; Feng, F. A simple method for synthesis of highly efficient flower-like SnO2 photocatalyst nanocomposites. J. Mater. Sci. Mater. Electron. 2019, 30, 50–55. [Google Scholar] [CrossRef]
- Vuong, D.-D.; Hien, V.-X.; Trung, K.-Q.; Chien, N.-D. Synthesis of SnO2 micro-spheres, nano-rods and nano-flowers via simple hydrothermal route. Phys. E 2011, 44, 345–349. [Google Scholar] [CrossRef]
- Sang, L.; Zhao, Y.; Burda, C. TiO2 Nanoparticles as Functional Building Blocks. Chem. Rev. 2014, 114, 9283–9318. [Google Scholar] [CrossRef]
- Manseki, K.; Saka, K.; Matsui, M.; Vafaei, S.; Sugiura, T. Structure identification of Ti(iv) clusters in low-temperature TiO2 crystallization: Creating high-surface area brush-shaped rutile TiO2. CrystEngComm 2017, 19, 5844–5848. [Google Scholar] [CrossRef]
- Vafaei, S.; Springaire, L.; Schnupf, U.; Hisae, K.; Hasegawa, D.; Sugiura, T.; Manseki, K. Low temperature synthesis of anatase TiO2 nanocrystals using an organic-inorganic gel precursor. Powder Technol. 2020, 368, 237–244. [Google Scholar] [CrossRef]
- Jena, A.-K.; Kulkarni, A.; Miyasaka, T. Halide perovskite photovoltaics: Background, status, and future prospects. Chem. Rev. 2019, 119, 3036–3103. [Google Scholar] [CrossRef] [PubMed]
- Yoo, J.-J.; Seo, G.; Chua, M.R.; Park, T.-G.; Lu, Y.; Rotermund, F.; Kim, Y.-K.; Moon, C.-S.; Jeon, N.-J.; Correa-Baena, J.-P.; et al. Efficient perovskite solar cells via improved carrier management. Nature 2021, 590, 587–593. [Google Scholar] [CrossRef]
- Yun, A.-J.; Kim, J.; Hwang, T.; Park, B. Origins of Efficient Perovskite Solar Cells with Low-Temperature Processed SnO2 Electron Transport Layer. ACS Appl. Energy Mater. 2019, 2, 3554–3560. [Google Scholar] [CrossRef]
- Yang, D.; Yang, R.; Wang, K.; Wu, C.; Zhu, X.; Feng, J.; Ren, X.; Fang, G.; Priya, S.; Liu, S.-F. High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO2. Nat. Commun. 2018, 9, 3239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.-Y.; Chueh, C.-C.; Zhu, Z.; Chen, W.-C.; Jen, A.-K.-Y. Low-temperature electrodeposited crystalline SnO2 as an efficient electron-transporting layer for conventional perovskite solar cells. Sol. Energy Mater. Sol. Cells 2017, 164, 47–55. [Google Scholar] [CrossRef] [Green Version]
- Sahoo, M.; Ramaprabhu, S. Solar synthesized tin oxide nanoparticles dispersed on graphene wrapped carbon nanotubes as a Li ion battery anode material with improved stability. RSC Adv. 2017, 7, 13789–13797. [Google Scholar] [CrossRef] [Green Version]
- Lin, H.-E.; Katayanagi, Y.; Kishi, T.; Yano, T.; Matsushita, N. A solution-processed tin dioxide film applicable as a transparent and flexible humidity sensor. RSC Adv. 2018, 8, 30310–30319. [Google Scholar] [CrossRef] [Green Version]
- Kwoka, M.; Lyson-Sypien, B.; Comini, E.; Krzywiecki, M.; Waczynski, K.; Szuber, J. Surface properties of SnO2 nanolayers prepared by spin-coating and thermal oxidation. Nanotechnology 2020, 31, 315714. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Wan, Y.; Yin, S. Oxygen vacancies confined in SnO2 nanoparticles for desirable electronic structure and enhanced visible light photocatalytic activity. Appl. Surf. Sci. 2017, 420, 399–406. [Google Scholar] [CrossRef]
- Xu, Y.; Zheng, L.; Yang, C.; Liu, X.; Zhang, J. Oxygen Vacancies Enabled Porous SnO2 Thin Films for Highly Sensitive Detection of Triethylamine at Room Temperature. ACS Appl. Mater. Interfaces 2020, 12, 20704–20713. [Google Scholar] [CrossRef]
- Jamshidian, M.; Thamburaja, P.; Rabczuk, T. A multiscale coupled finite-element and phase-field framework to modeling stressed grain growth in polycrystalline thin films. J. Comput. Phys. 2016, 327, 779–798. [Google Scholar] [CrossRef]
- Entradas, T.; Cabrita, J.-F.; Dalui, S.; Nunes, M.-R.; Monteiro, O.-C.; Silvestre, A.-J. Synthesis of sub-5 nm Co-doped SnO2 nanoparticles and their structural, microstructural, optical and photocatalytic properties. Mater. Chem. Phys. 2014, 147, 563–571. [Google Scholar] [CrossRef] [Green Version]
- Kamble, V.-B.; Umarji, A.-M. Defect induced optical bandgap narrowing in undoped SnO2 nanocrystals. AIP Adv. 2013, 3, 082120. [Google Scholar] [CrossRef]
Nanoparticles | Size of Nanoparticles (nm) | ||||
---|---|---|---|---|---|
Method 1-Day 5 | Method 2-Day 1 | Method 2-Day 5 | Method 3-Day 1 | Method 3-Day 5 | |
1 | 2.7 | 2.4 | 5.0 | 4.3 | 4.3 |
2 | 2.8 | 2.6 | 3.9 | 3.4 | 4.2 |
3 | 2.0 | 2.9 | 4.9 | 2.6 | 4.2 |
4 | 2.0 | 2.7 | 4.3 | 3.6 | 4.6 |
5 | 3.0 | 4.0 | 3.4 | 4.4 | |
6 | 3.0 | 4.4 | 4.7 |
Methods and Days | Crystalline Size (mm) | Specific Surface Area (m2/g) |
---|---|---|
M1D2 | 2 | 44 |
M1D5 | 3 | 112 |
M2D1 | 3 | 44 |
M2D2 | 3 | 152 |
M2D5 | 5 | 133 |
M3D1 | 3 | 5 |
M3D2 | 3 | 52 |
M3D5 | 3 | 65 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vafaei, S.; Wolosz, A.; Ethridge, C.; Schnupf, U.; Hattori, N.; Sugiura, T.; Manseki, K. Elucidation of the Crystal Growth Characteristics of SnO2 Nanoaggregates Formed by Sequential Low-Temperature Sol-Gel Reaction and Freeze Drying. Nanomaterials 2021, 11, 1738. https://doi.org/10.3390/nano11071738
Vafaei S, Wolosz A, Ethridge C, Schnupf U, Hattori N, Sugiura T, Manseki K. Elucidation of the Crystal Growth Characteristics of SnO2 Nanoaggregates Formed by Sequential Low-Temperature Sol-Gel Reaction and Freeze Drying. Nanomaterials. 2021; 11(7):1738. https://doi.org/10.3390/nano11071738
Chicago/Turabian StyleVafaei, Saeid, Alexander Wolosz, Catlin Ethridge, Udo Schnupf, Nagisa Hattori, Takashi Sugiura, and Kazuhiro Manseki. 2021. "Elucidation of the Crystal Growth Characteristics of SnO2 Nanoaggregates Formed by Sequential Low-Temperature Sol-Gel Reaction and Freeze Drying" Nanomaterials 11, no. 7: 1738. https://doi.org/10.3390/nano11071738
APA StyleVafaei, S., Wolosz, A., Ethridge, C., Schnupf, U., Hattori, N., Sugiura, T., & Manseki, K. (2021). Elucidation of the Crystal Growth Characteristics of SnO2 Nanoaggregates Formed by Sequential Low-Temperature Sol-Gel Reaction and Freeze Drying. Nanomaterials, 11(7), 1738. https://doi.org/10.3390/nano11071738