Comparison of Surface Properties of Sepiolite and Palygorskite: Surface Energy and Nanoroughness
Abstract
:1. Introduction
2. Materials and Methods
2.1. Clays
2.2. Inverse Gas Chromatography (IGC)
2.3. IGC Theory
3. Results and Discussion
3.1. Sample Characterization by X-ray Diffraction and Thermogravimetry
3.2. Dispersive Component of the Surface Free Energy
3.3. Specific Interaction Parameters
3.4. Nanomorphology Index ()
4. Commercial Applications of the Mineral Samples and Relevance of IGC Results
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cecilia, J.A.; Vilarrasa-García, E.; Cavalcante, C.L.; Azevedo, D.C.S.; Franco, F.; Rodríguez-Castellón, E. Evaluation of two fibrous clay minerals (sepiolite and palygorskite) for CO2 capture. J. Environ. Chem. Eng. 2018, 6, 4573–4587. [Google Scholar] [CrossRef]
- Singer, A. Palygorskite and Sepiolite Group Minerals. In Minerals in Soil Environments, 2nd ed.; Dixon, J.B., Weed, S.B., Eds.; Soil Science Society of America: Madison, WI, USA, 1989; Volume 1, pp. 829–872. [Google Scholar]
- Suaréz, M.; García-Romero, E. Chapter 2—Advances in the Crystal Chemistry of Sepiolite and Palygorskite. In Developments in Clay Science; Galán, E., Singer, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2011; Volume 3, pp. 33–65. [Google Scholar] [CrossRef]
- Galán, E. Properties and applications of palygorskite-sepiolite clays. Clay Miner. 1996, 31, 443–453. [Google Scholar] [CrossRef]
- Ruiz-Hitzky, E.; Darder, M.; Fernandes, F.M.; Wicklein, B.; Alcântara, A.C.S.; Aranda, P. Fibrous clays based bionanocomposites. Prog. Polym. Sci. 2013, 38, 1392–1414. [Google Scholar] [CrossRef] [Green Version]
- Santos, J.M.R.C.A.; Guthrie, J.T. Analysis of interactions in multicomponent polymeric systems: The key-role of inverse gas chromatography. Mater. Sci. Eng. R Rep. 2005, 50, 79–107. [Google Scholar] [CrossRef]
- Gamelas, J.A.F. The surface properties of cellulose and lignocellulosic materials assessed by inverse gas chromatography: A review. Cellulose 2013, 20, 2675–2693. [Google Scholar] [CrossRef] [Green Version]
- Mohammadi-Jam, S.; Waters, K.E. Inverse gas chromatography applications: A review. Adv. Colloid Interface Sci. 2014, 212, 21–44. [Google Scholar] [CrossRef]
- Gamelas, J.A.F.; Salvador, A.; Hidalgo, J.; Ferreira, P.J.; Tejado, A. Unique combination of surface energy and lewis acid−base characteristics of superhydrophobic cellulose fibers. Langmuir 2017, 33, 927–935. [Google Scholar] [CrossRef]
- Morales, E.; Dabrio, M.V.; Herrero, C.R.; Acosta, J.L. Acid/base characterization of sepiolite by inverse gas chromatography. Chromatographia 1991, 31, 357–361. [Google Scholar] [CrossRef]
- Așkin, A.; Yazici, D.T. Surface characterization of sepiolite by inverse gas chromatography. Chromatographia 2005, 61, 625–631. [Google Scholar] [CrossRef]
- Lazarević, S.; Radovanović, Ž.; Veljović, D.; Onjia, A.; Janaćković, D.; Petrović, R. Characterization of sepiolite by inverse gas chromatography at infinite and finite surface coverage. Appl. Clay Sci. 2009, 43, 41–48. [Google Scholar] [CrossRef]
- Boudriche, L.; Hamdi, B.; Kessaïssia, Z.; Calvet, R.; Chamayou, A.; Dodds, J.A.; Balard, H. An assessment of the surface properties of milled attapulgite using inverse gas chromatography. Clays Clay Miner. 2010, 58, 143–153. [Google Scholar] [CrossRef]
- Alves, L.; Ferraz, E.; Santarén, J.; Rasteiro, M.G.; Gamelas, J.A.F. Improving colloidal stability of sepiolite suspensions: Effect of the mechanical disperser and chemical dispersant. Minerals 2020, 10, 779. [Google Scholar] [CrossRef]
- Ferraz, E.; Alves, L.; Sanguino, P.; Santarén, J.; Rasteiro, M.G.; Gamelas, J.A.F. Stabilization of palygorskite aqueous suspensions using bio-based and synthetic polyelectrolytes. Polymers 2021, 13, 129. [Google Scholar] [CrossRef] [PubMed]
- Kamdem, D.P.; Riedl, B. Inverse gas chromatography of lignocellulosic fibers coated with a thermosetting polymer: Use of peak maximum and Conder and Young methods. J. Colloid Interface Sci. 1992, 150, 507–516. [Google Scholar] [CrossRef]
- Mukhopadhyay, P.; Schreiber, H.P. Aspects of acid-base interactions and use of inverse gas chromatography. Colloids Surf. A Physicochem. Eng. Asp. 1995, 100, 47–71. [Google Scholar] [CrossRef]
- Schultz, J.; Lavielle, L.; Martin, C. The role of the interface in carbon fibre-epoxy composites. J. Adhes. 1987, 23, 45–60. [Google Scholar] [CrossRef]
- Dorris, G.M.; Gray, D.G. Adsorption of n-alkanes at zero surface coverage on cellulose paper and wood fibres. J. Colloid Interface Sci. 1980, 77, 353–362. [Google Scholar] [CrossRef]
- Brendlé, E.; Papirer, E. A new topological index for molecular probes used in inverse gas chromatography for the surface nanorugosity evaluation. J. Colloid Interface Sci. 1997, 194, 207–216. [Google Scholar] [CrossRef]
- Balard, H.; Brendlé, E.; Papirer, E. Determination of Acid-Base properties of Solids Surfaces using Inverse Gas Chromatography: Advantages and Limitations. In Acid- Base Interactions: Relevance to Adhesion Science and Technology; Mittal, K.L., Ed.; VSP: Utrecht, The Netherlands, 2000; Volume 2, pp. 299–316. [Google Scholar]
- Gamelas, J.A.F.; Ferraz, E.; Rocha, F. An insight into the surface properties of calcined kaolinitic clays: The grinding effect. Colloids Surf. A Physicochem. Eng. Asp. 2014, 455, 49–57. [Google Scholar] [CrossRef]
- Gamelas, J.A.F.; Martins, A.G. Surface properties of carbonated and non-carbonated hydroxyapatites obtained after bone calcination at different temperatures. Colloids Surf. A Physicochem. Eng. Asp. 2015, 478, 62–70. [Google Scholar] [CrossRef]
- Perruchot, C.; Chehimi, M.M.; Vaulay, M.J.; Benzarti, K. Characterisation of the surface thermodynamic properties of cement components by inverse gas chromatography at infinite dilution. Cem. Concr. Res. 2006, 36, 305–319. [Google Scholar] [CrossRef]
- Ansari, D.M.; Price, G.J. Chromatographic estimation of filler surface energies and correlation with photodegradation of kaolin filled polyethylene. Polymer 2004, 45, 1823–1831. [Google Scholar] [CrossRef] [Green Version]
- Saada, A.; Papirer, E.; Balard, H.; Siffert, B. Determination of the surface properties of illites and kaolinites by inverse gas chromatography. J. Colloid Interface Sci. 1995, 175, 212–218. [Google Scholar] [CrossRef]
Sample | γsd (Schultz–Lavielle) (mJ m−2) | γsd (Dorris–Gray) (mJ m−2) |
---|---|---|
Sep. 1 | 135 ± 11 | 205 ± 16 |
Sep. 2 | 151 ± 4 | 229 ± 6 |
Pal | 110 ± 5 | 166 ± 8 |
Probes | (%, Brendlé and Papirer, 1997) | (Balard et al. 2000) | ||||
---|---|---|---|---|---|---|
Sep. 1 | Sep. 2 | Pal | Sep. 1 | Sep. 2 | Pal | |
Cyclo 6 | −24.1 ± 1.7 | −25.7 ± 0.4 | −9.6 ± 0.4 | 0.16 ± 0.010 | 0.15 ± 0.003 | 0.53 ± 0.010 |
Cyclo 8 | −30.0 ± 0.6 | −32.9 ± 0.5 | −11.7 ± 0.5 | 0.05 ± 0.005 | 0.04 ± 0.003 | 0.35 ± 0.013 |
2,2,4-TMP | −26.6 ± 1.2 | −30.0 ± 0.5 | −5.6 ± 0.7 | 0.09 ± 0.002 | 0.07 ± 0.005 | 0.64 ± 0.030 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almeida, R.; Ferraz, E.; Santarén, J.; Gamelas, J.A.F. Comparison of Surface Properties of Sepiolite and Palygorskite: Surface Energy and Nanoroughness. Nanomaterials 2021, 11, 1579. https://doi.org/10.3390/nano11061579
Almeida R, Ferraz E, Santarén J, Gamelas JAF. Comparison of Surface Properties of Sepiolite and Palygorskite: Surface Energy and Nanoroughness. Nanomaterials. 2021; 11(6):1579. https://doi.org/10.3390/nano11061579
Chicago/Turabian StyleAlmeida, Ricardo, Eduardo Ferraz, Julio Santarén, and José A. F. Gamelas. 2021. "Comparison of Surface Properties of Sepiolite and Palygorskite: Surface Energy and Nanoroughness" Nanomaterials 11, no. 6: 1579. https://doi.org/10.3390/nano11061579
APA StyleAlmeida, R., Ferraz, E., Santarén, J., & Gamelas, J. A. F. (2021). Comparison of Surface Properties of Sepiolite and Palygorskite: Surface Energy and Nanoroughness. Nanomaterials, 11(6), 1579. https://doi.org/10.3390/nano11061579