Thickness-Dependent Photoelectrochemical Water Splitting Properties of Self-Assembled Nanostructured LaFeO3 Perovskite Thin Films
Abstract
:1. Introduction
2. Materials and Methods
2.1. Thin Films Deposition
2.2. Characterization and Photoelectrochemical Measurements
3. Results
3.1. XRD Measurements
3.2. Photoelectrochemical (PEC) Measurements
3.3. High-Resolution Electron Microscopy in Cross-Section (XTEM)
3.4. Optical Properties: Spectrometric Ellipsometry (SE)
3.5. Stoichiometric Investigations: Rutherford Backscattering
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Turan, B.; Becker, J.-P.; Urbain, F.; Finger, F.; Rau, U.; Haas, S. Upscaling of Integrated Photoelectrochemical Water-Splitting Devices to Large Areas. Nat. Commun. 2016, 7, 12681. [Google Scholar] [CrossRef] [Green Version]
- Currao, A. Photoelectrochemical Water Splitting. CHIMIA Int. J. Chem. 2007, 61, 815–819. [Google Scholar] [CrossRef]
- Walter, M.G.; Warren, E.L.; McKone, J.R.; Boettcher, S.W.; Mi, Q.; Santori, E.A.; Lewis, N.S. Solar Water Splitting Cells. Chem. Rev. 2010, 110, 6446–6473. [Google Scholar] [CrossRef] [PubMed]
- De Chialvo, M.R.G.; Chialvo, A.C. Hydrogen Evolution Reaction: Analysis of the Volmer-Heyrovsky-Tafel Mechanism with a Generalized Adsorption Model. J. Electroanal. Chem. 1994, 372, 209–223. [Google Scholar] [CrossRef]
- Hu, C.; Zhang, L.; Gong, J. Recent Progress Made in the Mechanism Comprehension and Design of Electrocatalysts for Alkaline Water Splitting. Energy Environ. Sci. 2019, 12, 2620–2645. [Google Scholar] [CrossRef]
- Kim, J.S.; Kim, B.; Kim, H.; Kang, K. Recent Progress on Multimetal Oxide Catalysts for the Oxygen Evolution Reaction. Adv. Energy Mater. 2018, 8, 1702774. [Google Scholar] [CrossRef]
- Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S.Z. Design of Electrocatalysts for Oxygen- and Hydrogen-Involving Energy Conversion Reactions. Chem. Soc. Rev. 2015, 44, 2060–2086. [Google Scholar] [CrossRef]
- Seh, Z.W.; Kibsgaard, J.; Dickens, C.F.; Chorkendorff, I.; Nørskov, J.K.; Jaramillo, T.F. Combining Theory and Experiment in Electrocatalysis: Insights into Materials Design. Science 2017, 355, eaad4998. [Google Scholar] [CrossRef] [Green Version]
- Hou, Y.; Zhuang, X.; Feng, X. Electrocatalysts: Recent Advances in Earth-Abundant Heterogeneous Electrocatalysts for Photoelectrochemical Water Splitting (Small Methods 6/2017). Small Methods 2017, 1, 1700090. [Google Scholar] [CrossRef]
- Wolcott, A.; Smith, W.A.; Kuykendall, T.R.; Zhao, Y.; Zhang, J.Z. Photoelectrochemical Study of Nanostructured ZnO Thin Films for Hydrogen Generation from Water Splitting. Adv. Funct. Mater. 2009, 19, 1849–1856. [Google Scholar] [CrossRef]
- Kim, J.Y.; Magesh, G.; Youn, D.H.; Jang, J.-W.; Kubota, J.; Domen, K.; Lee, J.S. Single-Crystalline, Wormlike Hematite Photoanodes for Efficient Solar Water Splitting. Sci. Rep. 2013, 3, 2681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, J.; Kim, T.L.; Lee, J.; Cho, S.Y.; Cha, J.; Jeong, S.Y.; An, H.; Kim, W.S.; Jung, Y.-S.; Park, J.; et al. Domain-Engineered BiFeO3 Thin-Film Photoanodes for Highly Enhanced Ferroelectric Solar Water Splitting. Nano Res. 2018, 11, 642–655. [Google Scholar] [CrossRef]
- Xu, H.-M.; Wang, H.; Shi, J.; Lin, Y.; Nan, C. Photoelectrochemical Performance Observed in Mn-Doped BiFeO3 Heterostructured Thin Films. Nanomaterials 2016, 6, 215. [Google Scholar] [CrossRef] [Green Version]
- Scarisoreanu, N.D.; Craciun, F.; Birjega, R.; Ion, V.; Teodorescu, V.S.; Ghica, C.; Negrea, R.; Dinescu, M. Joining Chemical Pressure and Epitaxial Strain to Yield Y-Doped BiFeO3 Thin Films with High Dielectric Response. Sci. Rep. 2016, 6, 25535. [Google Scholar] [CrossRef] [Green Version]
- Ion, V.; Craciun, F.; Scarisoreanu, N.D.; Moldovan, A.; Andrei, A.; Birjega, R.; Ghica, C.; Di Pietrantonio, F.; Cannata, D.; Benetti, M.; et al. Impact of Thickness Variation on Structural, Dielectric and Piezoelectric Properties of (Ba,Ca)(Ti,Zr)O3 Epitaxial Thin Films. Sci. Rep. 2018, 8, 2056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scarisoreanu, N.D.; Craciun, F.; Moldovan, A.; Ion, V.; Birjega, R.; Ghica, C.; Negrea, R.F.; Dinescu, M. High Permittivity (1–x)Ba(Zr0.2Ti0.8)O3–x(Ba0.7Ca0.3)TiO3 (x = 0.45) Epitaxial Thin Films with Nanoscale Phase Fluctuations. ACS Appl. Mater. Interfaces 2015, 7, 23984–23992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haydous, F.; Scarisoreanu, N.D.; Birjega, R.; Ion, V.; Lippert, T.; Dumitrescu, N.; Moldovan, A.; Andrei, A.; Teodorescu, V.S.; Ghica, C.; et al. Rolling Dopant and Strain in Y-Doped BiFeO3 Epitaxial Thin Films for Photoelectrochemical Water Splitting. Sci. Rep. 2018, 8, 15826. [Google Scholar] [CrossRef]
- Takata, T.; Domen, K. Defect Engineering of Photocatalysts by Doping of Aliovalent Metal Cations for Efficient Water Splitting. J. Phys. Chem. C 2009, 113, 19386–19388. [Google Scholar] [CrossRef]
- Ikeda, S.; Hirao, K.; Ishino, S.; Matsumura, M.; Ohtani, B. Preparation of Platinized Strontium Titanate Covered with Hollow Silica and Its Activity for Overall Water Splitting in a Novel Phase-Boundary Photocatalytic System. Catal. Today 2006, 117, 343–349. [Google Scholar] [CrossRef] [Green Version]
- Kato, H.; Asakura, K.; Kudo, A. Highly Efficient Water Splitting into H2 and O2 over Lanthanum-Doped NaTaO3 Photocatalysts with High Crystallinity and Surface Nanostructure. J. Am. Chem. Soc. 2003, 125, 3082–3089. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, G.; Li, Y.; Teng, Y. Electronic structure and photocatalytic properties of copper-doped CaTiO3. Int. J. Hydrogen. Energy 2010, 35, 2713–2716. [Google Scholar] [CrossRef]
- Li, J.; Jia, L.; Fang, W.; Zeng, J. Enhancement of activity of LaNi0.7Cu0.3O3 for photocatalytic water splitting by reduction treatment at moderate temperature. Int. J. Hydrogen. Energy 2010, 35, 5270–5275. [Google Scholar] [CrossRef]
- Ramachandran, B.; Ramachandra Rao, M.S. Chemical Pressure Effect on Optical Properties in Multiferroic Bulk BiFeO3. J. Appl. Phys. 2012, 112, 73516. [Google Scholar] [CrossRef]
- Ji, W.; Yao, K.; Lim, Y.-F.; Liang, Y.C.; Suwardi, A. Epitaxial Ferroelectric BiFeO3 Thin Films for Unassisted Photocatalytic Water Splitting. Appl. Phys. Lett. 2013, 103, 62901. [Google Scholar] [CrossRef]
- Li, F.; Liu, Y.; Liu, R.; Sun, Z.; Zhao, D.; Kou, C. Preparation of Ca-Doped LaFeO3 Nanopowders in a Reverse Microemulsion and Their Visible Light Photocatalytic Activity. Mater. Lett. 2010, 64, 223–225. [Google Scholar] [CrossRef]
- Li, S.; Jing, L.; Fu, W.; Yang, L.; Xin, B.; Fu, H. Photoinduced Charge Property of Nanosized Perovskite-Type LaFeO3 and Its Relationships with Photocatalytic Activity under Visible Irradiation. Mater. Res. Bull. 2007, 42, 203–212. [Google Scholar] [CrossRef]
- Celorrio, V.; Bradley, K.; Weber, O.J.; Hall, S.R.; Fermín, D.J. Photoelectrochemical Properties of LaFeO3 Nanoparticles. ChemElectroChem 2014, 1, 1667–1671. [Google Scholar] [CrossRef]
- Parida, K.M.; Reddy, K.H.; Martha, S.; Das, D.P.; Biswal, N. Fabrication of Nanocrystalline LaFeO3: An Efficient Sol–Gel Auto-Combustion Assisted Visible Light Responsive Photocatalyst for Water Decomposition. Int. J. Hydrogen. Energy 2010, 35, 12161–12168. [Google Scholar] [CrossRef]
- Natali Sora, I.; Fontana, F.; Passalacqua, R.; Ampelli, C.; Perathoner, S.; Centi, G.; Parrino, F.; Palmisano, L. Photoelectrochemical Properties of Doped Lanthanum Orthoferrites. Electrochim. Acta 2013, 109, 710–715. [Google Scholar] [CrossRef] [Green Version]
- Pawar, G.S.; Tahir, A.A. Unbiased Spontaneous Solar Fuel Production Using Stable LaFeO3 Photoelectrode. Sci. Rep. 2018, 8, 3501. [Google Scholar] [CrossRef]
- Zavaliche, F.; Zheng, H.; Mohaddes-Ardabili, L.; Yang, S.Y.; Zhan, Q.; Shafer, P.; Reilly, E.; Chopdekar, R.; Jia, Y.; Wright, P.; et al. Electric Field-Induced Magnetization Switching in Epitaxial Columnar Nanostructures. Nano Lett. 2005, 5, 1793–1796. [Google Scholar] [CrossRef]
- MacManus-Driscoll, J.L.; Zerrer, P.; Wang, H.; Yang, H.; Yoon, J.; Fouchet, A.; Yu, R.; Blamire, M.G.; Jia, Q. Strain Control and Spontaneous Phase Ordering in Vertical Nanocomposite Heteroepitaxial Thin Films. Nat. Mater. 2008, 7, 314–320. [Google Scholar] [CrossRef] [PubMed]
- Moshnyaga, V.; Damaschke, B.; Shapoval, O.; Belenchuk, A.; Faupel, J.; Lebedev, O.I.; Verbeeck, J.; van Tendeloo, G.; Mücksch, M.; Tsurkan, V.; et al. Structural Phase Transition at the Percolation Threshold in Epitaxial (La0.7Ca0.3MnO3)1–X:(MgO)x Nanocomposite Films. Nat. Mater. 2003, 2, 247–252. [Google Scholar] [CrossRef] [PubMed]
- Bi, L.; Kim, H.-S.; Dionne, G.F.; Ross, C.A.; Paik, H.; Park, Y.C. Orientation Control and Self-Assembled Nanopyramid Structure of LaFeO3 Films Epitaxially Grown on SrTiO3(001) Substrates. Appl. Phys. Lett. 2009, 95, 121908. [Google Scholar] [CrossRef]
- May, K.J.; Fenning, D.P.; Ming, T.; Hong, W.T.; Lee, D.; Stoerzinger, K.A.; Biegalski, M.D.; Kolpak, A.M.; Shao-Horn, Y. Thickness-Dependent Photoelectrochemical Water Splitting on Ultrathin LaFeO3 Films Grown on Nb:SrTiO3. J. Phys. Chem. Lett. 2015, 6, 977–985. [Google Scholar] [CrossRef] [PubMed]
- Geller, S.; Wood, E.A. Crystallographic Studies of Perovskite-like Compounds. I. Rare Earth Orthoferrites and YFeO3, YCrO3, YAlO3. Acta Cryst. 1956, 9, 563–568. [Google Scholar] [CrossRef]
- Seo, J.W.; Fullerton, E.E.; Nolting, F.; Scholl, A.; Fompeyrine, J.; Locquet, J.-P. Antiferromagnetic LaFeO3 thin Films and Their Effect on Exchange Bias. J. Phys. Condens. Matter 2008, 20, 264014. [Google Scholar] [CrossRef]
- Scafetta, M.D.; May, S.J. Effect of Cation Off-Stoichiometry on Optical Absorption in Epitaxial LaFeO3 Films. Phys. Chem. Chem. Phys. 2017, 19, 10371–10376. [Google Scholar] [CrossRef]
- Williamson, G.K.; Hall, W.H. X-Ray Line Broadening from Filed Aluminium and Wolfram. Acta Metall. 1953, 1, 22–31. [Google Scholar] [CrossRef]
- Chierchia, R.; Böttcher, T.; Heinke, H.; Einfeldt, S.; Figge, S.; Hommel, D. Microstructure of Heteroepitaxial GaN Revealed by X-Ray Diffraction. J. Appl. Phys. 2003, 93, 8918–8925. [Google Scholar] [CrossRef]
- Metzger, T.; Höpler, R.; Born, E.; Ambacher, O.; Stutzmann, M.; Stömmer, R.; Schuster, M.; Göbel, H.; Christiansen, S.; Albrecht, M.; et al. Defect Structure of Epitaxial GaN Films Determined by Transmission Electron Microscopy and Triple-Axis X-Ray Diffractometry. Philos. Mag. A 1998, 77, 1013–1025. [Google Scholar] [CrossRef]
- Vickers, M.E.; Kappers, M.J.; Datta, R.; McAleese, C.; Smeeton, T.M.; Rayment, F.D.G.; Humphreys, C.J. In-Plane Imperfections in GaN Studied by x-Ray Diffraction. J. Phys. D Appl. Phys. 2005, 38, A99–A104. [Google Scholar] [CrossRef]
- Xu, X.; Li, Y.; Liu, J.; Wei, H.; Liu, X.; Yang, S.; Wang, Z.; Wang, H. X-Ray Probe of GaN Thin Films Grown on InGaN Compliant Substrates. Appl. Phys. Lett. 2013, 102, 132104. [Google Scholar] [CrossRef]
- Nandi, R.; Appani, S.K.; Major, S.S. Vertically Aligned ZnO Nanorods of High Crystalline and Optical Quality Grown by Dc Reactive Sputtering. Mater. Res. Express 2016, 3, 095009. [Google Scholar] [CrossRef]
- Norton, D.P.; Park, C.; Budai, J.D.; Pennycook, S.J.; Prouteau, C. Plume-Induced Stress in Pulsed-Laser Deposited CeO2 Films. Appl. Phys. Lett. 1999, 74, 2134–2136. [Google Scholar] [CrossRef]
- Grepstad, J.K.; Takamura, Y.; Scholl, A.; Hole, I.; Suzuki, Y.; Tybell, T. Effects of Thermal Annealing in Oxygen on the Antiferromagnetic Order and Domain Structure of Epitaxial LaFeO3 Thin Films. Thin Solid Films 2005, 486, 108–112. [Google Scholar] [CrossRef]
- Andrei, F.; Boerasu, I.; Birjega, R.; Moldovan, A.; Dinescu, M.; Ion, V.; Mihailescu, C.; Scarisoreanu, N.D.; Leca, V. The Effects of the Oxygen Content on the Photoelectrochemical Properties of LaFeO3 Perovskite Thin Films Obtained by Pulsed Laser Deposition. Appl. Phys. A 2019, 125, 807. [Google Scholar] [CrossRef]
- Breckenfeld, E.; Chen, Z.; Damodaran, A.; Martin, L. Effects of Nonequilibrium Growth, Nonstoichiometry, and Film Orientation on the Metal-to-Insulator Transition in NdNiO3 Thin Films. ACS Appl. Mater. Interfaces 2014, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Comes, R.B.; Smolin, S.Y.; Kaspar, T.C.; Gao, R.; Apgar, B.A.; Martin, L.W.; Bowden, M.E.; Baxter, J.B.; Chambers, S.A. Visible Light Carrier Generation in Co-Doped Epitaxial Titanate Films. Appl. Phys. Lett. 2015, 106, 092901. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Bagnall, D.M.; Koh, H.; Park, K.; Hiraga, K.; Zhu, Z.; Yao, T. Plasma Assisted Molecular Beam Epitaxy of ZnO on c -Plane Sapphire: Growth and Characterization. J. Appl. Phys. 1998, 84, 3912–3918. [Google Scholar] [CrossRef]
- Zanetti, S.M.; Leite, E.R.; Longo, E.; Varela, J.A. Preparation of Ferroelectric Bi-Layered Thin Films Using the Modified Polymeric Precursor Method. Mater. Res. 2001, 4, 157–162. [Google Scholar] [CrossRef]
- Rangel, J.H.G.; Bernardi, M.I.B.; Paskocimas, C.A.; Longo, E.; Varela, J.A. Study on the Orientation Degree of Pb1−xLaxTiO3 Thin Films by the Rocking Curve Technique and Its Morphological Aspects. Surf. Coat. Technol. 2007, 201, 6345–6351. [Google Scholar] [CrossRef]
- Yu, Q.; Meng, X.; Wang, T.; Li, P.; Liu, L.; Chang, K.; Liu, G.; Ye, J. A Highly Durable P-LaFeO3/n-Fe2O3 Photocell for Effective Water Splitting under Visible Light. Chem. Commun. 2015, 51, 3630–3633. [Google Scholar] [CrossRef]
- Peng, Q.; Wang, J.; Wen, Y.W.; Shan, B.; Chen, R. Surface Modification of LaFeO3 by Co-Pi Electrochemical Deposition as an Efficient Photoanode under Visible Light. RSC Adv. 2016, 6, 26192–26198. [Google Scholar] [CrossRef]
- Fujiwara, H. Spectroscopic Ellipsometry: Principles and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2007; ISBN 978-0470016084. [Google Scholar]
- Scafetta, M.D.; Cordi, A.M.; Rondinelli, J.M.; May, S.J. Band Structure and Optical Transitions in LaFeO3: Theory and Experiment. J. Phys. Condens. Matter 2014, 26, 505502. [Google Scholar] [CrossRef] [PubMed]
- SIMNRA—Software for Simulation of RBS, ERDA, NRA, MEIS and PIGE. Available online: https://www2.ipp.mpg.de/~mam/ (accessed on 30 April 2021).
D (nm) | Structural Data | |||||
---|---|---|---|---|---|---|
a out-of-plane (nm) | a in-plane (nm) | L┴ (nm) | ε┴ Microstrain (%) | αtilt (°) | LII (nm) | |
14(15) | 3.950 | 3.899 | 13 | 0.01 | 0.095 | 512 |
21(24) | 3.948 | 3.902 | 35 | 0.06 | 0.09 | 752 |
29 | 3.944 | n.det | 32 | 0.02 | 0.13 | 350 |
32 | 3.941 | 3.904 | 33 | 0.25 | 0.14 | 151 |
132(140) | 3.935 | n.det | 71 | 0.14 | 0.18 | 195 |
192 | 3.927 | n.det | 127 | 0.40 | 1.22 | 38 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andrei, F.; Ion, V.; Bîrjega, R.; Dinescu, M.; Enea, N.; Pantelica, D.; Mihai, M.D.; Maraloiu, V.-A.; Teodorescu, V.S.; Marcu, I.-C.; et al. Thickness-Dependent Photoelectrochemical Water Splitting Properties of Self-Assembled Nanostructured LaFeO3 Perovskite Thin Films. Nanomaterials 2021, 11, 1371. https://doi.org/10.3390/nano11061371
Andrei F, Ion V, Bîrjega R, Dinescu M, Enea N, Pantelica D, Mihai MD, Maraloiu V-A, Teodorescu VS, Marcu I-C, et al. Thickness-Dependent Photoelectrochemical Water Splitting Properties of Self-Assembled Nanostructured LaFeO3 Perovskite Thin Films. Nanomaterials. 2021; 11(6):1371. https://doi.org/10.3390/nano11061371
Chicago/Turabian StyleAndrei, Florin, Valentin Ion, Ruxandra Bîrjega, Maria Dinescu, Nicoleta Enea, Dan Pantelica, Maria Diana Mihai, Valentin-Adrian Maraloiu, Valentin Serban Teodorescu, Ioan-Cezar Marcu, and et al. 2021. "Thickness-Dependent Photoelectrochemical Water Splitting Properties of Self-Assembled Nanostructured LaFeO3 Perovskite Thin Films" Nanomaterials 11, no. 6: 1371. https://doi.org/10.3390/nano11061371
APA StyleAndrei, F., Ion, V., Bîrjega, R., Dinescu, M., Enea, N., Pantelica, D., Mihai, M. D., Maraloiu, V.-A., Teodorescu, V. S., Marcu, I.-C., & Scarisoreanu, N. D. (2021). Thickness-Dependent Photoelectrochemical Water Splitting Properties of Self-Assembled Nanostructured LaFeO3 Perovskite Thin Films. Nanomaterials, 11(6), 1371. https://doi.org/10.3390/nano11061371