Phase Transitions in the “Spinel-Layered” Li1+xNi0.5Mn1.5O4 (x = 0, 0.5, 1) Cathodes upon (De)lithiation Studied with Operando Synchrotron X-ray Powder Diffraction
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thackeray, M.M.; Kang, S.-H.; Johnson, C.S.; Vaughey, J.; Benedek, R.; Hackney, S.A. Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries. J. Mater. Chem. 2007, 17, 3112–3125. [Google Scholar] [CrossRef]
- Lu, Z.; Dahn, J.R. Understanding the Anomalous Capacity of Li/Li[NixLi(1/3−2x/3)Mn(2/3−x/3)]O2 Cells Using In Situ X-Ray Diffraction and Electrochemical Studies. J. Electrochem. Soc. 2002, 149, A815. [Google Scholar] [CrossRef]
- Lu, Z.; Beaulieu, L.Y.; Donaberger, R.A.; Thomas, C.L.; Dahn, J.R. Synthesis, Structure, and Electrochemical Behavior of Li[NixLi1/3−2x/3Mn2/3−x/3]O2. J. Electrochem. Soc. 2002, 149, A778–A791. [Google Scholar] [CrossRef]
- Kim, J.-S.; Johnson, C.S.; Vaughey, J.; Thackeray, M.M.; Hackney, S.A.; Yoon, W.-S.; Grey, C.P. Electrochemical and Structural Properties of xLi2M‘O3(1−x)LiMn0.5Ni0.5O2 Electrodes for Lithium Batteries (M‘ = Ti, Mn, Zr; 0 ≤ x ≤ 0.3). Chem. Mater. 2004, 16, 1996–2006. [Google Scholar] [CrossRef]
- Rozier, P.; Tarascon, J.M. Review—Li-Rich Layered Oxide Cathodes for Next-Generation Li-Ion Batteries: Chances and Challenges. J. Electrochem. Soc. 2015, 162, A2490–A2499. [Google Scholar] [CrossRef]
- And, A.D.R.; Bruce, P.G. Mechanism of Electrochemical Activity in Li2MnO3. Chem. Mater. 2003, 15, 1984–1992. [Google Scholar] [CrossRef]
- Rana, J.; Papp, J.K.; Lebens-Higgins, Z.; Zuba, M.J.; Kaufman, L.A.; Goel, A.; Schmuch, R.; Winter, M.; Whittingham, M.S.; Yang, W.; et al. Quantifying the Capacity Contributions during Activation of Li2MnO3. ACS Energy Lett. 2020, 5, 634–641. [Google Scholar] [CrossRef]
- Cho, E.; Kim, K.; Jung, C.; Seo, S.-W.; Min, K.; Lee, H.S.; Park, G.-S.; Shin, J. Overview of the Oxygen Behavior in the Degradation of Li2MnO3 Cathode Material. J. Phys. Chem. C 2017, 121, 21118–21127. [Google Scholar] [CrossRef]
- McCalla, E.; Abakumov, A.M.; Saubanère, M.; Foix, D.; Berg, E.J.; Rousse, G.; Doublet, M.-L.; Gonbeau, D.; Novak, P.; Van Tendeloo, G.; et al. Visualization of O-O peroxo-like dimers in high-capacity layered oxides for Li-ion batteries. Science 2015, 350, 1516–1521. [Google Scholar] [CrossRef]
- Gent, W.E.; Lim, K.; Liang, Y.; Li, Q.; Barnes, T.; Ahn, S.-J.; Stone, K.H.; McIntire, M.; Hong, J.; Song, J.H.; et al. Coupling between oxygen redox and cation migration explains unusual electrochemistry in lithium-rich layered oxides. Nat. Commun. 2017, 8, 2091. [Google Scholar] [CrossRef]
- Seo, D.-H.; Lee, J.; Urban, A.; Malik, R.; Kang, S.; Ceder, G. The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials. Nat. Chem. 2016, 8, 692–697. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, A.R.; Holzapfel, M.; Novák, P.; Johnson, C.S.; Kang, S.-H.; Thackeray, M.M.; Bruce, P.G. Demonstrating Oxygen Loss and Associated Structural Reorganization in the Lithium Battery Cathode Li[Ni0.2Li0.2Mn0.6]O2. J. Am. Chem. Soc. 2006, 128, 8694–8698. [Google Scholar] [CrossRef] [PubMed]
- Gu, M.; Belharouak, I.; Zheng, J.; Wu, H.; Xiao, J.; Genc, A.; Amine, K.; Thevuthasan, S.; Baer, D.R.; Zhang, J.-G.; et al. Formation of the Spinel Phase in the Layered Composite Cathode Used in Li-Ion Batteries. ACS Nano 2013, 7, 760–767. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Fell, C.R.; Chi, M.; Meng, Y.S. Identifying surface structural changes in layered Li-excess nickel manganese oxides in high voltage lithium ion batteries: A joint experimental and theoretical study. Energy Environ. Sci. 2011, 4, 2223–2233. [Google Scholar] [CrossRef]
- Lee, E.-S.; Huq, A.; Chang, H.-Y.; Manthiram, A. High-Voltage, High-Energy Layered-Spinel Composite Cathodes with Superior Cycle Life for Lithium-Ion Batteries. Chem. Mater. 2011, 24, 600–612. [Google Scholar] [CrossRef]
- Park, S.; Kang, S.; Johnson, C.; Amine, K.; Thackeray, M. Lithium–manganese–nickel-oxide electrodes with integrated layered–spinel structures for lithium batteries. Electrochem. Commun. 2007, 9, 262–268. [Google Scholar] [CrossRef]
- Nayak, P.K.; Grinblat, J.; Levi, M.D.; Haik, O.; Levi, E.; Talianker, M.; Markovsky, B.; Sun, Y.-K.; Aurbach, D. Electrochemical Performance of a Layered-Spinel Integrated Li[Ni1/3Mn2/3]O2 as a High Capacity Cathode Material for Li-Ion Batteries. Chem. Mater. 2015, 27, 2600–2611. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, R.; Li, L.; Yu, C.; Ren, Y.; Belharouak, I. A Study of High-Voltage LiNi0.5Mn1.5O4and High-Capacity Li1.5Ni0.25Mn0.75O2.5 Blends. J. Electrochem. Soc. 2013, 160, A1079–A1083. [Google Scholar] [CrossRef]
- Zhong, Q.; Bonakdarpour, A.; Zhang, M.; Gao, Y.; Dahn, J.R. Synthesis and Electrochemistry of LiNixMn2 − xO 4. J. Electrochem. Soc. 1997, 144, 205–213. [Google Scholar] [CrossRef]
- Mancini, M.; Axmann, P.; Gabrielli, G.; Kinyanjui, M.; Kaiser, U.; Wohlfahrt-Mehrens, M. A High-Voltage and High-Capacity Li1+xNi0.5Mn1.5O4Cathode Material: From Synthesis to Full Lithium-Ion Cells. ChemSusChem 2016, 9, 1843–1849. [Google Scholar] [CrossRef] [Green Version]
- Betz, J.; Nowak, L.; Winter, M.; Placke, T.; Schmuch, R. An Approach for Pre-Lithiation of Li1+xNi0.5Mn1.5O4 Cathodes Mitigating Active Lithium Loss. J. Electrochem. Soc. 2019, 166, A3531–A3538. [Google Scholar] [CrossRef]
- Mancini, M.; Gabrielli, G.; Axmann, P.; Wohlfahrt-Mehrens, M. Electrochemical Performance and Phase Transitions between 1.5 and 4.9 V of Highly-Ordered LiNi0.5Mn1.5O4with Tailored Morphology: Influence of the Lithiation Method. J. Electrochem. Soc. 2016, 164, A6229–A6235. [Google Scholar] [CrossRef] [Green Version]
- Arai, H.; Sato, K.; Orikasa, Y.; Murayama, H.; Takahashi, I.; Koyama, Y.; Uchimoto, Y.; Ogumi, Z. Phase transition kinetics of LiNi0.5Mn1.5O4 electrodes studied by in situ X-ray absorption near-edge structure and X-ray diffraction analysis. J. Mater. Chem. A 2013, 1, 10442–10449. [Google Scholar] [CrossRef]
- Komatsu, H.; Arai, H.; Koyama, Y.; Sato, K.; Kato, T.; Yoshida, R.; Murayama, H.; Takahashi, I.; Orikasa, Y.; Fukuda, K.; et al. Solid Solution Domains at Phase Transition Front of LixNi0.5Mn1.5O4. Adv. Energy Mater. 2015, 5, 1500638. [Google Scholar] [CrossRef]
- Kim, J.-H.; Yoon, C.S.; Myung, S.-T.; Prakash, J.; Sun, Y.-K. Phase Transitions in Li1−δNi0.5Mn1.5O4 during Cycling at 5 V. Electrochem. Solid State Lett. 2004, 7, A216–A220. [Google Scholar] [CrossRef]
- Saravanan, K.; Jarry, A.; Kostecki, R.; Chen, G. A study of room-temperature LixMn1.5Ni0.5O4 solid solutions. Sci. Rep. 2015, 5, 8027. [Google Scholar] [CrossRef] [Green Version]
- Cheng, J.; Li, X.; Wang, Z.; Guo, H. Hydrothermal synthesis of LiNi0.5Mn1.5O4 sphere and its performance as high-voltage cathode material for lithium ion batteries. Ceram. Int. 2016, 42, 3715–3719. [Google Scholar] [CrossRef]
- Drozhzhin, O.; Shevchenko, V.; Zakharkin, M.; Gamzyukov, P.; Yashina, L.; Abakumov, A.; Stevenson, K.; Antipov, E. Improving salt-to-solvent ratio to enable high-voltage electrolyte stability for advanced Li-ion batteries. Electrochim. Acta 2018, 263, 127–133. [Google Scholar] [CrossRef]
- Drozhzhin, O.A.; Tereshchenko, I.V.; Emerich, H.; Antipov, E.V.; Abakumov, A.M.; Chernyshov, D. An electrochemical cell with sapphire windows foroperandosynchrotron X-ray powder diffraction and spectroscopy studies of high-power and high-voltage electrodes for metal-ion batteries. J. Synchrotron Radiat. 2018, 25, 468–472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dyadkin, V.; Pattison, P.; Dmitriev, V.; Chernyshov, D. A new multipurpose diffractometer PILATUS@SNBL. J. Synchrotron Radiat. 2016, 23, 825–829. [Google Scholar] [CrossRef] [PubMed]
- Izumi, F.; Ikeda, T. A Rietveld-Analysis Programm RIETAN-98 and its Applications to Zeolites. Mater. Sci. Forum 2000, 321-324, 198–205. [Google Scholar] [CrossRef]
- Petříček, V.; Dušek, M.; Palatinus, L. Crystallographic Computing System JANA2006: General features. Z. Krist. Cryst. Mater. 2014, 229, 345–352. [Google Scholar] [CrossRef]
- Betz, J.; Nowak, L.; Brinkmann, J.-P.; Bärmann, P.; Diehl, M.; Winter, M.; Placke, T.; Schmuch, R. Understanding the impact of calcination time of high-voltage spinel Li1+xNi0.5Mn1.5O4 on structure and electrochemical behavior. Electrochim. Acta 2019, 325, 134901. [Google Scholar] [CrossRef]
- Li, W.; Reimers, J.N.; Dahn, J.R. Crystal structure ofLixNi2−xO2and a lattice-gas model for the order-disorder transition. Phys. Rev. B 1992, 46, 3236–3246. [Google Scholar] [CrossRef]
- Sathiya, M.; Abakumov, A.M.; Foix, D.; Rousse, G.; Ramesha, K.; Saubanere, M.; Doublet, M.L.; Vezin, H.; Laisa, C.P.; Prakash, A.S.; et al. Origin of voltage decay in high-capacity layered oxide electrodes. Nat. Mater. 2015, 14, 230–238. [Google Scholar] [CrossRef] [PubMed]
- Ariyoshi, K.; Iwakoshi, Y.; Nakayama, N.; Ohzuku, T. Topotactic Two-Phase Reactions of Li[Ni1/2Mn3/2]O4 (P4332) in Nonaqueous Lithium Cells. J. Electrochem. Soc. 2004, 151, A296–A303. [Google Scholar] [CrossRef]
- Amalraj, S.F.; Burlaka, L.; Julien, C.M.; Mauger, A.; Kovacheva, D.; Talianker, M.; Markovsky, B.; Aurbacha, D. Phase Transitions in Li2MnO3 Electrodes at Various States-of-Charge. Electrochim. Acta 2014, 123, 395–404. [Google Scholar] [CrossRef]
- Lu, J.; Chang, Y.-L.; Song, B.; Xia, H.; Yang, J.-R.; Lee, K.S.; Lu, L. High energy spinel-structured cathode stabilized by layered materials for advanced lithium-ion batteries. J. Power Sources 2014, 271, 604–613. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drozhzhin, O.A.; Alekseeva, A.M.; Shevchenko, V.A.; Chernyshov, D.; Abakumov, A.M.; Antipov, E.V. Phase Transitions in the “Spinel-Layered” Li1+xNi0.5Mn1.5O4 (x = 0, 0.5, 1) Cathodes upon (De)lithiation Studied with Operando Synchrotron X-ray Powder Diffraction. Nanomaterials 2021, 11, 1368. https://doi.org/10.3390/nano11061368
Drozhzhin OA, Alekseeva AM, Shevchenko VA, Chernyshov D, Abakumov AM, Antipov EV. Phase Transitions in the “Spinel-Layered” Li1+xNi0.5Mn1.5O4 (x = 0, 0.5, 1) Cathodes upon (De)lithiation Studied with Operando Synchrotron X-ray Powder Diffraction. Nanomaterials. 2021; 11(6):1368. https://doi.org/10.3390/nano11061368
Chicago/Turabian StyleDrozhzhin, Oleg A., Anastasia M. Alekseeva, Vitalii A. Shevchenko, Dmitry Chernyshov, Artem M. Abakumov, and Evgeny V. Antipov. 2021. "Phase Transitions in the “Spinel-Layered” Li1+xNi0.5Mn1.5O4 (x = 0, 0.5, 1) Cathodes upon (De)lithiation Studied with Operando Synchrotron X-ray Powder Diffraction" Nanomaterials 11, no. 6: 1368. https://doi.org/10.3390/nano11061368
APA StyleDrozhzhin, O. A., Alekseeva, A. M., Shevchenko, V. A., Chernyshov, D., Abakumov, A. M., & Antipov, E. V. (2021). Phase Transitions in the “Spinel-Layered” Li1+xNi0.5Mn1.5O4 (x = 0, 0.5, 1) Cathodes upon (De)lithiation Studied with Operando Synchrotron X-ray Powder Diffraction. Nanomaterials, 11(6), 1368. https://doi.org/10.3390/nano11061368