Bifunctional Ag-Decorated CeO2 Nanorods Catalysts for Promoted Photodegradation of Methyl Orange and Photocatalytic Hydrogen Evolution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Photocatalysts Preparation
2.3. Sample Characterization
2.4. Catalytic Activity Assessment
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ajmal, A.; Majeed, I.; Malik, R.; Idriss, H.; Nadeem, A. Principles and mechanisms of photocatalytic dye degradation on TiO2 based photocatalysts: A comparative overview. RSC Adv. 2014, 4, 37003–37026. [Google Scholar] [CrossRef]
- Gu, S.; Chen, Y.; Yuan, X.; Wang, H.; Chen, X.; Liu, Y.; Jiang, Q.; Wu, Z.; Zeng, G. Facile synthesis of CeO2 nanoparticle sensitized CdS nanorod photocatalyst with improved visible-light photocatalytic degradation of rhodamine B. RSC Adv. 2015, 5, 79556–79564. [Google Scholar] [CrossRef]
- Zheng, Y.; Liu, Y.; Guo, X.; Chen, Z.; Zhang, W.; Wang, Y.; Wang, Y.; Tang, X.; Zhang, Y.; Zhao, Y. Sulfur-doped g-C3N4/rGO porous nanosheets for highly efficient photocatalytic degradation of refractory contaminants. J. Mater. Sci. Technol. 2020, 41, 117–126. [Google Scholar] [CrossRef]
- Wang, J.; Wang, G.; Cheng, B.; Yu, J.; Fan, J. Sulfur-doped g-C3N4/TiO2 S-scheme heterojunction photocatalyst for Congo Red photodegradation. Chin. J. Catal. 2021, 42, 56–68. [Google Scholar] [CrossRef]
- Feng, L.; Zou, Y.; Li, C.; Gao, S.; Zhou, L.-J.; Sun, Q.; Fan, M.; Wang, H.; Wang, D.; Li, G.; et al. Nanoporous sulfur-doped graphitic carbon nitride microrods: A durable catalyst for visible-light-driven H2 evolution. Int. J. Hydrogen Energy 2014, 39, 15373–15379. [Google Scholar] [CrossRef]
- Chen, X.; Wu, Z.; Gao, Z.; Ye, B.C. Effect of Different Activated Carbon as Carrier on the Photocatalytic Activity of Ag-N-ZnO Photocatalyst for Methyl Orange Degradation under Visible Light Irradiation. Nanomaterials 2017, 7, 258. [Google Scholar] [CrossRef]
- Zheng, X.; Dong, Y.; Liu, T. Simultaneous photodegradation of dyes by NiS/CuS-CdS composites in visible light region. Colloids Surf. A Physicochem. Eng. Asp. 2020, 598, 124854. [Google Scholar] [CrossRef]
- Inoue, T.; Fujishima, A.; Konishi, S.; Honda, K. Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 1979, 277, 637–638. [Google Scholar] [CrossRef]
- Chinh, V.; Hung, L.; Palma, L.; Hanh, V.; Vilardi, G. Effect of Carbon Nanotubes and Carbon Nanotubes/Gold Nanoparticles Composite on the Photocatalytic Activity of TiO2 and TiO2-SiO2. Chem. Eng. Technol. 2019, 42, 308–315. [Google Scholar] [CrossRef]
- Chinh, V.D.; Broggi, A.; Di Palma, L.; Scarsella, M.; Speranza, G.; Vilardi, G.; Thang, P.N. XPS Spectra Analysis of Ti2+, Ti3+ Ions and Dye Photodegradation Evaluation of Titania-Silica Mixed Oxide Nanoparticles. J. Electron. Mater. 2018, 47, 2215–2224. [Google Scholar] [CrossRef]
- Yasmeen, H.; Zada, A.; Ali, S.; Khan, I.; Ali, W.; Khan, W.; Khan, M.; Anwar, N.; Ali, A.; Huerta-Flores, A.M.; et al. Visible light-excited surface plasmon resonance charge transfer significantly improves the photocatalytic activities of ZnO semiconductor for pollutants degradation. J. Chin. Chem. Soc. 2020, 67, 1611–1617. [Google Scholar] [CrossRef]
- Liu, W.; Wang, M.; Xu, C.; Chen, S.; Fu, X. Ag3PO4/ZnO: An efficient visible-light-sensitized composite with its application in photocatalytic degradation of Rhodamine B. Mater. Res. Bull. 2013, 48, 106–113. [Google Scholar] [CrossRef]
- Ghasemi, S.; Hashemian, S.; Alamolhoda, A.; Gocheva, I.; Rahman, S. Plasmon enhanced photocatalytic activity of Au@TiO2 -graphene nanocomposite under visible light for degradation of pollutants. Mater. Res. Bull. 2017, 87, 40–47. [Google Scholar] [CrossRef]
- Suyana, P.; Ganguly, P.; Nair, B.; Mohamed, A.; Warrier, K.; Hareesh, U. Co3O4–C3N4 p–n nano-heterojunctions for the simultaneous degradation of a mixture of pollutants under solar irradiation. Environ. Sci. Nano 2017, 4, 212–221. [Google Scholar] [CrossRef]
- He, K.; Guo, L. NiS modified CdS pyramids with stacking fault structures: Highly efficient and stable photocatalysts for hydrogen production from water. Int. J. Hydrogen Energy 2017, 42, 23995–24005. [Google Scholar] [CrossRef]
- Zhang, L.; Fu, X.; Meng, S.; Jiang, X.; Wang, J.; Chen, S. Ultra-low content of Pt modified CdS nanorods: One-pot synthesis and high photocatalytic activity for H2 production under visible light. J. Mater. Chem. A 2015, 3, 23732–23742. [Google Scholar] [CrossRef]
- Wang, J.; Li, H.; Meng, S.; Zhang, L.; Fu, X.; Chen, S. One-pot hydrothermal synthesis of highly efficient SnOx/Zn2SnO4composite photocatalyst for the degradation of methyl orange and gaseous benzene. Appl. Catal. B 2017, 200, 19–30. [Google Scholar] [CrossRef]
- Xiong, S.; Zhang, X.; Qian, Y. CdS with Various Novel Hierarchical Nanostructures by Nanobelts/Nanowires Self-Assembly: Controllable Preparation and Their Optical Properties. Cryst. Growth Des. 2009, 9, 5259–5265. [Google Scholar] [CrossRef]
- Zhao, M.; Li, H.; Shen, X.; Ji, Z.; Xu, K. Facile electrochemical synthesis of CeO2@Ag@CdS nanotube arrays with enhanced photoelectrochemical water splitting performance. Dalton Trans. 2015, 44, 19935–19941. [Google Scholar] [CrossRef]
- Lu, X.-H.; Xie, S.-L.; Zhai, T.; Zhao, Y.-F.; Zhang, P.; Zhang, Y.-L.; Tong, Y.-X. Monodisperse CeO2/CdS heterostructured spheres: One-pot synthesis and enhanced photocatalytic hydrogen activity. RSC Adv. 2011, 1, 1207–1210. [Google Scholar] [CrossRef]
- Sultana, S.; Mansingh, S.; Scurrell, M.; Parida, K. Controlled Synthesis of CeO2NS-Au-CdSQDs Ternary Nanoheterostructure: A Promising Visible Light Responsive Photocatalyst for H2 Evolution. Inorg. Chem. 2017, 56, 12297–12307. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.; Fu, M.; Wang, L.; Ma, T.; Li, X.; Jin, F.; Lu, Y. Water-splitting mechanism analysis of Sr/Ca doped LaFeO3 towards commercial efficiency of solar thermochemical H2 production. Int. J. Hydrogen Energy 2021, 46, 1634–1641. [Google Scholar] [CrossRef]
- Liu, S.; Wu, X.; Liu, W.; Chen, W.; Ran, R.; Li, M.; Weng, D. Soot oxidation over CeO2 and Ag/CeO2: Factors determining the catalyst activity and stability during reaction. J. Catal. 2016, 337, 188–198. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, K.; Wang, L.; Wang, B.; Li, Y. Oxygen vacancy clusters promoting reducibility and activity of ceria nanorods. J. Am. Chem. Soc. 2009, 131, 3140–3141. [Google Scholar] [CrossRef]
- Mai, H.; Sun, L.; Zhang, Y.; Si, R.; Feng, W.; Zhang, H.; Liu, H.; Yan, C. Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes. J. Phys. Chem. B 2005, 109, 24380–24385. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.; Ansari, S.; Ansari, M.O.; Min, B.; Lee, J.; Cho, M. Biogenic Fabrication of Au@CeO2 Nanocomposite with Enhanced Visible Light Activity. J. Phys. Chem. C 2014, 118, 9477–9484. [Google Scholar] [CrossRef]
- Primo, A.; Marino, T.; Corma, A.; Molinari, R.; Garcia, H. Efficient visible-light photocatalytic water splitting by minute amounts of gold supported on nanoparticulate CeO2 obtained by a biopolymer templating method. J. Am. Chem. Soc. 2011, 133, 6930–6933. [Google Scholar] [CrossRef] [PubMed]
- Kundu, S.; Ciston, J.; Senanayake, S.; Arena, D.; Fujita, E.; Stacchiola, D.; Barrio, L.; Navarro, R.; Fierro, J.; Rodriguez, J. Exploring the Structural and Electronic Properties of Pt/Ceria-Modified TiO2 and Its Photocatalytic Activity for Water Splitting under Visible Light. J. Phys. Chem. C 2012, 116, 14062–14070. [Google Scholar] [CrossRef]
- Zhou, Y.; Yang, J.; He, T.; Shi, H.; Cheng, X.; Lu, Y. Highly stable and dispersive silver nanoparticle-graphene composites by a simple and low-energy-consuming approach and their antimicrobial activity. Small 2013, 9, 3445–3454. [Google Scholar] [CrossRef]
- Feng, C.; Chen, Z.; Li, W.; Zhou, J.; Sui, Y.; Xu, L.; Sun, M. Effectively enhanced photocatalytic degradation performance of the Ag-modified porous ZnO nanorod photocatalyst. J. Mater. Sci. Mater. Electron. 2018, 29, 9301–9311. [Google Scholar] [CrossRef]
- Tao, X.; Zhou, Y.; Xu, K.; Wu, Y.; Mi, J.; Li, Y.; Liu, Q.; Cheng, X.; Zhao, N.; Shi, H.; et al. Bifunctional Material with Organic Pollutant Removing and Antimicrobial Properties: Graphene Aerogel Decorated with Highly Dispersed Ag and CeO2 nanoparticles. ACS Sustain. Chem. Eng. 2018, 6, 16907–16919. [Google Scholar] [CrossRef]
- Jiao, J.; Wei, Y.; Zhao, Z.; Liu, J.; Li, J.; Duan, A.; Jiang, G. Photocatalysts of 3D Ordered Macroporous TiO2-Supported CeO2 Nanolayers: Design, Preparation, and Their Catalytic Performances for the Reduction of CO2 with H2O under Simulated Solar Irradiation. Ind. Eng. Chem. Res. 2014, 53, 17345–17354. [Google Scholar] [CrossRef]
- Zheng, N.; Ouyang, T.; Chen, Y.; Wang, Z.; Chen, D.; Liu, Z. Ultrathin CdS shell-sensitized hollow S-doped CeO2 spheres for efficient visible-light photocatalysis. Catal. Sci. Technol. 2019, 9, 1357–1364. [Google Scholar] [CrossRef]
- Yu, L.; Peng, R.; Chen, L.; Fu, M.; Wu, J.; Ye, D. Ag supported on CeO2 with different morphologies for the catalytic oxidation of HCHO. Chem. Eng. J. 2018, 334, 2480–2487. [Google Scholar] [CrossRef]
- Chang, S.; Li, M.; Hua, Q.; Zhang, L.; Ma, Y.; Ye, B.; Huang, W. Shape-dependent interplay between oxygen vacancies and Ag–CeO2 interaction in Ag/CeO2 catalysts and their influence on the catalytic activity. J. Catal. 2012, 293, 195–204. [Google Scholar] [CrossRef]
- Wang, Y.; Li, B.; Zhang, C.; Cui, L.; Kang, S.; Li, X.; Zhou, L. Ordered mesoporous CeO2-TiO2 composites: Highly efficient photocatalysts for the reduction of CO2 with H2O under simulated solar irradiation. Appl. Catal. B Environ. 2013, 130–131, 277–284. [Google Scholar] [CrossRef]
- Ma, Y.; Bian, Y.; Liu, Y.; Zhu, A.; Wu, H.; Cui, H.; Chu, D.; Pan, J. Construction of Z-Scheme System for Enhanced Photocatalytic H2 Evolution Based on CdS Quantum Dots/CeO2 Nanorods Heterojunction. ACS Sustain. Chem. Eng. 2018, 6, 2552–2562. [Google Scholar] [CrossRef]
- Tao, Y.; Wang, H.; Xia, Y.; Zhang, G.; Wu, H.; Tao, G. Preparation of shape-controlled CeO2 nanocrystals via microwave-assisted method. Mater. Chem. Phys. 2010, 124, 541–546. [Google Scholar] [CrossRef]
- Duan, H.; Xuan, Y. Synthesis and optical absorption of Ag/CdS core/shell plasmonic nanostructure. Sol. Energy Mater. Sol. Cells 2014, 121, 8–13. [Google Scholar] [CrossRef]
- Guan, S.; Fu, X.; Tang, Y.; Peng, Z. Synthesis and photoeletrochemical performance of AuAg@CdS double-walled nanotubes. Chem. Phys. Lett. 2017, 682, 128–132. [Google Scholar] [CrossRef]
- Kuriakose, A.; Nampoori, V.; Thomas, S. Influence of laser ablated Ag core on the thermo-optic and photocatalytic characteristics of CdS nanocolloids. Mater. Chem. Phys. 2021, 258, 123911. [Google Scholar] [CrossRef]
- Guo, Y.; Mei, S.; Yuan, K.; Wang, D.; Liu, H.; Yan, C.; Zhang, Y. Low-Temperature CO2 Methanation over CeO2-Supported Ru Single Atoms, Nanoclusters, and Nanoparticles Competitively Tuned by Strong Metal–Support Interactions and H-Spillover Effect. ACS Catal. 2018, 8, 6203–6215. [Google Scholar] [CrossRef]
- Sastre, F.; Puga, A.; Liu, L.; Corma, A.; Garcia, H. Complete photocatalytic reduction of CO2 to methane by H2 under solar light irradiation. J. Am. Chem. Soc. 2014, 136, 6798–6801. [Google Scholar] [CrossRef]
- Peng, R.; Sun, X.; Li, S.; Chen, L.; Fu, M.; Wu, J.; Ye, D. Shape effect of Pt/CeO2 catalysts on the catalytic oxidation of toluene. Chem. Eng. J. 2016, 306, 1234–1246. [Google Scholar] [CrossRef]
- Singhania, N.; Anumol, E.; Ravishankar, N.; Madras, G. Influence of CeO2 morphology on the catalytic activity of CeO2-Pt hybrids for CO oxidation. Dalton Trans. 2013, 42, 15343–15354. [Google Scholar] [CrossRef] [Green Version]
- Shen, H.; Xue, T.; Wang, Y.; Cao, G.; Lu, Y.; Fang, G. Photocatalytic property of perovskite LaFeO3 synthesized by sol-gel process and vacuum microwave calcination. Mater. Res. Bull. 2016, 84, 15–24. [Google Scholar] [CrossRef]
- Tian, S.; Tu, Y.; Chen, D.; Chen, X.; Xiong, Y. Degradation of Acid Orange II at neutral pH using Fe2(MoO4)3 as a heterogeneous Fenton-like catalyst. Chem. Eng. J. 2011, 169, 31–37. [Google Scholar] [CrossRef]
- Chinh, V.; Bavasso, I.; Palma, L.; Felici, A.; Scarsella, M.; Vilardi, G.; Bracciale, M.; Van, N. Enhancing the photocatalytic activity of TiO2 and TiO2–SiO2 by coupling with graphene–gold nanocomposites. J. Mater. Sci. Mater. Electron. 2021, 32, 5082–5093. [Google Scholar] [CrossRef]
- Zhang, L.; Long, J.; Pan, W.; Zhou, S.; Zhu, J.; Zhao, Y.; Wang, X.; Cao, G. Efficient removal of methylene blue over composite-phase BiVO4 fabricated by hydrothermal control synthesis. Mater. Chem. Phys. 2012, 136, 897–902. [Google Scholar] [CrossRef]
- Berglund, S.; Flaherty, D.; Hahn, N.; Bard, A.; Mullins, C. Photoelectrochemical Oxidation of Water Using Nanostructured BiVO4 Films. J. Phys. Chem. C 2011, 115, 3794–3802. [Google Scholar] [CrossRef]
- Bi, J.; Zhou, Z.; Chen, M.; Liang, S.; He, Y.; Zhang, Z.; Wu, L. Plasmonic Au/CdMoO4 photocatalyst: Influence of surface plasmon resonance for selective photocatalytic oxidation of benzylic alcohol. Appl. Surf. Sci. 2015, 349, 292–298. [Google Scholar] [CrossRef]
- Hou, Y.; Zuo, F.; Dagg, A.; Feng, P. Visible light-driven alpha-Fe2O3nanorod/graphene/BiV1-xMoxO4 core/shell heterojunction array for efficient photoelectrochemical water splitting. Nano Lett. 2012, 12, 6464–6473. [Google Scholar] [CrossRef] [PubMed]
Photocatalyst | Abbreviation |
---|---|
CeO2 nanocubes | C-CeO2 |
CeO2 nanoparticles | P-CeO2 |
CeO2 nanorods | R-CeO2 |
Ag decorated C-CeO2 | Ag/C-CeO2 |
Ag decorated P-CeO2 | Ag/P-CeO2 |
Ag decorated R-CeO2 | Ag/R-CeO2 |
Photocatalyst | Bandgap Energy (eV) |
---|---|
C-CeO2 | 3.31 |
P-CeO2 | 3.18 |
R-CeO2 | 3.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Zhang, L.; Sun, Y.; Luo, Y. Bifunctional Ag-Decorated CeO2 Nanorods Catalysts for Promoted Photodegradation of Methyl Orange and Photocatalytic Hydrogen Evolution. Nanomaterials 2021, 11, 1104. https://doi.org/10.3390/nano11051104
Liu J, Zhang L, Sun Y, Luo Y. Bifunctional Ag-Decorated CeO2 Nanorods Catalysts for Promoted Photodegradation of Methyl Orange and Photocatalytic Hydrogen Evolution. Nanomaterials. 2021; 11(5):1104. https://doi.org/10.3390/nano11051104
Chicago/Turabian StyleLiu, Jinwen, Li Zhang, Yifei Sun, and Yang Luo. 2021. "Bifunctional Ag-Decorated CeO2 Nanorods Catalysts for Promoted Photodegradation of Methyl Orange and Photocatalytic Hydrogen Evolution" Nanomaterials 11, no. 5: 1104. https://doi.org/10.3390/nano11051104
APA StyleLiu, J., Zhang, L., Sun, Y., & Luo, Y. (2021). Bifunctional Ag-Decorated CeO2 Nanorods Catalysts for Promoted Photodegradation of Methyl Orange and Photocatalytic Hydrogen Evolution. Nanomaterials, 11(5), 1104. https://doi.org/10.3390/nano11051104