Position Effects of Metal Nanoparticles on the Performance of Perovskite Light-Emitting Diodes
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Device Fabrication and Characterization
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jena, A.K.; Kulkarni, A.; Miyasaka, T. Halide perovskite photovoltaics: Background, status, and future prospects. Chem. Rev. 2019, 119, 3036–3103. [Google Scholar] [CrossRef]
- Sun, J.; Wu, J.; Tong, X.; Lin, F.; Wang, Y.; Wang, Z.M. Organic/inorganic metal halide perovskite optoelectronic devices beyond solar cells. Adv. Sci. 2018, 5, 1700780. [Google Scholar] [CrossRef]
- Zhang, C.; Kuang, D.B.; Wu, W.Q. A review of diverse halide perovskite morphologies for efficient optoelectronic applications. Small Methods 2020, 4, 1900662. [Google Scholar] [CrossRef]
- Righetto, M.; Meggiolaro, D.; Rizzo, A.; Sorrentino, R.; He, Z.; Meneghesso, G.; Sum, T.C.; Gattig, T.; Lamberti, F. Coupling halide perovskites with different materials: From doping to nanocomposites, beyond photovoltaics. Prog. Mater. Sci. 2020, 110, 100639. [Google Scholar] [CrossRef]
- Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050–6051. [Google Scholar] [CrossRef]
- Research Cell Record Efficiency Chart. Available online: https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20200104.pdf (accessed on 4 February 2021).
- Cheng, G.; Liu, Y.; Chen, T.; Chen, W.; Fang, Z.; Zhang, J.; Ding, L.; Li, X.; Shi, T.; Xiao, Z. Efficient all-inorganic perovskite light-emitting diodes with improved operation stability. ACS Appl. Mater. Interfaces 2020, 12, 18084–18090. [Google Scholar] [CrossRef] [PubMed]
- Gu, L.; Wen, K.; Peng, Q.; Huang, W.; Wang, J. Surface-plasmon-enhanced perovskite light-emitting diodes. Small 2020, 16, 2001861. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, X.; Yang, Z.; Zhou, N.; Deng, Y.; Zhao, J.; Xiao, X.; Rudd, P.; Moran, A.; Yan, Y.; et al. Efficient sky-blue perovskite light-emitting diodes via photoluminescence enhancement. Nat. Comm. 2019, 10, 5633. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Yu, J.; Dong, H.; Yuan, F.; Zheng, X.; Jiang, M.; Zhang, L. Broad-band lead halide perovskite quantum dot single-mode lasers. J. Mater. Chem. C 2020, 8, 13642–13647. [Google Scholar] [CrossRef]
- Kao, T.S.; Hong, K.B.; Chou, Y.H.; Huang, J.F.; Chen, F.C.; Lu, T.C. Localized surface plasmon for enhanced lasing performance in solution-processed perovskites. Opt. Express 2016, 24, 20696–20702. [Google Scholar] [CrossRef]
- Liu, D.; Yu, B.B.; Liao, M.; Jin, Z.; Zhou, L.; Zhang, X.; Wang, F.; He, H.; Gatti, T.; He, Z. Self-powered and broadband lead-free inorganic perovskite photodetector with high stability. ACS Appl. Mater. Interfaces 2020, 12, 30530–30537. [Google Scholar] [CrossRef]
- Era, M.; Morimoto, S.; Tsutsui, T.; Saito, S. Organic-inorganic heterostructure electroluminescent device using a layered perovskite semiconductor (C6H5C2H4NH3)2PbI4. Appl. Phys. Lett. 1994, 65, 676–678. [Google Scholar] [CrossRef]
- Lin, K.; Xing, J.; Quan, L.N.; Arquer, F.P.G.; Gong, X.; Lu, J.; Xie, L.; Zhao, W.; Zhang, D.; Yan, C.; et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent. Nature 2018, 562, 245–248. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Xu, B.; Wang, W.; Liu, S.; Zheng, Y.; Chen, S.; Wang, K.; Sun, X.W. Plasmonic perovskite light-emitting diodes based on the Ag−CsPbBr3 system. ACS Appl. Mater. Interfaces 2017, 9, 4926–4931. [Google Scholar] [CrossRef]
- Meng, Y.; Wu, X.; Xiong, Z.; Lin, C.; Xiong, Z.; Blount, E.; Chen, P. Electrode quenching control for highly efficient CsPbBr3 perovskite light-emitting diodes via surface plasmon resonance and enhanced hole injection by Au nanoparticles. Nanotech. 2018, 29, 175203. [Google Scholar] [CrossRef]
- Chuang, M.K.; Chen, F.C. Synergistic plasmonic effects of metal nanoparticle–decorated PEGylated graphene oxides in polymer solar Cells. ACS Appl. Mater. Interfaces 2015, 7, 7397–7405. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.F.; Keshtov, M.L.; Chen, F.C. Cross-linkable hole-transport materials improve the device performance of perovskite light-emitting diodes. ACS Appl. Mater. Interfaces 2016, 8, 27006–27011. [Google Scholar] [CrossRef]
- Hsiao, M.C.; Chien, P.C.; Jhuang, L.S.; Chen, F.C. Bidentate chelating ligands as effective passivating materials for perovskite light-emitting diodes. Phys. Chem. Chem. Phys. 2019, 21, 7867–7873. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.L.; Kumar, G.; Sharma, G.D.; Chen, F.C. Plasmonic effects of copper nanoparticles in polymer photovoltaic devices for outdoor and indoor applications. Appl. Phys. Lett. 2020, 116, 253302. [Google Scholar] [CrossRef]
- Bohren, F.; Huffman, D.R. Absorption and Scattering of Light by Small Particles; Wiley: New York, NY, USA, 1983. [Google Scholar]
- Chuang, M.K.; Lin, C.H.; Chen, F.C. Accumulated plasmonic effects of gold nanoparticle decorated PEGylated graphene oxides in organic light-emitting diodes. Dyes Pigm. 2020, 180, 108412. [Google Scholar] [CrossRef]
- Burrows, P.E.; Shen, Z.; Bulovic, V.; McCarty, D.M.; Forrest, S.R.; Cronin, J.A.; Thompson, M.E. Relationship between electroluminescence and current transport in organic heterojunction light-emitting devices. J. Appl. Phys. 1996, 79, 7991–8006. [Google Scholar] [CrossRef]
- Vollbrecht, J.; Wiebeler, C.; Bock, H.; Schumacher, S.; Kitzerow, H.S. Curved polar dibenzocoronene esters and imides versus their planar centrosymmetric homologs: Photophysical and optoelectronic analysis. J. Phys. Chem. C 2019, 123, 4483–4492. [Google Scholar] [CrossRef]
- Tan, K.S.; Chuang, M.K.; Chen, F.C.; Hsu, C.S. Solution-processed nanocomposites containing molybdenum oxide and gold nanoparticles as anode buffer layers in plasmonic-enhanced organic photovoltaic devices. ACS Appl. Mater. Interfaces 2013, 5, 12419–12424. [Google Scholar] [CrossRef]
- Glaeske, M.; Juergensen, S.; Gabrielli, L.; Menna, E.; Mancin, F.; Gatti, T.; Setaro, A. Plasmon-assisted energy transfer in hybrid nanosystems. Phys. Status Solidi RRL 2018, 12, 1800508. [Google Scholar] [CrossRef]
- Zhumekenov, A.A.; Saidaminov, M.I.; Haque, M.A.; Alarousu, E.; Sarmah, S.P.; Murali, B.; Dursun, I.; Miao, X.H.; Abdelhady, A.L.; Wu, T.; et al. Formamidinium lead halide perovskite crystals with unprecedented long carrier dynamics and diffusion length. ACS Energy Lett. 2016, 1, 32–37. [Google Scholar] [CrossRef]
- Wu, M.J.; Kuo, C.C.; Jhuang, L.S.; Chen, P.H.; Lai, Y.F.; Chen, F.C. Bandgap engineering enhances the performance of mixed-cation perovskite materials for indoor photovoltaic applications. Adv. Energy Mater. 2019, 9, 1901863. [Google Scholar] [CrossRef]
- Wu, J.L.; Chen, F.C.; Hsiao, Y.S.; Chien, F.C.; Chen, P.; Kuo, C.H.; Huang, M.H.; Hsu, C.S. Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells. ACS Nano 2011, 5, 959–967. [Google Scholar] [CrossRef]
- Saliba, M.; Zhang, W.; Burlakov, V.M.; Stranks, S.D.; Sun, Y.; Ball, J.M.; Johnston, M.B.; Goriely, A.; Wiesner, U.; Snaith, H.J. Plasmonic-induced photon recycling in metal halide perovskite solar cells. Adv. Funct. Mater. 2015, 25, 5038. [Google Scholar] [CrossRef]
- Richter, J.M.; Abdi-Jalebi, M.; Sadhanala, A.; Tabachnyk, M.; Rivett, J.P.H.; Pazos-Outón, L.M.; Gödel, K.C.; Price, M.; Deschler, F.; Friend, R.H. Enhancing photoluminescence yields in lead halide perovskites by photon recycling and light out-coupling. Nat. Comm. 2016, 7, 13941. [Google Scholar] [CrossRef]
- Zhang, D.D.; Xu, J.L.; Sun, H.B. Toward high efficiency organic light-emitting diodes: Role of nanoparticles. Adv. Opt. Mater. 2021, 18, 2001710. [Google Scholar] [CrossRef]
- Ciobotaru, C.C.; Ciobotaru, I.C.; Schinteie, G.; Negrea, R.; Polosan, S. Enhancement of the electroluminescence of organic light emitting devices based on Ir(ppy)3 by doping with metallic and magnetic nanoparticles. Mater. Sci. Semicond. Process. 2017, 72, 78. [Google Scholar] [CrossRef]
Device | Efficiency (cd A−1) | τ1 (nsec) | τ2 (nsec) |
---|---|---|---|
Standard (No Au NPs) | 3.0 ± 0.4 | 0.34 ± 0.02 | 1.26 ± 0.15 |
in PTAA | 3.0 ± 0.5 | 0.37 ± 0.03 | 2.01 ± 0.29 |
in VB-FNPD | 4.2 ± 0.6 | 0.97 ± 0.07 | 5.49 ± 0.20 |
in perovskite layer | 3.2 ± 0.9 | 1.12 ± 0.01 | 7.75 ± 0.10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, C.-M.; Chen, F.-C. Position Effects of Metal Nanoparticles on the Performance of Perovskite Light-Emitting Diodes. Nanomaterials 2021, 11, 993. https://doi.org/10.3390/nano11040993
Yang C-M, Chen F-C. Position Effects of Metal Nanoparticles on the Performance of Perovskite Light-Emitting Diodes. Nanomaterials. 2021; 11(4):993. https://doi.org/10.3390/nano11040993
Chicago/Turabian StyleYang, Chen-Min, and Fang-Chung Chen. 2021. "Position Effects of Metal Nanoparticles on the Performance of Perovskite Light-Emitting Diodes" Nanomaterials 11, no. 4: 993. https://doi.org/10.3390/nano11040993
APA StyleYang, C.-M., & Chen, F.-C. (2021). Position Effects of Metal Nanoparticles on the Performance of Perovskite Light-Emitting Diodes. Nanomaterials, 11(4), 993. https://doi.org/10.3390/nano11040993