Modulated Luminescence of Lanthanide Materials by Local Surface Plasmon Resonance Effect
Abstract
:1. Introduction
2. Theory for LSPR and Lanthanide Materials
2.1. LSPR Effect
2.2. Lanthanide Luminescent Materials
3. Plasmon-Modulated Luminescence of Lanthanide Materials
3.1. Excitation Enhancement
3.2. Emission Enhancement
3.3. Quenching
3.4. Plasmon-Enhanced Luminescence by Modulating FRET
4. New Strategies
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Majewski, M.R.; Woodward, R.I.; Jackson, S.D. Dysprosium doped ZBLAN fiber laser tunable from 2.8 μm to 3.4 μm, pumped at 1.7 μm. Opt. Lett. 2018, 43, 971–974. [Google Scholar] [CrossRef] [Green Version]
- Kennes, K.; Coutino-Gonzalez, E.; Martin, C.; Baekelant, W.; Roeffaers, M.B.J.; Van Der Auweraer, M. Silver Zeolite Composites-Based LEDs: A Novel Solid-State Lighting Approach. Adv. Funct. Mater. 2017, 27, 1606411. [Google Scholar] [CrossRef]
- Cai, Y.; Wei, Z.; Song, C.; Tang, C.; Han, W.; Dong, X. Optical nano-agents in the second near-infrared window for biomedical applications. Chem. Soc. Rev. 2019, 48, 22–37. [Google Scholar] [CrossRef]
- Kumar, V.; Ntwaeaborwa, O.M.; Soga, T.; Dutta, V.; Swart, H.C. Rare Earth Doped Zinc Oxide Nanophosphor Powder: A Future Material for Solid State Lighting and Solar Cells. ACS Photon. 2017, 4, 2613–2637. [Google Scholar] [CrossRef]
- Chen, X.; Xu, W.; Song, H.; Chen, C.; Xia, H.; Zhu, Y.; Zhou, D.; Cui, S.; Dai, Q.; Zhang, J. Highly Efficient LiYF4:Yb3+, Er3+ Upconversion Single Crystal under Solar Cell Spectrum Excitation and Photovoltaic Application. ACS Appl. Mater. Interfaces 2016, 8, 9071–9079. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Molokeev, M.S.; Liu, Q.; Xia, Z. Pure red upconversion luminescence and optical thermometry of Er3+ doped sensitizer-rich SrYbInO4 phosphors. J. Mater. Chem. C 2018, 6, 7361–7366. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Gao, J.; Gao, C.; Ma, H.; Yang, B.; Han, Y.; Zhou, E.; Cheng, Q.; Jing, S.; Huang, L. Modulation of lanthanide luminescence via an electric field. Nanoscale 2019, 11, 16562–16570. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.-X.; Wei, Z.-W.; Pan, M.; Wang, H.-P.; Zhang, J.-Y.; Su, C.-Y. A new TPE-based tetrapodal ligand and its Ln(III) complexes: Multi-stimuli responsive AIE (aggregation-induced emission)/ILCT(intraligand charge transfer)-bifunctional photoluminescence and NIR emission sensitization. Dalton Trans. 2015, 45, 943–950. [Google Scholar] [CrossRef]
- Xu, W.; Chen, X.; Song, H. Upconversion manipulation by local electromagnetic field. Nano Today 2017, 17, 54–78. [Google Scholar] [CrossRef]
- Dong, J.; Zhang, Z.; Zhenglong, Z.; Sun, M. Recent Progress on Plasmon-Enhanced Fluorescence. Nanophotonics 2015, 4, 472–490. [Google Scholar] [CrossRef]
- Wang, D.F.; Li, Y.Y.; Lin, Z.Y.; Qiu, B.; Guo, L.H. Surface-Enhanced Electrochemiluminescence of Ru@SiO2 for Ultrasensitive Detection of Carcinoembryonic Antigen. Anal. Chem. 2015, 87, 5966–5972. [Google Scholar] [CrossRef]
- Deng, K.; Xu, L.; Guo, X.; Wu, X.; Liu, Y.; Zhu, Z.; Li, Q.; Zhan, Q.; Li, C.; Quan, Z. Binary Nanoparticle Superlattices for Plasmonically Modulating Upconversion Luminescence. Small 2020, 16, 2002066. [Google Scholar] [CrossRef]
- Koenderink, A.F. Single photon nanoantennas. ACS Photonics 2017, 4, 710–722. [Google Scholar] [CrossRef]
- Reil, F.; Hohenester, U.; Krenn, J.R.; Leitner, A. Förster-Type Resonant Energy Transfer Influenced by Metal Nanoparticles. Nano Lett. 2008, 8, 4128–4133. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, H.; Chen, Z.; Wang, X.; Choo, J.; Chen, L. Plasmonic colorimetric sensors based on etching and growth of noble metal nanoparticles: Strategies and applications. Biosens. Bioelectron. 2018, 114, 52–65. [Google Scholar] [CrossRef] [PubMed]
- Gangadharan, D.T.; Xu, Z.; Liu, Y.; Izquierdo, R.; Ma, D. Recent advancements in plasmon-enhanced promising third-generation solar cells. Nanophotonics 2017, 6, 153–175. [Google Scholar] [CrossRef]
- Jain, P.K.; EI-Sayed, M.A. Plasmonic coupling in noble metal nanostructures. Chem. Phys. Lett. 2010, 487, 153–164. [Google Scholar] [CrossRef]
- Mayer, K.M.; Hafner, J.H. Localized surface plasmon resonance sensor. Chem. Rev. 2011, 111, 3828–3857. [Google Scholar] [CrossRef]
- Halas, N.J.; Lal, S.; Chang, W.-S.; Link, S.; Nordlander, P. Plasmons in Strongly Coupled Metallic Nanostructures. Chem. Rev. 2011, 111, 3913–3961. [Google Scholar] [CrossRef]
- Anker, J.N.; Hall, W.P.; Lyandres, O.; Shah, N.C.; Zhao, J.; Van Duyne, R.P. Biosensing with plasmonic nanosensors. Nanosci. Technol. 2009, 7, 308–319. [Google Scholar] [CrossRef]
- Lee, B.; Park, J.-H.; Byun, J.-Y.; Kim, J.H.; Kim, M.-G. An optical fiber-based LSPR aptasensor for simple and rapid in-situ detection of ochratoxin A. Biosens. Bioelectron. 2018, 102, 504–509. [Google Scholar] [CrossRef]
- Xiao, C.; Xu, H.; Zhong, S. Au@Eu-based coordination polymers core-shell nanoparticles: Photoluminescence and photothermal properties. Mater. Lett. 2018, 216, 106–109. [Google Scholar] [CrossRef]
- Zopf, D.; Pittner, A.; Dathe, A.; Grosse, N.; Csáki, A.; Arstila, K.; Toppari, J.J.; Schott, W.; Dontsov, D.; Uhlrich, G.; et al. Plasmonic Nanosensor Array for Multiplexed DNA-based Pathogen Detection. ACS Sens. 2019, 4, 335–343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, Y.; Wang, P.; Lu, Y.; Wang, R.; Zhou, L.; Zheng, X.; Li, X.; Piper, J.A.; Zhang, F. Lifetime-engineered NIR-II nanoparticles unlock multiplexed in vivo imaging. Nat. Nanotechnol. 2018, 13, 941–946. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Mazouzi, Y.; Salmain, M.; Liedberg, B.; Boujday, S. Antibody-Gold Nanoparticle Bioconjugates for Biosensors: Synthesis, Characterization and Selected Applications. Biosens. Bioelectron. 2020, 165, 112370. [Google Scholar] [CrossRef] [PubMed]
- Gellé, A.; Jin, T.; De La Garza, L.; Price, G.D.; Besteiro, L.V.; Moores, A. Applications of Plasmon-Enhanced Nanocatalysis to Organic Transformations. Chem. Rev. 2019, 120, 986–1041. [Google Scholar] [CrossRef]
- Wang, L.L.; Zhu, G.H.; Wang, M.; Yu, W.; Zeng, J.; Yu, X.X.; Xie, H.Q.; Li, Q. Dual plasmonic Au/TiN nanofluids for efficient solar photochermal conversion. Sol. Energy 2019, 184, 240–248. [Google Scholar] [CrossRef]
- Doiron, B.; Mota, M.; Wells, M.P.; Bower, R.; Mihai, A.; Li, Y.; Cohen, L.F.; Alford, N.M.; Petrov, P.K.; Oulton, R.F.; et al. Quantifying Figures of Merit for Localized Surface Plasmon Resonance Applications: A Materials Survey. ACS Photonics 2019, 6, 240–259. [Google Scholar] [CrossRef]
- Gai, S.; Li, C.; Yang, P.; Lin, J. Recent Progress in Rare Earth Micro/Nanocrystals: Soft Chemical Synthesis, Luminescent Properties, and Biomedical Applications. Chem. Rev. 2014, 114, 2343–2389. [Google Scholar] [CrossRef]
- Li, J.-G.; Li, X.; Sun, X.; Ishigaki, T. Monodispersed Colloidal Spheres for Uniform Y2O3:Eu3+ Red-Phosphor Particles and Greatly Enhanced Luminescence by Simultaneous Gd3+ Doping. J. Phys. Chem. C 2008, 112, 11707–11716. [Google Scholar] [CrossRef]
- Boyer, J.-C.; Manseau, M.-P.; Murray, J.I.; Van Veggel, F.C.J.M. Surface Modification of Upconverting NaYF4 Nanoparticles with PEG−Phosphate Ligands for NIR (800 nm) Biolabeling within the Biological Window. Langmuir 2010, 26, 1157–1164. [Google Scholar] [CrossRef]
- Cross, A.M.; May, P.S.; van Veggel, F.C.J.M.; Berry, M.T. Dipicolinate Sensitization of Europium Luminescence in Dispersible 5% Eu: LaF3Nanoparticles. J. Am. Chem. Soc. 2010, 114, 14740–14747. [Google Scholar] [CrossRef]
- Lintner, B.; Arsften, N. A first look at the optical properties of ORMOSIL. J. Non-Cryst. Solids 1988, 100, 378–382. [Google Scholar] [CrossRef] [Green Version]
- Sanchez, C.; Ribot, F. Design of hybrid organic-inorganic materials synthesized via sol-gel chemistry. New J. Chem. 1994, 18, 1007–1047. [Google Scholar]
- Ringler, M.; Schwemer, A.; Wunderlich, M.; Nichtl, A.; Kurzinger, K.; Klar, T.A.; Feldmann, J. Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators. Phys. Rev. Lett. 2008, 100, 203002. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Munechika, K.; Ginger, D. Dependence of Fluorescence Intensity on the Spectral Overlap between Fluorophores and Plasmon Resonant Single Silver Nanoparticles. Nano Lett. 2007, 7, 690–696. [Google Scholar] [CrossRef] [PubMed]
- Fan, W.-Q.; Feng, J.; Song, S.-Y.; Lei, Y.-Q.; Zheng, G.-L.; Zhang, H.-J. Synthesis and Optical Properties of Europium-Complex-Doped Inorganic/Organic Hybrid Materials Built from Oxo-Hydroxo Organotin Nano Building Blocks. Chem. Eur. J. 2010, 16, 1903–1910. [Google Scholar] [CrossRef]
- Ming, T.; Chen, H.; Jiang, R.; Li, Q.; Wang, J. Plasmon-Controlled Fluorescence: Beyond the Intensity Enhancement. J. Phys. Chem. Lett. 2012, 3, 191–202. [Google Scholar] [CrossRef]
- Yin, Z.; Li, H.; Xu, W.; Cui, S.; Zhou, D.; Chen, X.; Zhu, Y.; Qin, G.; Song, H. Local Field Modulation Induced Three-Order Upconversion Enhancement: Combining Surface Plasmon Effect and Photonic Crystal Effect. Adv. Mater. 2016, 28, 2518–2525. [Google Scholar] [CrossRef]
- Hayakawa, T.; Selvan, S.T.; Nogami, M. Field enhancement effect of small Ag particles on the fluorescence from Eu3+-doped SiO2 glass. Appl. Phys. Lett. 1999, 74, 1513–1515. [Google Scholar] [CrossRef]
- Strohhöfer, C.; Polman, A. Silver as a sensitizer for erbium. Appl. Phys. Lett. 2002, 81, 1414–1416. [Google Scholar] [CrossRef] [Green Version]
- Das, R.; Phadke, P.; Khichar, N.; Chawla, S. The effect of plasmonic near field tuning on spontaneous emission intensity of dual emitting ZnO: Er3+ nanoparticles. Superlattices Microstruct. 2015, 83, 642–650. [Google Scholar] [CrossRef]
- Zhuo, S.J.; Shao, M.W.; Cheng, L.; Que, R.H.; Ma, D.D.D.; Lee, S.T. Silver/silicon nanostructure for surface-enhanced fluorescence of Ln3+ (Ln, Nd, Ho, and Er). J. Appl. Phys. 2010, 108, 034305. [Google Scholar] [CrossRef]
- Vijayakumar, R.; Marimuthu, K. Luminescence studies on Ag nanoparticles embedded Eu3+doped boro-phosphate glasses. J. Alloys Compd. 2016, 665, 294–303. [Google Scholar] [CrossRef]
- Fares, H.; Elhouichet, H.; Gelloz, B.; Férid, M. Silver nanoparticles enhanced luminescence properties of Er3+ doped tellurite glasses: Effect of heat treatment. J. Appl. Phys. 2014, 116, 123504. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, Y.; Zhu, J.; Zhou, D.; Qiu, D.; Xu, W.; Xu, X.; Lu, Z. Plasmon multiwavelength-sensitized luminescence enhancement of highly transparent Ag/YVO4:Eu3+/PMMA film. J. Lumin. 2018, 200, 158–163. [Google Scholar] [CrossRef]
- Fan, B.; Liu, J.; Zhou, W.; Han, L. Enhanced luminescence properties of Eu3+-doped high silica glass by Ag nanoparticles. J. Lumin. 2019, 215, 116687. [Google Scholar] [CrossRef]
- Pillonnet, A.; Berthelot, A.; Pereira, A.; Benamara, O.; Derom, S.; Francs, G.C.D.; Jurdyc, A.M. Coupling distance between Eu3+ Luminescent molecules and Ag nanoparticles. Appl. Phys. Lett. 2012, 100, 153115. [Google Scholar] [CrossRef]
- Naczas, S.; Akhter, P.; Huang, M. Enhanced photoluminescence around 1540 nm from erbium doped silicon coimplanted with hydrogen and silver. Appl. Phys. Lett. 2011, 98, 113101. [Google Scholar] [CrossRef]
- Camilo, M.E.; Assumpção, T.A.A.; Silva, D.M.D.; Silva, D.S.D.; Kassab, L.R.P.; Araújo, C.B.D. Influence of silver nanoparticles on the infrared-to-visible frequency upconversion in Tm3+/Er3+/Yb3+ doped GeO2-PbO glass. J. Appl. Phys. 2013, 113, 153507. [Google Scholar] [CrossRef]
- Saad, M.; Elhouichet, H. Good optical performances of Eu3+/Dy3+/Ag nanoparticles co-doped phosphate glasses induced by plasmonic effects. J. Alloys Compd. 2019, 806, 1403–1409. [Google Scholar] [CrossRef]
- Aisaka, T.; Fujii, M.; Hayashi, S. Enhancement of upconversion luminescence of Er doped Al2O3 films by Ag island films. Appl. Phys. Lett. 2008, 92, 132105. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Xu, W.; Zhang, L.H.; Bai, X.; Cui, S.B.; Zhou, D.L.; Yin, Z.; Song, H.W.; Kim, D.H. Large Upconversion Enhancement in the “Islands” Au–Ag Alloy/NaYF4: Yb3+, Tm3+ /Er3+ Composite Films, and Fingerprint Identifi cation. Adv. Funct. Mater. 2015, 25, 5462–5471. [Google Scholar] [CrossRef]
- Zhang, W.; Li, J.; Lei, H.; Li, B. Plasmon-Induced Selective Enhancement of Green Emission in Lanthanide-Doped Nanoparticles. ACS Appl. Mater. Interfaces 2017, 9, 42935–42942. [Google Scholar] [CrossRef]
- Chao, W.-H.; Wu, R.-J.; Tsai, C.-S.; Wu, T.-B. Surface plasmon-enhanced emission from Ag-coated Ce doped Y3Al5O12 thin films phosphor capped with a dielectric layer of SiO2. J. Appl. Phys. 2010, 107, 013101. [Google Scholar] [CrossRef]
- Kushlyk, M.; Tsiumra, V.; Zhydachevskyy, Y.; Haiduchok, V.; Syvorotka, I.; Sugak, D.; Suchocki, A. Enhancement of the YAG: Ce,Yb down-conversion emission by plasmon resonance in Ag nanoparticles. J. Alloys Compd. 2019, 804, 202–212. [Google Scholar] [CrossRef]
- Derom, S.; Berthelot, A.; Pillonnet, A.; Benamara, O.; Jurdyc, A.M.; Girard, C.; Francs, G.C.D. Metal enhanced fluorescence in rare earth doped plasmonic core–shell nanoparticles. Nanotechnology 2013, 24, 495704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, Z.Y.; Dosev, D.; Kennedy, I.M. A microemulsion preparation of nanoparticles of europium in silica with luminescence enhancement using silver. Nanotechnology 2009, 20, 085608. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Bai, X.; Xu, S.; Zhu, Y.; Xia, L.; Song, H. Remarkable fluorescence enhancement in YVO4:Eu3+@Ag nano-hybrids induced by interface effect. RSC Adv. 2012, 2, 2047–2054. [Google Scholar] [CrossRef]
- Green, K.; Wirth, J.; Lim, S.F. Optical investigation of gold shell enhanced 25 nm diameter upconverted fluorescence emission. Nanotechnology 2016, 27, 135201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kannan, P.; Rahim, F.A.; Teng, X.; Chen, R.; Sun, H.; Huang, L.; Kim, D.-H. Enhanced emission of NaYF4: Yb, Er/Tm nanoparticles by selective growth of Au and Ag nanoshells. RSC Adv. 2013, 3, 7718–7721. [Google Scholar] [CrossRef]
- Li, L.; Green, K.; Hallen, H.; Lim, S.F. Enhancement of single particle rare earth doped NaYF4: Yb, Er emission with a gold shell. Nanotechnology 2014, 26, 025101. [Google Scholar] [CrossRef] [PubMed]
- Som, T.; Karmakar, B. Core-shell Au-Ag nanoparticles in dielectric nanocomposites with plasmon-enhanced fluorescence: A new paradigm in antimony glasses. Nano Res. 2009, 2, 607–616. [Google Scholar] [CrossRef] [Green Version]
- Zhou, D.; Lin, X.; Wang, A.; Li, J.; Qu, Y.; Chu, H.; Zhao, Y. Fluorescence enhancement of Tb3+ complexes by adding silica-coated silver nanoparticles. Sci. China Ser. B Chem. 2015, 58, 979–985. [Google Scholar] [CrossRef]
- Wang, X.J.; Qu, Y.R.; Zhao, Y.L.; Chu, H.B. Effect of the Composition of Lanthanide Complexes on Their Luminescence Enhancement by Ag@SiO2 Core-Shell Nanoparticles. Nanomaterials 2018, 8, 98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dan, H.K.; Zhou, D.; Wang, R.; Jiao, Q.; Yang, Z.; Song, Z.; Yu, X.; Qiu, J. Effect of Copper nanoparticles on the enhancement of upconversion in the Tb3+/Yb3+ co-doped transparent glass–ceramics. Opt. Mater. 2015, 39, 160–166. [Google Scholar] [CrossRef]
- Azmi, S.A.M.; Saha, M.R.; Ghoshal, S.K.; Arifin, R. Modification of structural and physical properties of samarium doped zinc phosphate glasses due to the inclusion of nickel oxide nanoparticles. J. Non-Cryst. Solids 2015, 411, 53–58. [Google Scholar] [CrossRef]
- Arififin, R.; Zulkifeli, N.A.; Sahar, M.R.; Ghoshal, S.K. Enhanced luminescence from erbium doped phosphate glass containing ZnO nanoparticles. Adv. Mater. Res. 2014, 895, 241–244. [Google Scholar] [CrossRef]
- Yusof, N.; Ghoshal, S.; Azlan, M. Optical properties of titania nanoparticles embedded Er3+-doped tellurite glass: Judd-Ofelt analysis. J. Alloys Compd. 2017, 724, 1083–1092. [Google Scholar] [CrossRef]
- Akselrod, G.M.; Argyropoulos, C.; Hoang, T.B.; Ciracì, C.; Fang, C.; Huang, J.; Smith, D.R.; Mikkelsen, M.H. Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas. Nat. Photonics 2014, 8, 835–840. [Google Scholar] [CrossRef] [Green Version]
- Bitton, O.; Gupta, S.N.; Haran, G. Quantum dot plasmonics: From weak to strong coupling. Nanophotonics 2019, 8, 559–575. [Google Scholar] [CrossRef]
- Pelton, M. Modified spontaneous emission in nanophotonic structures. Nat. Photonics 2015, 9, 427–435. [Google Scholar] [CrossRef]
- Aslan, K.; Wu, M.; Lakowicz, J.R.; Geddes, C.D. Fluorescent Core-Shell Ag@SiO2 Nanocomposites for Metal-Enhanced Fluorescence and Single Nanoparticle Sensing Platforms. J. Am. Chem. Soc. 2007, 129, 1524–1525. [Google Scholar] [CrossRef]
- Lee, S.M.; Choi, K.C. Distance-dependent plasmonic enhancement via radiative transitions of europium complex. Opt. Lett. 2013, 38, 1355–1357. [Google Scholar] [CrossRef]
- Mawlud, S.Q. A comparative enhancement of Au and Ag NPs role on radiative properties in Sm3+ doped zinc-sodium tellurite glass: Judd-Ofelt parameter. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 209, 78–84. [Google Scholar] [CrossRef]
- Wang, Q.; Song, F.; Lin, S.; Liu, J.; Zhao, H.; Zhang, C.; Ming, C.; Pun, E.Y.B. Optical properties of silver nanoprisms and their influences on fluorescence of europium complex. Opt. Express 2011, 19, 6999–7006. [Google Scholar] [CrossRef]
- Wang, Q.; Lin, S.; Ming, C.; Zhao, H.; Liu, J.; Zhang, C.; Song, F.; Pun, E.Y. Plasmon-enhanced luminescence of Eu complex by using silver nanocubes for different excitations. Mater. Lett. 2011, 65, 905–907. [Google Scholar] [CrossRef]
- Wang, Q.; Song, F.; Lin, S.; Ming, C.; Zhao, H.; Liu, J.; Zhang, C.; Pun, E.Y.B. Effect of silver nanoparticles with different shapes on luminescence of samarium complex at two different excitation wavelengths. J. Nanoparticle Res. 2011, 13, 3861–3865. [Google Scholar] [CrossRef]
- Wang, Q.; Song, F.; Ming, C.; Zhao, H.; Liu, J.; Zhang, C.; Lin, S.; Pun, E.Y.-B. Plasmonic-enhanced quantum efficiency of europium complex using annealed silver island films. J. Opt. Soc. Am. B 2011, 28, 220–224. [Google Scholar] [CrossRef]
- Martínez, E.D.; Urbano, R.R.; Rettoria, C. Thermoplasmonic enhancement of upconversion in small-size doped NaGd(Y)F4 nanoparticles coupled to gold nanostars. Nanoscale 2018, 10, 14687–14696. [Google Scholar] [CrossRef]
- Quintanilla, M.; García, I.; Lázaro, I.D.; Alvarez, R.G.; Lacey, M.H.; Vranic, S.; Kostarelos, K.; Marzán, L.M.L. Thermal monitoring during photothermia: Hybrid probes for simultaneous plasmonic heating and near-infrared optical nanothermometry. Theranostics 2019, 9, 7298–7312. [Google Scholar] [CrossRef]
- Das, R.; Phadke, P.; Khichar, N.; Chawla, S. Plasmonic enhancement of dual mode fluorescence in a silver nano-antenna–ZnO: Er3+ hybrid nanostructure. J. Mater. Chem. C 2014, 2, 8880–8885. [Google Scholar] [CrossRef] [Green Version]
- Lohse, S.E.; Murphy, C.J. The Quest for Shape Control: A History of Gold Nanorod Synthesis. Chem. Mater. 2013, 25, 1250–1261. [Google Scholar] [CrossRef]
- Liu, S.-Y.; Huang, L.; Li, J.-F.; Wang, C.; Li, Q.; Xu, H.-X.; Guo, H.-L.; Meng, Z.-M.; Shi, Z.; Li, Z.-Y. Simultaneous Excitation and Emission Enhancement of Fluorescence Assisted by Double Plasmon Modes of Gold Nanorods. J. Phys. Chem. C 2013, 117, 10636–10642. [Google Scholar] [CrossRef]
- Zhang, J.; Fu, Y.; Ray, K.; Wang, Y.; Lakowicz, J.R. Luminescent Properties of Eu(III) Chelates on Metal Nanorods. J. Phys. Chem. C 2013, 117, 9372–9380. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Ray, K.; Fu, Y.; Lakowicz, J.R. First observation of enhanced luminescence from single lanthanide chelates on silver nanorods. Chem. Commun. 2014, 50, 9383–9386. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.H.; Huang, H.; Zhang, D.Q.; Chen, M.; Zhang, Y.F.; Yu, X.F.; Zhou, L.; Wang, Q.Q. Synthesis of gold/rare-earth-vanadate core/shell nano-rods for integrating plasmon resonance and fluorescence. Nano Res. 2015, 8, 2548–2561. [Google Scholar] [CrossRef]
- Zhang, J.; Song, F.; Lin, S.; Liu, S.; Liu, Y. Tunable fluorescence lifetime of Eu-PMMA films with plasmonic nanostructures for multiplexing. Opt. Express 2016, 24, 8228–8236. [Google Scholar] [CrossRef] [PubMed]
- Haldar, K.K.; Patra, A. Fluorescence enhancement and quenching of Eu3+ ions by Au-ZnO core-shell and Au nanoparticles. Appl. Phys. Lett. 2009, 95, 063103. [Google Scholar] [CrossRef]
- Zhang, J.; Fu, Y.; Lakowicz, J.R. Luminescent Silica Core/Silver Shell Encapsulated with Eu(III) Complex. J. Phys. Chem. C 2009, 113, 19404–19410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, P.Y.; Lee, Y.H.; Gnanasammandhan, M.K.; Guan, Z.P.; Zhang, Y.; Xu, Q.H. Plasmon enhanced upconversion luminescence of NaYF4: Yb, Er@SiO2@Ag core-shell nanocomposites for cell imaging. Nanoscale 2012, 4, 5132–5137. [Google Scholar] [CrossRef]
- Kang, J.; Zhao, Y.F.; Chu, H.B.; Zhao, Y.L. Tuning the luminescence properties of samarium and dysprosium complexes by Ag@SiO2 nanoparticles. J. Photochem. Photobiol. A Chem. 2018, 365, 119–124. [Google Scholar] [CrossRef]
- Qu, Y.R.; Lin, X.M.; Wang, A.L.; Wang, Z.X.; Kang, J.; Chu, H.B.; Zhao, Y.L. Study on silicon oxide coated on silver nanocrystal to enhance fluorescence intensity of rare earth complexes. J. Lumin. 2014, 154, 402–409. [Google Scholar] [CrossRef]
- Kong, L.J.; Kong, K.; Zhao, Y.L.; Chu, H.B. Tuning Luminescence Properties of Lanthanide Coordination Polymers by Ag@SiO2 Nanoparticles. Dalton Trans. 2017, 46, 6447–6455. [Google Scholar] [CrossRef]
- Runowski, M. Color-tunable up-conversion emission of luminescent-plasmonic, core/shell nanomaterials–KY3F10:Yb3+, Tm3+/SiO2-NH2/Au. J. Lumin. 2017, 186, 199–204. [Google Scholar] [CrossRef]
- Lin, L.; Yu, Z.; Wang, Z.; Feng, Z.; Huang, F.; Huang, L.; Dai, Q.; Zhang, F.; Zheng, Z. Plasmon-enhanced upconversion and quantum-cutting of water-soluble Au@SiO2/NaYF4:Tb3+,Yb3+@NaYF4 nanocomposites. J. Lumin. 2019, 214, 116598. [Google Scholar] [CrossRef]
- Kang, F.W.; He, J.J.; Sun, T.Y.; Bao, Z.Y.; Wang, F.; Lei, D.Y. Plasmonic Dual-Enhancement and Precise Color Tuning of Gold Nanorod@SiO2 Coupled Core–Shell–Shell Upconversion Nanocrystals. Adv. Funct. Mater. 2017, 27, 1701842. [Google Scholar] [CrossRef]
- Liu, Y.L.; Song, F.; Liu, J.D.; Zhang, J.; Yu, Y.; Zhao, H.Y. Enhancement of luminescent emission in Er3+/Yb3+ co-doped Y2Ti2O7 films with Ag/Au nanoparticles. Chem. Phys. Lett. 2013, 565, 98–101. [Google Scholar] [CrossRef]
- Zhang, J.; Song, F.; He, Z.; Liu, Y.; Chen, Z.; Lin, S.; Huang, L.; Huang, W. Wide-Range Tunable Fluorescence Lifetime and Ultrabright Luminescence of Eu-Grafted Plasmonic Core-Shell Nanoparticles for Multiplexing. Small 2016, 12, 397–404. [Google Scholar] [CrossRef]
- Wang, Q.R.; Zhang, J.; Sang, X.; Zhang, D.; Shi, Q.; Li, S.H.; Wang, W.J. Enhanced luminescence and prolonged lifetime of Eu-PMMA films based on Au@SiO2 plasmonic hetero-nanorods. J. Lumin. 2018, 204, 284–288. [Google Scholar] [CrossRef]
- Wang, Q.R.; Sang, X.; Li, S.H.; Liu, Y.L.; Wang, W.J.; Wang, Q.; Liu, K.; An, Z.F.; Huang, W. Emission Editing in Eu/Tb binary complexes based on Au@SiO2 nanorods. Opt. Express 2019, 27, 27726–27736. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Liu, J.; Huang, K.; Chen, Q.; Dong, H.; Zhang, D.; Shi, Q.; Li, S.; Wang, W. Dual coupled effects of low concentration gold nanorods on energy transfer and luminescence enhancement in Eu/Tb co-doped films. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 235, 118260. [Google Scholar] [CrossRef]
- Kang, K.A.; Wang, J.T.; Jasinski, J.B.; Achilefu, S. Fluorescence Manipulation by Gold Nanoparticles: From Complete Quenching to Extensive Enhancement. J. Nanobiotechnology 2011, 9, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Acuna, G.P.; Bucher, M.; Stein, I.H.; Steinhauer, C.; Kuzyk, A.; Holzmeister, P.; Schreiber, R.; Moroz, A.; Stefani, F.D.; Liedl, T.; et al. Distance Dependence of Single-Fluorophore Quenching by Gold Nanoparticles Studied on DNA Origami. ACS Nano 2012, 6, 3189–3195. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Marocico, C.A.; Lunz, M.; Gerard, V.A.; Gun’Ko, Y.K.; Lesnyak, V.; Gaponik, N.; Susha, A.S.; Rogach, A.L.; Bradley, A.L. Wavelength, Concentration, and Distance Dependence of Nonradiative Energy Transfer to a Plane of Gold Nanoparticles. ACS Nano 2012, 6, 9283–9290. [Google Scholar] [CrossRef] [PubMed]
- Geddes, C.D.; Lakowicz, J.R. Metal-enhanced fluorescence. J. Fluoresc. 2002, 12, 121–129. [Google Scholar] [CrossRef]
- Campion, A.; Gallo, A.; Harris, C.; Robota, H.; Whitmore, P. Electronic energy transfer to metal surfaces: A test of classical image dipole theory at short distances. Chem. Phys. Lett. 1980, 73, 447–450. [Google Scholar] [CrossRef]
- Ray, K.; Badugu, R.; Lakowicz, J.R. Polyelectrolyte Layer-by-Layer Assembly to Control the Distance between Fluorophores and Plasmonic Nanostructures. Chem. Mater. 2007, 19, 5902–5909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lynch, D.W.; Hunter, W.R. Handbook of Optical Constants of Solids; Academic Press: New York, NY, USA, 1985; pp. 274–760. [Google Scholar]
- Ge, W.; Zhang, X.R.; Liu, M.; Lei, Z.W.; Knize, R.J.; Lu, Y. Distance Dependence of Gold-Enhanced Upconversion luminescence in Au/SiO2/Y2O3: Yb3+, Er3+ Nanoparticles. Theranostics 2013, 3, 282–288. [Google Scholar] [CrossRef] [Green Version]
- Schneider, G.; Decher, G.; Nerambourg, N.; Praho, R.; Werts, M.H.V.; Blanchard-Desce, M. Distance-Dependent Fluorescence Quenching on Gold Nanoparticles Ensheathed with Layer-by-Layer Assembled Polyelectrolytes. Nano Lett. 2006, 6, 530–536. [Google Scholar] [CrossRef]
- Akbay, N.; Lakowicz, J.R.; Ray, K. Distance-Dependent Metal-Enhanced Intrinsic Fluorescence of Proteins Using Polyelectrolyte Layer-by-Layer Assembly and Aluminum Nanoparticles. J. Phys. Chem. C 2012, 116, 10766–10773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kümmerlen, J.; Leitner, A.; Brunner, H.; Aussenegg, F.; Wokaun, A. Enhanced dye fluorescence over silver island films: Analysis of the distance dependence. Mol. Phys. 1993, 80, 1031–1046. [Google Scholar] [CrossRef]
- Kang, J.; Li, Y.; Chen, Y.N.; Wang, A.L.; Yue, B.; Qu, Y.R.; Zhao, Y.L.; Chu, H.B. Core–shell Ag@SiO2 nanoparticles of different silica shell thicknesses: Preparation and their effects on photoluminescence of lanthanide complexes. Mater. Res. Bull. 2015, 71, 116–121. [Google Scholar] [CrossRef]
- Li, H.; Kang, J.; Yang, J.; Wu, B. Distance Dependence of Fluorescence Enhancement in Au Nanoparticle@Mesoporous Silica@Europium Complex. J. Phys. Chem. C 2016, 120, 16907–16912. [Google Scholar] [CrossRef]
- Song, Y.; Liu, G.X.; Dong, X.T.; Wang, J.X.; Yu, W.S. Au@NaYF4: Tb3+ core @ shell nanostructures: Synthesis and construction of luminescence resonance energy transfer. J. Lumin. 2016, 171, 124–130. [Google Scholar] [CrossRef]
- Bertry, L.; Durupthy, O.; Aschehoug, P.; Viana, B.; Chanéac, C. Experimental evidence of luminescence quenching at long coupling distances in europium (III) doped core-shell gold silica nanoparticles. Gold Bull. 2013, 46, 349–355. [Google Scholar] [CrossRef] [Green Version]
- Nabika, H.; Deki, S. Enhancing and Quenching Functions of Silver Nanoparticles on the Luminescent Properties of Europium Complex in the Solution Phase. J. Phys. Chem. B 2003, 107, 9161–9164. [Google Scholar] [CrossRef]
- Fang, X.; Song, H.; Xie, L.; Liu, Q.; Zhang, H.; Bai, X.; Dong, B.; Wang, Y.; Han, W. Origin of luminescence enhancement and quenching of europium complex in solution phase containing Ag nanoparticles. J. Chem. Phys. 2009, 131, 054506. [Google Scholar] [CrossRef]
- An, G.; Jin, S.; Yang, C.; Zhou, Y.; Zhao, X. Photoluminescence enhancement and quenching of Sm, Au Co-doped TiO2. Opt. Mater. 2012, 35, 45–49. [Google Scholar] [CrossRef]
- Gonzalez, D.M.; Melle, S.; Calderón, O.G.; Laurenti, M.; Granado, E.C.; Gómez, A.E.; Cabarcos, E.L.; Retama, J.R.; Díaz, E. Control of upconversion luminescence by gold nanoparticle size: From quenching to enhancement. Nanoscale 2019, 11, 13832–13844. [Google Scholar] [CrossRef]
- Sohn, Y. Contour mapping 2D and 3D-photoluminescence of Au-doped one-dimensional Eu(III) and Tb(III) hydroxide and oxide nanostructures. Ceram. Int. 2013, 39, 9157–9161. [Google Scholar] [CrossRef]
- Jiménez, J.A. Influence of Ag nanoparticles on the luminescence dynamics of Dy3+ ions in glass: The “plasmonic diluent” effect. Phys. Chem. Chem. Phys. 2013, 15, 17587–17594. [Google Scholar] [CrossRef] [PubMed]
- Dousti, M.R.; Amjad, R.J.; Salehi, M.; Sahar, M.R. Photoluminescence study of Sm3+–Yb3+ co-doped tellurite glass embedding silver nanoparticles. J. Lumin. 2015, 159, 100–104. [Google Scholar] [CrossRef]
- Jiménez, J.; Sendova, M. Real-time analysis of the “plasmonic diluent” effect: Probing Ag nanoparticle growth rate via Dy3+ photoluminescence quenching. J. Lumin. 2015, 157, 275–279. [Google Scholar] [CrossRef]
- Eriksen, E.H.; Madsen, S.P.; Julsgaard, B.; Hofmann, C.L.M.; Goldschmidt, J.C.; Balling, P. Enhanced upconversion via plasmonic near-field effects: Role of the particle shape. J. Optics 2019, 21, 035004. [Google Scholar] [CrossRef]
- Simovski, C.R.; Mollaei, M.S.M.; Voroshilov, P.M. Fluorescence quenching by plasmonic nanoantennas. Phys. Rev. B 2020, 101, 245421. [Google Scholar] [CrossRef]
- Kumar, D.; Kaur, S.; Lim, D.K. Plasmon-assisted and visible-light induced graphene oxide reduction and efficient fluorescence quenching. Chem. Commun. (Camb) 2014, 50, 13481–13484. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, J.-F.; Li, J.-J.; Zhao, J.-W. Specific detection of carcinoembryonic antigen based on fluorescence quenching of Au-Ag core-shell nanotriangle probe. Sens. Actuators B Chem. 2016, 233, 214–222. [Google Scholar] [CrossRef]
- Yu, Y.-C.; Liu, J.-M.; Jin, C.-J.; Wang, X.-H. Plasmon-mediated resonance energy transfer by metallic nanorods. Nanoscale Res. Lett. 2013, 8, 209. [Google Scholar] [CrossRef] [Green Version]
- Andrew, P.; Barnes, W.L. Energy Transfer across a Metal Film Mediated by Surface Plasmon Polaritons. Science 2004, 306, 1002–1005. [Google Scholar] [CrossRef] [Green Version]
- Lakowicz, J.R.; Kusba, J.; Shen, Y.; Malicka, J.; D’Auria, S.; Gryczynski, Z.; Gryczynski, I. Effects of Metallic Silver Particles on Resonance Energy Transfer between Fluorophores Bound to DNA. J. Fluoresc. 2003, 13, 69–77. [Google Scholar] [CrossRef]
- Lunz, M.; Gérard, V.A.; Gun’Ko, Y.K.; Lesnyak, V.; Gaponik, N.; Susha, A.S.; Rogach, A.L.; Bradley, A.L. Surface Plasmon Enhanced Energy Transfer between Donor and Acceptor CdTe Nanocrystal Quantum Dot Monolayers. Nano Lett. 2011, 11, 3341–3345. [Google Scholar] [CrossRef]
- Kim, K.-S.; Yoo, S.I.; Sohn, B.-H. Metal-Coupled Fluorescence Resonance Energy Transfer in Layer-by-Layer Assemblies for Dual Modality Fluorescence Enhancement. Macromol. Chem. Phys. 2018, 219, 1800115. [Google Scholar] [CrossRef]
- Shishodia, M.S.; Juneja, S. Surface plasmon enhanced electric field versus Förster resonance energy transfer near core-shell nanoparticle. J. Appl. Phys. 2019, 125, 213104. [Google Scholar] [CrossRef]
- Liu, L.; Yu, M.; Zhang, J.; Wang, B.; Liu, W.; Tang, Y. Facile fabrication of color-tunable and white light emitting nano-composite films based on layered rare-earth hydroxides. J. Mater. Chem. C 2015, 3, 2326–2333. [Google Scholar] [CrossRef]
- Runowski, M.; Lis, S. Synthesis of lanthanide doped CeF3: Gd3+, Sm3+ nanoparticles, exhibiting altered luminescence after hydrothermal post-treatment. J. Alloys Compd. 2016, 661, 182–189. [Google Scholar] [CrossRef]
- Malta, O.; Dos Santos, M.C. Theoretical analysis of the fluorescence yield of rare earth ions in glasses containing small metallic particles. Chem. Phys. Lett. 1990, 174, 13–18. [Google Scholar] [CrossRef]
- Eichelbaum, M.; Rademann, K. Plasmonic Enhancement or Energy Transfer? On the Luminescence of Gold-, Silver-, and Lanthanide-Doped Silicate Glasses and Its Potential for Light-Emitting Devices. Adv. Funct. Mater. 2009, 19, 2045–2052. [Google Scholar] [CrossRef]
- Rivera, V.A.G.; Osorio, S.P.A.; Ledemi, Y.U.; Manzani, D.U.; Messaddeq, Y.; Nunes, L.A.D.O.; Marega, E. Localized surface plasmon resonance interaction with Er3+ doped tellurite glass. Opt. Express 2010, 18, 25321–25328. [Google Scholar] [CrossRef] [PubMed]
- Amjad, R.J.; Sahar, M.R.; Dousti, M.R.; Ghoshal, S.K.; Jamaludin, M.N.A. Surface enhanced Raman scattering and plasmon enhanced fluorescence in zinc-tellurite glass. Opt. Express 2013, 21, 14282–14290. [Google Scholar] [CrossRef] [PubMed]
- Awang, A.; Ghoshal, S.; Sahar, M.; Arifin, R.; Nawaz, F. Non-spherical gold nanoparticles mediated surface plasmon resonance in Er3+ doped zinc–sodium tellurite glasses: Role of heat treatment. J. Lumin. 2014, 149, 138–143. [Google Scholar] [CrossRef]
- Qi, Y.W.; Zhou, Y.X.; Wu, L.B.; Yang, F.J.; Peng, S.X.; Zheng, S.C.; Yin, D.D. Silver nanoparticles enhanced 1.53 μm band fluorescence of Eu3+/Yb3+ codoped tellurite glasses. J. Lumin. 2014, 153, 401–407. [Google Scholar] [CrossRef]
- Rajesh, D.; Amjad, R.J.; Dousti, M.R.; De Camargo, A. Enhanced VIS and NIR emissions of Pr3+ ions in TZYN glasses containing silver ions and nanoparticles. J. Alloys Compd. 2017, 695, 607–612. [Google Scholar] [CrossRef]
- Shahi, P.K.; Prakash, R.; Rai, S.B. Silver nanoparticles embedded hybrid organometallic complexes: Structural interactions, photo-induced energy transfer, plasmonic effect and optical thermometry. AIP Adv. 2018, 8, 065117. [Google Scholar] [CrossRef]
- Chen, S.; Weitemier, A.Z.; Zeng, X.; He, L.; Wang, X.; Tao, Y.; Huang, A.; Hashimotodani, Y.; Kano, M.; Iwasaki, H.; et al. Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics. Science 2018, 359, 679–683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhan, Q.; Liu, H.; Wang, B.; Wu, Q.; Pu, R.; Zhou, C.; Huang, B.; Peng, X.; Gren, H.; He, S. Achieving High-Efficiency Emission Depletion Nanoscopy by Employing Cross Relaxation in Upconversion Nanoparticles. Nat. Commun. 2017, 8, 1058. [Google Scholar] [CrossRef] [Green Version]
- Fernandez-Bravo, A.; Yao, K.; Barnard, E.S.; Borys, N.J.; Levy, E.S.; Tian, B.; Tajon, C.A.; Moretti, L.; Altoe, M.V.; Aloni, S.; et al. Continuous-Wave Upconverting Nanoparticle Microlasers. Nat. Nanotechnol. 2018, 13, 572–577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Q.-C.; Mundoor, H.; Ribot, J.C.; Singh, V.; Smalyukh, I.I.; Nagpal, P. Plasmon-Enhanced Energy Transfer for Improved Upconversion of Infrared Radiation in Doped-Lanthanide Nanocrystals. Nano Lett. 2014, 14, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.-C.; Ding, Y.; Nagpal, P. Photophysical Color Tuning for Photon Upconverting Nanoparticles. ACS Appl. Mater. Interfaces 2019, 11, 27011–27016. [Google Scholar] [CrossRef]
- Lu, D.W.; Cho, S.K.; Ahn, S.; Brun, L.; Summer, C.J.; Park, W. Plasmon Enhancement Mechanism for the upconversion processes in NaYF4: Yb3+, Er3+ nanoparticles: Maxwll versus Forster. ACS Nano 2014, 8, 7780–7792. [Google Scholar] [CrossRef]
- Lu, D.; Mao, C.; Cho, S.K.; Ahn, S.; Park, W. Experimental demonstration of plasmon enhanced energy transfer rate in NaYF4: Yb3+,Er3+ upconversion nanoparticles. Sci. Rep. 2016, 6, 18894. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Yang, Z.; Ma, Y.; Chai, Z.; Qiu, J.; Song, Z. Upconversion emission enhancement mechanisms of Nd3+-sensitized NaYF4: Yb3+,Er3+ nanoparticles using tunable plasmonic Au films: Plasmonic-induced excitation, radiative decay rate and energy-transfer enhancement. J. Mater. Chem. C 2017, 5, 8535–8544. [Google Scholar] [CrossRef]
- Elrafei, S.; Kandas, I.; Shehata, N.; Samir, E.; Okaz, A.; Rizk, M. Impact of plasmonic nanoparticles on up-conversion luminescence and efficiency of erbium-doped ceria nanoparticles under 780 nm excitation. J. Lumin. 2018, 204, 581–588. [Google Scholar] [CrossRef]
- Naik, G.V.; Shalaev, V.M.; Boltasseva, A. Alternative Plasmonic Materials: Beyond Gold and Silver. Adv. Mater. 2013, 25, 3264–3294. [Google Scholar] [CrossRef] [PubMed]
- You, C.Y.; Lin, L.-H.; Wang, J.-Y.; Zhang, F.-L.; Radjenovic, P.M.; Yang, Z.-L.; Tian, Z.-Q.; Li, J.-F. Plasmon-Enhanced Fluorescence of Phosphors Using Shell-Isolated Nanoparticles for Display Technologies. ACS Appl. Nano Mater. 2020, 3, 5846–5854. [Google Scholar] [CrossRef]
- Yin, Y.; Rioux, R.M.; Erdonmez, C.K.; Hughes, S.; Somorjai, G.A.; Alivisatos, A.P. Formation of Hollow Nanocrystals through the Nanoscale Kirkendall Effect. Science 2004, 304, 711–714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, J.; Tu, D.; Zheng, W.; Shang, X.; Huang, P.; Cheng, Y.; Wang, Y.; Chen, X. Interfacial Defects Dictated In Situ Fabrication of Yolk-Shell Upconversion Nanoparticles by Electron-Beam Irradiation. Adv. Sci. 2018, 5, 1800766. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Zhang, L.; Liang, Y.; Wang, W.; Yan, S.; Bi, J.; Sun, K.-N. Yolk–shell structured Bi2SiO5: Yb3+, Ln3+ (Ln = Er, Ho, Tm) upconversion nanophosphors for optical thermometry and solid-state lighting. CrystEngComm 2020, 22, 4438–4448. [Google Scholar] [CrossRef]
- Chen, X.J.; Song, L.X.; Li, X.L.; Zhang, L.Y.; Li, L.; Zhang, X.P.; Wang, C.G. Co-delivery of hydrophilic/hydrophobic drugs by multifunctional yolk-shell nanoparticles for hepatocellular carcinoma Theranostics. Chem. Eng. J. 2020, 389, 124416. [Google Scholar] [CrossRef]
- Zhou, D.L.; Liu, D.L.; Xu, W.; Yin, Z.; Chen, X.; Zhou, P.W.; Cui, S.B.; Chen, Z.G.; Song, H.W. Observation of considerable upconversion enhancement induced by CuS plasmon nanoparticles. ACS Nano 2016, 10, 5169–5179. [Google Scholar] [CrossRef]
- Zhou, D.L.; Li, D.Y.; Zhou, X.Y.; Xu, W.; Chen, X.; Lu, D.L.; Zhu, Y.S.; Song, H.W. Semiconductor plasmon induced upconversion enhancement in mCu2–xS@SiO2@Y2O3:Yb3+/Er3+ Core–Shell Nanocomposites. ACS Appl. Mater. Interfaces 2017, 9, 35226–35233. [Google Scholar] [CrossRef]
- Zhou, D.L.; Li, D.Y.; Zhou, X.Y.; Xu, W.; Chen, X.; Lu, D.L.; Zhu, Y.S.; Song, H.W. Synergistic upconversion enhancement induced by multiple physical effects and an angle dependent anticounterfeit application. Chem. Mater. 2017, 29, 6799–6809. [Google Scholar] [CrossRef]
- Zhou, D.; Liu, D.; Jin, J.; Chen, X.; Xu, W.; Yin, Z.; Pan, G.; Li, D.; Song, H. Semiconductor plasmon-sensitized broadband upconversion and its enhancement effect on the power conversion efficiency of perovskite solar cells. J. Mater. Chem. A 2017, 5, 16559–16567. [Google Scholar] [CrossRef]
- Zhang, H.L.; Yang, Z.W.; Ma, Y.J.; Qiu, J.B.; Song, Z.G. Upconversion luminescence enhancement of NaYF4: Yb3+, Er3+ nanocrystals induced by the surface plasmon resonance of nontoichiometric WO2.72 semiconductor. J. Am. Ceram. Soc. 2018, 101, 4463–4467. [Google Scholar] [CrossRef]
- Xu, F.; Gao, H.; Liang, J.; Jin, S.; Zhao, J.; Liu, Y.; Zhang, H.; Zhang, Z.; Mao, Y. Enhanced upconversion luminescence in Cu1.8@NaYF4: Yb@NaYF4: Yb, Er core-shell nanoparticles. Ceram. Int. 2019, 45, 21557–21563. [Google Scholar] [CrossRef]
- Hu, D.; Peng, H.X.; Peng, Y.X.; Guo, J. Synthesis and enhanced luminescence properties of CuS@YF3: Eu core-shell nanoparticles. Appl. Phys. A 2020, 126, 385. [Google Scholar] [CrossRef]
- Yu, M.; Zhao, Z. Plasmon-enhanced up-conversion luminescence and oxygen vacancy defect-induced yellow light in annealed Cu8S5@SiO2@Er2O3 nanocomposites. J. Lumin. 2020, 225, 117361. [Google Scholar] [CrossRef]
- Ji, Y.; Xu, W.; Li, D.; Zhou, D.; Chen, X.; Ding, N.; Li, J.; Wang, N.; Bai, X.; Song, H. Semiconductor plasmon enhanced monolayer upconversion nanoparticles for high performance narrowband near-infrared photodetection. Nano Energy 2019, 61, 211–220. [Google Scholar] [CrossRef]
- Li, J.; Zhang, W.; Lu, C.; Lou, Z.; Li, B. Nonmetallic plasmon induced 500 fold enhancement in the upconversion emission of the UCNPs/WO3−x hybrid. Nanoscale Horiz. 2019, 4, 999. [Google Scholar] [CrossRef]
- Yu, M.; Tang, P.; Zhang, Q.; Zhao, Z.; Huang, S. Plasmon enhanced up-conversion luminescence in multiple Cu2−xS@SiO2-embedded Er(OH)CO3 composites. J. Alloys Compd. 2021, 853, 156906. [Google Scholar] [CrossRef]
- Jiang, R.; Li, B.; Fang, C.; Wang, J. Metal/Semiconductor Hybrid Nanostructures for Plasmon-Enhanced Applications. Adv. Mater. 2014, 26, 5274–5309. [Google Scholar] [CrossRef]
- Yang, G.; Fang, X.; Gu, Y.; Lu, N.; Zhang, X.; Wang, Y.; Hua, B.; Ni, X.; Fan, Q.; Gu, X. A comprehensive study of enhanced photoluminescence on monolayer MoS2 with Ag nano-ridge structures. Appl. Surf. Sci. 2020, 508, 144794. [Google Scholar] [CrossRef]
- Guidelli, E.J.; Baffa, O.; Clarke, D.R. Enhanced UV Emission from Silver/ZnO And Gold/ZnO Core-Shell Nanoparticles: Photoluminescence, Radioluminescence, and Optically Stimulated Luminescence. Sci. Rep. 2015, 5, 14004. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Cong, Y.; Lin, X.; Cao, B.S.; Dong, D.P.; Liu, K.C.; Xiao, Y.; Shang, J.Y.; Bao, Y.N.; Liu, Y.; et al. Dual LSPR of Au/W18O49 heterostructures for upconversion enhancement and application of molecules detection. J. Mater. Chem. A 2020, 8, 4040–4048. [Google Scholar] [CrossRef]
- Li, X.; Cheng, Y.; Xu, J.; Lin, H.; Wang, Y. Utilizing Au–CuS heterodimer to intensify upconversion emission of NaGdF4: Yb/Er nanocrystals. J. Mater. Sci. 2020, 55, 6891–6902. [Google Scholar] [CrossRef]
- Li, D.; Zhou, D.; Xu, W.; Chen, X.; Pan, G.; Zhou, X.; Ding, N.; Song, H. Plasmonic Photonic Crystals Induced Two-Order Fluorescence Enhancement of Blue Perovskite Nanocrystals and Its Application for High-Performance Flexible Ultraviolet Photodetectors. Adv. Funct. Mater. 2018, 28, 1804429. [Google Scholar] [CrossRef]
- Das, A.; Mao, C.; Cho, S.; Kim, K.; Park, W. Over 1000-fold enhancement of upconversion luminescence using water-dispersible metal-insulator-metal nanostructures. Nat. Commun. 2018, 9, 4828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Y.; Xu, J.; Poh, E.T.; Liang, L.; Liu, H.; Yang, J.K.W.; Qiu, C.-W.; Vallée, R.A.L.; Liu, X. Upconversion superburst with sub-2 μs lifetime. Nat. Nanotechnol. 2019, 14, 1110–1115. [Google Scholar] [CrossRef]
- Wang, Y.; Han, C.; Yu, L.; Wu, J.; Min, Y.; Tan, J.; Zhao, Y.; Zhang, P. Etching-controlled suppression of fluorescence resonance energy transfer between nitrogen-doped carbon dots and Ag nanoprisms for glucose assay and diabetes diagnosis. Spectrochim. Acta Part. A Mol. Biomol. Spectrosc. 2020, 242, 118713. [Google Scholar] [CrossRef]
- He, W.; Weng, W.; Sun, X.; Liu, B.; Shen, J. Novel Plasmon-Enhanced Fluorescence Sensing Platform Based on rGO/MoS2 Films for Ultrasensitive Detection of Protamine and Heparin. ACS Sustain. Chem. Eng. 2020, 8, 9988–9997. [Google Scholar] [CrossRef]
- Rong, P.; Ren, S.; Jiang, J.; Yu, Q.; Jiang, L.; Zhang, Y. Preparation and Photocatalytic Properties of Metal-Doped ZnO Nanofilms Grown on Graphene-Coated Flexible Substrates. Materials 2020, 13, 3589. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Yang, T.; Chen, J.; Wang, C.; Zhang, H.; Shao, Y. Two-dimensional nanomaterial-based plasmonic sensing applications: Advances and challenges. Co-Ord. Chem. Rev. 2020, 410, 213218. [Google Scholar] [CrossRef]
Reference | Types of Nanomaterials | Enhancement Mechanism | Enhancement Factor |
---|---|---|---|
Polman et al. [41] | silver nanocrystals | excitation enhancement | 70-fold |
Shao et al. [43] | Ag/Si nanostructure | excitation enhancement | 82-fold |
Xu et al. [46] | Ag NPs | excitation enhancement | 23-fold |
Araújo et al. [50] | Ag NPs | excitation enhancement | 1.6-fold |
Fujii et al. [52] | Ag island films | excitation enhancement | 220-fold |
Xu et al. [53] | Au–Ag alloy island film | excitation enhancement | 180-fold |
Zhang et al. [54] | Au film | excitation enhancement | 36-fold |
Francs et al. [57] | core-shell NPs | excitation enhancement | 11-fold |
Kennedy et al. [58] | Ag@SiO2 core-shell NPs | excitation enhancement | 24-fold |
Kim et al. [61] | Au and Ag nanoshells | excitation enhancement | 20-fold |
Karmakar et al. [63] | Au-Ag core-shell NPs | excitation enhancement | 2-fold |
Chu et al. [65] | Ag@SiO2 core-shell NPs | excitation enhancement | 21.4-fold |
Ghoshal et al. [69] | titania NPs | excitation enhancement | 30-fold |
Zhang et al. [85] | Metal Nanorods | emission enhancement | 240-fold |
Zhang et al. [86] | Ag Nanorods | emission enhancement | 280-fold |
Lakowicz et al. [90] | core-shell NPs | emission enhancement | 10-fold |
Zhang et al. [91] | core-shell NPs | emission enhancement | 14.4-fold |
Chu et al. [94] | Ag@SiO2 NPs | emission enhancement | 10.8-fold |
Runowski et al. [95] | Au@SiO2 NPs | emission enhancement | 2.25-fold |
Lei et al. [97] | Au@SiO2 nanorods | emission enhancement | 20-fold |
Wang et al. [100] | Au@SiO2 nanorods | emission enhancement | 263-fold |
Wang et al. [101] | Au@SiO2 nanorods | emission enhancement | 100-fold |
Durupthy et al. [115] | Au NPs @ mesoporous silica | quenching | 0.30-fold |
Liu et al. [117] | Au@SiO2 NPs | quenching | 0.67-fold |
Song et al. [119] | Ag NPs | quenching | 0.1-fold |
Zhao et al. [120] | Au co-doped TiO2 | quenching | 0.8-fold |
Bradley et al. [133] | Au NPs | FRET | 2.03-fold |
Sohn et al. [134] | Ag NPs | FRET | 63.1-fold |
Rademann et al. [139] | Au, Ag NPs | FRET | 250-fold |
Sahar et al. [141] | Ag NPs | FRET | 3-fold |
Ghoshal et al. [142] | Au NPs | FRET | 4.91-fold |
Zhou et al. [143] | Ag NPs | FRET | 1.62-fold |
Shahi et al. [145] | Ag NPs | FRET | 2-fold |
Nagpal et al. [149] | Au films | FRET | 6-fold |
Park et al. [152] | nanograting structure | FRET | 4-fold |
Yang et al. [153] | Au films | FRET | 6-fold |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Wang, Q.; Sang, X.; Hu, H.; Li, S.; Zhang, D.; Liu, C.; Wang, Q.; Zhang, B.; Wang, W.; et al. Modulated Luminescence of Lanthanide Materials by Local Surface Plasmon Resonance Effect. Nanomaterials 2021, 11, 1037. https://doi.org/10.3390/nano11041037
Liu J, Wang Q, Sang X, Hu H, Li S, Zhang D, Liu C, Wang Q, Zhang B, Wang W, et al. Modulated Luminescence of Lanthanide Materials by Local Surface Plasmon Resonance Effect. Nanomaterials. 2021; 11(4):1037. https://doi.org/10.3390/nano11041037
Chicago/Turabian StyleLiu, Jinhua, Qingru Wang, Xu Sang, Huimin Hu, Shuhong Li, Dong Zhang, Cailong Liu, Qinglin Wang, Bingyuan Zhang, Wenjun Wang, and et al. 2021. "Modulated Luminescence of Lanthanide Materials by Local Surface Plasmon Resonance Effect" Nanomaterials 11, no. 4: 1037. https://doi.org/10.3390/nano11041037
APA StyleLiu, J., Wang, Q., Sang, X., Hu, H., Li, S., Zhang, D., Liu, C., Wang, Q., Zhang, B., Wang, W., & Song, F. (2021). Modulated Luminescence of Lanthanide Materials by Local Surface Plasmon Resonance Effect. Nanomaterials, 11(4), 1037. https://doi.org/10.3390/nano11041037