Electrically-Driven Zoom Metalens Based on Dynamically Controlling the Phase of Barium Titanate (BTO) Column Antennas
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahmadivand, A.; Gerislioglu, B.; Ahuja, R.; Mishra, Y.K. Toroidal metaphotonics and metadevices. Laser Photon. Rev. 2020, 14. [Google Scholar] [CrossRef]
- Arash Ahmadivand, B.G.; Ahuja, R.; Mishra, Y.K. Terahertz plasmonics: The rise of toroidal metadevices towards immunobiosensings. Mater. Today 2020, 32, 108–130. [Google Scholar] [CrossRef]
- Lin, R.J.; Su, V.C.; Wang, S.; Chen, M.K.; Chung, T.L.; Chen, Y.H.; Kuo, H.Y.; Chen, J.W.; Chen, J.; Huang, Y.T.; et al. Achromatic metalens array for full-colour light-field imaging. Nat. Nanotechnol. 2019, 14, 227–231. [Google Scholar] [CrossRef]
- Fu, R.; Li, Z.; Zheng, G.; Chen, M.; Yang, Y.; Tao, J.; Wu, L.; Deng, Q. Reconfigurable step-zoom metalens without optical and mechanical compensations. Opt. Express 2019, 27, 12221. [Google Scholar] [CrossRef] [PubMed]
- She, S.Y.; Zhang, S.; Shian, S.; Clarke, D.R.; Capasso, F. Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift. Sci. Adv. 2018, 4, 9957. [Google Scholar] [CrossRef] [PubMed]
- Arbabi, E.; Arbabi, A.; Kamali, S.M.; Horie, Y.; Faraji-Dana, M.; Faraon, A. MEMS-tunable dielectric metasurface lens. Nat. Commun. 2018, 9, 812. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Yang, H.; Jiang, Y.; Deng, W.; Zhu, W. Recent advances in MEMS metasurfaces and their applications on tunable lens. Micromachines 2019, 10, 505. [Google Scholar] [CrossRef]
- Yilmaz, N.; Ozdemir, A.; Ozer, A.; Kurt, H. Rotationally tunable polarization-insensitive single and multifocal metasurface. J. Opt. 2019, 21, 045105. [Google Scholar] [CrossRef]
- Liu, Z.; Du, Z.; Hu, B.; Liu, W.; Liu, J.; Wang, Y. Wide-angle Moiré metalens with continuous zooming. J. Opt. Soc. Am. B 2019, 36, 2810. [Google Scholar] [CrossRef]
- Colburn, S.; Zhan, A.; Majumdar, A. Varifocal zoom imaging with large area focal length adjustable metalenses. Optica 2018, 5, 825. [Google Scholar] [CrossRef]
- Zheng, G.; Wu, W.; Li, Z.; Zhang, S.; Mehmood, M.Q.; He, P.; Li, S. Dual field-of-view step-zoom metalens. Opt. Lett. 2017, 42, 1261. [Google Scholar] [CrossRef] [PubMed]
- Shi-Qiang, L.; Xuewu, X.; Rasna, M.V.; Vytautas, V.; Ramón, P.D.; Kuznetsov, A.I. Phase-only transmissive spatial light modulator based on tunable dielectric metasurface. Science 2019, 304, 1087. [Google Scholar]
- Fan, C.Y.; Chuang, T.J.; Wu, K.H.; Su, G.J. Electrically modulated varifocal metalens combined with twisted nematic liquid crystals. Opt. Express 2020, 28, 10609. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.C.; Zhu, W.; Shen, Z.X.; Chong, P.H.J.; Ser, W.; Tsai, D.P.; Liu, A.-Q. Broadband Wide-Angle Multifunctional Polarization Converter via Liquid-Metal-Based Metasurface. Adv. Opt. Mater. 2017, 5, 1600938. [Google Scholar] [CrossRef]
- Ee, H.S.; Agarwal, R. Tunable metasurface and flat optical zoom lens on a stretchable substrate. Nano Lett. 2016, 16, 2818–2823. [Google Scholar] [CrossRef]
- Ee, H.-S.; Park, H.-G. Design of tunable silicon metasurfaces with cross-polarization transmittance over 80%. Physica Scripta 2018, 93, 085501. [Google Scholar] [CrossRef]
- Ding, P.; Li, Y.; Shao, L.; Tian, X.; Wang, J.; Fan, C. Graphene aperture-based metalens for dynamic focusing of terahertz waves. Opt. Express 2018, 26, 28038. [Google Scholar] [CrossRef]
- Ullah, N.; Liu, W.; Wang, G.; Wang, Z.; Khalid, A.U.R.; Hu, B.; Liu, J.; Zhang, Y. Gate-controlled terahertz focusing based on graphene-loaded metasurface. Opt. Express 2020, 28, 2789. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Hu, B.; Huang, Z.; Guan, H.; Li, H.; Wang, X.; Zhang, Y.; Yin, H.; Xiong, X.; Liu, J.; et al. Graphene-enabled electrically controlled terahertz meta-lens. Photon. Res. 2018, 6, 703. [Google Scholar] [CrossRef]
- Abel, S.; Eltes, F.; Ortmann, J.E.; Messner, A.; Castera, P.; Wagner, T.; Urbonas, D.; Rosa, A.; Gutierrez, A.M.; Tulli, D.; et al. Large Pockels effect in micro- and nanostructured barium titanate integrated on silicon. Nat. Mater. 2019, 18, 42. [Google Scholar] [CrossRef]
- Khorasaninejad, M.; Zhu, A.Y.; Roques-Carmes, C.; Chen, W.T.; Oh, J.; Mishra, I.; Devlin, R.C.; Capasso, F. Polarization-Insensitive Metalenses at Visible Wavelengths. Nano Lett. 2016, 16, 7229. [Google Scholar] [CrossRef]
- Teherani, F.H.; Abel, S.; Caimi, D.; Sousa, M.; Stöferle, T.; Rossel, C.; Marchiori, C.; Chelnokov, A.; Fompeyrine, J.; Look, D.C.; et al. Electro-optical properties of barium titanate films epitaxially grown on silicon. In Proceedings of the Oxide-Based Materials and Devices III, San Francisco, CA, USA, 29 February 2012; p. 82630. [Google Scholar]
- Bibbo, L.; Liu, Q.; Khan, K.; Yadav, A.; Elshahat, S.; Deng, Z.L.; Ouyang, Z. High-speed amplitude modulator with a high modulation index based on a plasmonic resonant tunable metasurface. Appl. Opt. 2019, 58, 2687. [Google Scholar] [CrossRef] [PubMed]
- Saleh, B.E.; Teich, M.C. Fundamentals of Photonics; John Wiley & Sons: Hoboken, NJ, USA, 2019. [Google Scholar]
- Liang, Y.; Liu, H.; Wang, F.; Meng, H.; Guo, J.; Li, J.; Wei, Z. High-efficiency, near-diffraction limited, dielectric metasurface lenses based on crystalline titanium dioxide at visible wavelengths. Nanomaterials 2018, 8, 288. [Google Scholar] [CrossRef] [PubMed]
- Xu, N.; Liang, Y.; Hao, Y.; Mao, M.; Guo, J.; Liu, H.; Meng, H.; Wang, F.; Wei, Z. A Thermal Tuning Meta-Duplex-Lens (MDL): Design and Characterization. Nanomaterials 2020, 10, 1135. [Google Scholar] [CrossRef] [PubMed]
Number | Color | Focal Length |
---|---|---|
1 | Red | 10 μm |
2 | Orange | 15 μm |
3 | Yellow | 20 μm |
4 | Green | 25 μm |
5 | Bule | 30 μm |
6 | Lake Blue | 35 μm |
7 | Purple | 40 μm |
8 | Black | 45 μm |
9 | Olive | 50 μm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, N.; Hao, Y.; Jie, K.; Qin, S.; Huang, H.; Chen, L.; Liu, H.; Guo, J.; Meng, H.; Wang, F.; et al. Electrically-Driven Zoom Metalens Based on Dynamically Controlling the Phase of Barium Titanate (BTO) Column Antennas. Nanomaterials 2021, 11, 729. https://doi.org/10.3390/nano11030729
Xu N, Hao Y, Jie K, Qin S, Huang H, Chen L, Liu H, Guo J, Meng H, Wang F, et al. Electrically-Driven Zoom Metalens Based on Dynamically Controlling the Phase of Barium Titanate (BTO) Column Antennas. Nanomaterials. 2021; 11(3):729. https://doi.org/10.3390/nano11030729
Chicago/Turabian StyleXu, Ning, Yuan Hao, Kaiqian Jie, Shuai Qin, Hui Huang, Li Chen, Hongzhan Liu, Jianping Guo, Hongyun Meng, Faqiang Wang, and et al. 2021. "Electrically-Driven Zoom Metalens Based on Dynamically Controlling the Phase of Barium Titanate (BTO) Column Antennas" Nanomaterials 11, no. 3: 729. https://doi.org/10.3390/nano11030729
APA StyleXu, N., Hao, Y., Jie, K., Qin, S., Huang, H., Chen, L., Liu, H., Guo, J., Meng, H., Wang, F., Yang, X., & Wei, Z. (2021). Electrically-Driven Zoom Metalens Based on Dynamically Controlling the Phase of Barium Titanate (BTO) Column Antennas. Nanomaterials, 11(3), 729. https://doi.org/10.3390/nano11030729