Electrically-Driven Zoom Metalens Based on Dynamically Controlling the Phase of Barium Titanate (BTO) Column Antennas
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahmadivand, A.; Gerislioglu, B.; Ahuja, R.; Mishra, Y.K. Toroidal metaphotonics and metadevices. Laser Photon. Rev. 2020, 14. [Google Scholar] [CrossRef]
- Arash Ahmadivand, B.G.; Ahuja, R.; Mishra, Y.K. Terahertz plasmonics: The rise of toroidal metadevices towards immunobiosensings. Mater. Today 2020, 32, 108–130. [Google Scholar] [CrossRef]
- Lin, R.J.; Su, V.C.; Wang, S.; Chen, M.K.; Chung, T.L.; Chen, Y.H.; Kuo, H.Y.; Chen, J.W.; Chen, J.; Huang, Y.T.; et al. Achromatic metalens array for full-colour light-field imaging. Nat. Nanotechnol. 2019, 14, 227–231. [Google Scholar] [CrossRef]
- Fu, R.; Li, Z.; Zheng, G.; Chen, M.; Yang, Y.; Tao, J.; Wu, L.; Deng, Q. Reconfigurable step-zoom metalens without optical and mechanical compensations. Opt. Express 2019, 27, 12221. [Google Scholar] [CrossRef] [PubMed]
- She, S.Y.; Zhang, S.; Shian, S.; Clarke, D.R.; Capasso, F. Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift. Sci. Adv. 2018, 4, 9957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arbabi, E.; Arbabi, A.; Kamali, S.M.; Horie, Y.; Faraji-Dana, M.; Faraon, A. MEMS-tunable dielectric metasurface lens. Nat. Commun. 2018, 9, 812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, S.; Yang, H.; Jiang, Y.; Deng, W.; Zhu, W. Recent advances in MEMS metasurfaces and their applications on tunable lens. Micromachines 2019, 10, 505. [Google Scholar] [CrossRef] [Green Version]
- Yilmaz, N.; Ozdemir, A.; Ozer, A.; Kurt, H. Rotationally tunable polarization-insensitive single and multifocal metasurface. J. Opt. 2019, 21, 045105. [Google Scholar] [CrossRef]
- Liu, Z.; Du, Z.; Hu, B.; Liu, W.; Liu, J.; Wang, Y. Wide-angle Moiré metalens with continuous zooming. J. Opt. Soc. Am. B 2019, 36, 2810. [Google Scholar] [CrossRef]
- Colburn, S.; Zhan, A.; Majumdar, A. Varifocal zoom imaging with large area focal length adjustable metalenses. Optica 2018, 5, 825. [Google Scholar] [CrossRef]
- Zheng, G.; Wu, W.; Li, Z.; Zhang, S.; Mehmood, M.Q.; He, P.; Li, S. Dual field-of-view step-zoom metalens. Opt. Lett. 2017, 42, 1261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi-Qiang, L.; Xuewu, X.; Rasna, M.V.; Vytautas, V.; Ramón, P.D.; Kuznetsov, A.I. Phase-only transmissive spatial light modulator based on tunable dielectric metasurface. Science 2019, 304, 1087. [Google Scholar]
- Fan, C.Y.; Chuang, T.J.; Wu, K.H.; Su, G.J. Electrically modulated varifocal metalens combined with twisted nematic liquid crystals. Opt. Express 2020, 28, 10609. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.C.; Zhu, W.; Shen, Z.X.; Chong, P.H.J.; Ser, W.; Tsai, D.P.; Liu, A.-Q. Broadband Wide-Angle Multifunctional Polarization Converter via Liquid-Metal-Based Metasurface. Adv. Opt. Mater. 2017, 5, 1600938. [Google Scholar] [CrossRef]
- Ee, H.S.; Agarwal, R. Tunable metasurface and flat optical zoom lens on a stretchable substrate. Nano Lett. 2016, 16, 2818–2823. [Google Scholar] [CrossRef]
- Ee, H.-S.; Park, H.-G. Design of tunable silicon metasurfaces with cross-polarization transmittance over 80%. Physica Scripta 2018, 93, 085501. [Google Scholar] [CrossRef]
- Ding, P.; Li, Y.; Shao, L.; Tian, X.; Wang, J.; Fan, C. Graphene aperture-based metalens for dynamic focusing of terahertz waves. Opt. Express 2018, 26, 28038. [Google Scholar] [CrossRef]
- Ullah, N.; Liu, W.; Wang, G.; Wang, Z.; Khalid, A.U.R.; Hu, B.; Liu, J.; Zhang, Y. Gate-controlled terahertz focusing based on graphene-loaded metasurface. Opt. Express 2020, 28, 2789. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Hu, B.; Huang, Z.; Guan, H.; Li, H.; Wang, X.; Zhang, Y.; Yin, H.; Xiong, X.; Liu, J.; et al. Graphene-enabled electrically controlled terahertz meta-lens. Photon. Res. 2018, 6, 703. [Google Scholar] [CrossRef] [Green Version]
- Abel, S.; Eltes, F.; Ortmann, J.E.; Messner, A.; Castera, P.; Wagner, T.; Urbonas, D.; Rosa, A.; Gutierrez, A.M.; Tulli, D.; et al. Large Pockels effect in micro- and nanostructured barium titanate integrated on silicon. Nat. Mater. 2019, 18, 42. [Google Scholar] [CrossRef]
- Khorasaninejad, M.; Zhu, A.Y.; Roques-Carmes, C.; Chen, W.T.; Oh, J.; Mishra, I.; Devlin, R.C.; Capasso, F. Polarization-Insensitive Metalenses at Visible Wavelengths. Nano Lett. 2016, 16, 7229. [Google Scholar] [CrossRef]
- Teherani, F.H.; Abel, S.; Caimi, D.; Sousa, M.; Stöferle, T.; Rossel, C.; Marchiori, C.; Chelnokov, A.; Fompeyrine, J.; Look, D.C.; et al. Electro-optical properties of barium titanate films epitaxially grown on silicon. In Proceedings of the Oxide-Based Materials and Devices III, San Francisco, CA, USA, 29 February 2012; p. 82630. [Google Scholar]
- Bibbo, L.; Liu, Q.; Khan, K.; Yadav, A.; Elshahat, S.; Deng, Z.L.; Ouyang, Z. High-speed amplitude modulator with a high modulation index based on a plasmonic resonant tunable metasurface. Appl. Opt. 2019, 58, 2687. [Google Scholar] [CrossRef] [PubMed]
- Saleh, B.E.; Teich, M.C. Fundamentals of Photonics; John Wiley & Sons: Hoboken, NJ, USA, 2019. [Google Scholar]
- Liang, Y.; Liu, H.; Wang, F.; Meng, H.; Guo, J.; Li, J.; Wei, Z. High-efficiency, near-diffraction limited, dielectric metasurface lenses based on crystalline titanium dioxide at visible wavelengths. Nanomaterials 2018, 8, 288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, N.; Liang, Y.; Hao, Y.; Mao, M.; Guo, J.; Liu, H.; Meng, H.; Wang, F.; Wei, Z. A Thermal Tuning Meta-Duplex-Lens (MDL): Design and Characterization. Nanomaterials 2020, 10, 1135. [Google Scholar] [CrossRef] [PubMed]
Number | Color | Focal Length |
---|---|---|
1 | Red | 10 μm |
2 | Orange | 15 μm |
3 | Yellow | 20 μm |
4 | Green | 25 μm |
5 | Bule | 30 μm |
6 | Lake Blue | 35 μm |
7 | Purple | 40 μm |
8 | Black | 45 μm |
9 | Olive | 50 μm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, N.; Hao, Y.; Jie, K.; Qin, S.; Huang, H.; Chen, L.; Liu, H.; Guo, J.; Meng, H.; Wang, F.; et al. Electrically-Driven Zoom Metalens Based on Dynamically Controlling the Phase of Barium Titanate (BTO) Column Antennas. Nanomaterials 2021, 11, 729. https://doi.org/10.3390/nano11030729
Xu N, Hao Y, Jie K, Qin S, Huang H, Chen L, Liu H, Guo J, Meng H, Wang F, et al. Electrically-Driven Zoom Metalens Based on Dynamically Controlling the Phase of Barium Titanate (BTO) Column Antennas. Nanomaterials. 2021; 11(3):729. https://doi.org/10.3390/nano11030729
Chicago/Turabian StyleXu, Ning, Yuan Hao, Kaiqian Jie, Shuai Qin, Hui Huang, Li Chen, Hongzhan Liu, Jianping Guo, Hongyun Meng, Faqiang Wang, and et al. 2021. "Electrically-Driven Zoom Metalens Based on Dynamically Controlling the Phase of Barium Titanate (BTO) Column Antennas" Nanomaterials 11, no. 3: 729. https://doi.org/10.3390/nano11030729
APA StyleXu, N., Hao, Y., Jie, K., Qin, S., Huang, H., Chen, L., Liu, H., Guo, J., Meng, H., Wang, F., Yang, X., & Wei, Z. (2021). Electrically-Driven Zoom Metalens Based on Dynamically Controlling the Phase of Barium Titanate (BTO) Column Antennas. Nanomaterials, 11(3), 729. https://doi.org/10.3390/nano11030729