Silanization of SiO2 Decorated Carbon Nanosheets from Rice Husk Ash and Its Effect on Workability and Hydration of Cement Grouts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Functionalization of Rice Husk Ash by a Silane Coupling Agent
2.3. Cementitious Grout Composition and Mixing Procedure
2.4. Characterization
2.4.1. Characterization of Neat and Functionalized Rice Husk Ash Samples
2.4.2. Characterization of the Prepared Grout Mixtures
Thermal Conductivity Measurement
Isothermal Calorimetry Measurement
3. Results and Discussion
3.1. Structural, Thermal, and Morphological Properties of Neat and Functionalized Rice Husk Ash
3.2. The Characteristic Properties of Grout Mixtures
3.2.1. The Workability Properties of Grout Mixtures
3.2.2. Thermal Conductivity of Rice Husk Ash-Based Grouts
3.2.3. The Effects of RHA on the Heat of Hydration
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Barbier, E. Geothermal energy technology and current status: An overview. Renew. Sustain. Energy Rev. 2002, 6, 3–65. [Google Scholar] [CrossRef]
- Borinaga-Treviño, R.; Pascual-Muñoz, P.; Castro-Fresno, D.; Del Coz-Díaz, J.J. Study of different grouting materials used in vertical geothermal closed-loop heat exchangers. Appl. Therm. Eng. 2013, 50, 159–167. [Google Scholar] [CrossRef]
- Azadi, M.R.; Taghichian, A.; Taheri, A. Optimization of cement-based grouts using chemical additives. J. Rock Mech. Geotech. Eng. 2017, 9, 623–637. [Google Scholar] [CrossRef]
- Sun, L.; Gong, K. Silicon-based materials from rice husks and their applications. Ind. Eng. Chem. Res. 2001, 40, 5861–5877. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Z.; Zeng, H.; Chen, C.; Liu, J.; Sun, L.; Wang, W. Photoluminescent mesoporous carbon-doped silica from rice husks. Mater. Lett. 2015, 142, 280–282. [Google Scholar] [CrossRef]
- Wang, Z.; Yu, J.; Zhang, X.; Li, N.; Liu, B.; Li, Y.; Wang, Y.; Wang, W.; Li, Y.; Zhang, L.; et al. Large-Scale and Controllable Synthesis of Graphene Quantum Dots from Rice Husk Biomass: A Comprehensive Utilization Strategy. ACS Appl. Mater. Interfaces 2016, 8, 1434–1439. [Google Scholar] [CrossRef] [PubMed]
- Ismail, M.S.; Yusof, N.; Mohd Yusop, M.Z.; Ismail, A.F.; Jaafar, J.; Aziz, F.; Abdul Karim, Z. Synthesis and characterization of graphene derived from rice husks. Malays. J. Fundam. Appl. Sci. 2019, 15, 516–521. [Google Scholar] [CrossRef]
- Turmanova, S.; Genieva, S.; Vlaev, L. Obtaining Some Polymer Composites Filled with Rice Husks Ash-A Review. Int. J. Chem. 2012, 4, 4. [Google Scholar] [CrossRef] [Green Version]
- Battegazzore, D.; Bocchini, S.; Alongi, J.; Frache, A. Rice husk as bio-source of silica: Preparation and characterization of PLA-silica bio-composites. RSC Adv. 2014, 4, 54703–54712. [Google Scholar] [CrossRef] [Green Version]
- Sandhu, R.K.; Siddique, R. Influence of rice husk ash (RHA) on the properties of self-compacting concrete: A review. Constr. Build. Mater. 2017, 153, 751–764. [Google Scholar] [CrossRef]
- Van Tuan, N.; Ye, G.; Van Breugel, K.; Fraaij, A.L.A.; Bui, D.D. The study of using rice husk ash to produce ultra high performance concrete. Constr. Build. Mater. 2011, 25, 2030–2035. [Google Scholar] [CrossRef]
- Fapohunda, C.; Akinbile, B.; Shittu, A. Structure and properties of mortar and concrete with rice husk ash as partial replacement of ordinary Portland cement–A review. Int. J. Sustain. Built Environ. 2017, 6, 675–692. [Google Scholar] [CrossRef]
- Hamzeh, Y.; Ziabari, K.P.; Torkaman, J.; Ashori, A.; Jafari, M. Study on the effects of white rice husk ash and fibrous materials additions on some properties of fiber-cement composites. J. Environ. Manag. 2013, 117, 263–267. [Google Scholar] [CrossRef] [PubMed]
- Mohseni, E.; Naseri, F.; Amjadi, R.; Khotbehsara, M.M.; Ranjbar, M.M. Microstructure and durability properties of cement mortars containing nano-TiO2 and rice husk ash. Constr. Build. Mater. 2016, 114, 656–664. [Google Scholar] [CrossRef]
- Gastaldini, A.L.G.; Isaia, G.C.; Hoppe, T.F.; Missau, F.; Saciloto, A.P. Influence of the use of rice husk ash on the electrical resistivity of concrete: A technical and economic feasibility study. Constr. Build. Mater. 2009, 23, 3411–3419. [Google Scholar] [CrossRef]
- Mohseni, E.; Khotbehsara, M.M.; Naseri, F.; Monazami, M.; Sarker, P. Polypropylene fiber reinforced cement mortars containing rice husk ash and nano-alumina. Constr. Build. Mater. 2016, 111, 429–439. [Google Scholar] [CrossRef]
- Feng, H.; Thanh, H.; Le, N.; Wang, S.; Zhang, M. Effects of silanes and silane derivatives on cement hydration and mechanical properties of mortars. Constr. Build. Mater. 2016, 129, 48–60. [Google Scholar] [CrossRef]
- Minet, J.; Abramson, S.; Bresson, B.; Franceschini, A.; Van Damme, H.; Lequeux, N. Organic calcium silicate hydrate hybrids: A new approach to cement based nanocomposites. J. Mater. Chem. 2006, 16, 1379–1383. [Google Scholar] [CrossRef]
- Franceschini, A.; Abramson, S.; Mancini, V.; Bresson, B.; Chassenieux, C.; Lequeux, N. New covalent bonded polymer-calcium silicate hydrate composites. J. Mater. Chem. 2007, 17, 913–922. [Google Scholar] [CrossRef]
- Amin, M.; Abdelsalam, B.A. Efficiency of rice husk ash and fly ash as reactivity materials in sustainable concrete. Sustain. Environ. Res. 2019, 1, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Abood Habeeb, G.; Bin Mahmud, H. Study on Properties of Rice Husk Ash and Its Use as Cement Replacement Material. Mater. Res. 2010, 13, 185–190. [Google Scholar] [CrossRef]
- Gautam, A.; Batra, R.; Singh, N. A Study on Use of Rice Husk Ash in Concrete. Eng. Herit. J. 2019, 3, 1–4. [Google Scholar] [CrossRef]
- Thiedeitz, M.; Schmidt, W.; Härder, M.; Kränkel, T. Performance of rice husk ash as supplementary cementitious material after production in the field and in the lab. Materials 2020, 13, 4319. [Google Scholar] [CrossRef] [PubMed]
- Dabai, M.; Muhammad, C.; Bagudo, B.; Musa, A. Studies on the Effect of Rice Husk Ash as Cement Admixture. Niger. J. Basic Appl. Sci. 2010, 17, 252–256. [Google Scholar] [CrossRef] [Green Version]
- Gunduz, L.; Kalkan, S.O. Use of Rice Husk Ash as Strength-Enhancing Additive in Lightweight Cementitious Composite Mortars. IOP Conf. Ser. Mater. Sci. Eng. 2019, 471, 032046. [Google Scholar] [CrossRef]
- Allahbakhsh, A.; Noei Khodabadi, F.; Hosseini, F.S.; Haghighi, A.H. 3-Aminopropyl-triethoxysilane-functionalized rice husk and rice husk ash reinforced polyamide 6/graphene oxide sustainable nanocomposites. Eur. Polym. J. 2017, 94, 417–430. [Google Scholar] [CrossRef]
- Kong, X.M.; Liu, H.; Lu, Z.B.; Wang, D.M. The influence of silanes on hydration and strength development of cementitious systems. Cem. Concr. Res. 2015, 67, 168–178. [Google Scholar] [CrossRef]
- Berktas, I.; Ghafar, A.N.; Fontana, P.; Caputcu, A.; Menceloglu, Y.; Okan, B.S. Facile synthesis of graphene from waste tire/silica hybrid additives and optimization study for the fabrication of thermally enhanced cement grouts. Molecules 2020, 25, 886. [Google Scholar] [CrossRef] [Green Version]
- Berktas, I.; Ghafar, A.N.; Fontana, P.; Caputcu, A.; Menceloglu, Y.; Okan, B.S. Synergistic effect of expanded graphite-silane functionalized silica as a hybrid additive in improving the thermal conductivity of cementitious grouts with controllable water uptake. Energies 2020, 13, 3561. [Google Scholar] [CrossRef]
- Gomes, M.C.; Cunha, Â.; Trindade, T.; Tomé, J.P.C. The role of surface functionalization of silica nanoparticles for bioimaging. J. Innov. Opt. Health Sci. 2016, 9, 1630005. [Google Scholar] [CrossRef] [Green Version]
- Rahman, I.A.; Jafarzadeh, M.; Sipaut, C.S. Synthesis of organo-functionalized nanosilica via a co-condensation modification using γ-aminopropyltriethoxysilane (APTES). Ceram. Int. 2009, 35, 1883–1888. [Google Scholar] [CrossRef]
- Ics, E. Svensk Standard ss-en 196-11:2019 Methods of Testing Cement–Part 11: Heat of Hydration–Isothermal Conduction Calorimetry Method SIS. Available online: https://www.sis.se/std-80009210 (accessed on 7 February 2021).
- Zhang, L.; Li, Y.; Zhang, L.; Li, D.W.; Karpuzov, D.; Long, Y.T. Electrocatalytic oxidation of NADH on graphene oxide and reduced graphene oxide modified screen-printed electrode. Int. J. Electrochem. Sci. 2011, 6, 819–829. [Google Scholar]
- Bakdash, R.S.; Aljundi, I.H.; Basheer, C.; Abdulazeez, I. Rice husk derived Aminated Silica for the efficient adsorption of different gases. Sci. Rep. 2020, 10, 1–13. [Google Scholar]
- Foletto, E.L.; Castoldi, M.M.; Oliveira, L.H.; Hoffmann, R.; Jahn, S.L. Conversion of rice husk ash into zeolitic materials. Lat. Am. Appl. Res. 2009, 39, 75–78. [Google Scholar]
- Zabihi, S.M.; Tavakoli, H.; Mohseni, E. Engineering and Microstructural Properties of Fiber-Reinforced Rice Husk–Ash Based Geopolymer Concrete. J. Mater. Civ. Eng. 2018, 30, 04018183. [Google Scholar] [CrossRef]
- Serra, M.F.; Conconi, M.S.; Gauna, M.R.; Suárez, G.; Aglietti, E.F.; Rendtorff, N.M. Mullite (3Al2O3·2SiO2) ceramics obtained by reaction sintering of rice husk ash and alumina, phase evolution, sintering and microstructure. J. Asian Ceram. Soc. 2016, 4, 61–67. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Chung, D.D.L. Improving the workability and strength of silica fume concrete by using silane-treated silica fume. Cem. Concr. Res. 1999, 29, 451–453. [Google Scholar] [CrossRef]
- Celik, F.; Canakci, H. An investigation of rheological properties of cement-based grout mixed with rice husk ash (RHA). Constr. Build. Mater. 2015, 91, 187–194. [Google Scholar] [CrossRef]
- Çınar, M.; Çelik, F.; Çanakcı, H.; Nassani, D.E. Fresh Properties of Cementitious Grout with Rice Husk Powder. Arab. J. Sci. Eng. 2017, 42, 3819–3827. [Google Scholar] [CrossRef]
- Kim, D.; Kim, G.; Baek, H. Relationship between thermal conductivity and soil–water characteristic curve of pure bentonite-based grout. Int. J. Heat Mass Transf. 2015, 84, 1049–1055. [Google Scholar] [CrossRef]
- Qin, L.; Gao, X.; Chen, T. Recycling of raw rice husk to manufacture magnesium oxysulfate cement based lightweight building materials. J. Clean. Prod. 2018, 191, 220–232. [Google Scholar] [CrossRef]
- Indacoechea-Vega, I.; Pascual-Muñoz, P.; Castro-Fresno, D.; Calzada-Pérez, M.A. Experimental characterization and performance evaluation of geothermal grouting materials subjected to heating-cooling cycles. Constr. Build. Mater. 2015, 98, 583–592. [Google Scholar] [CrossRef] [Green Version]
- Bohloli, B.; Skjølsvold, O.; Justnes, H.; Olsson, R.; Grøv, E.; Aarset, A. Cements for tunnel grouting–Rheology and flow properties tested at different temperatures. Tunn. Undergr. Space Technol. 2019, 91, 103011. [Google Scholar] [CrossRef]
- Taylor, H.F.W. Cement Chemistry; Thomas Telford Publishing: London, UK, 1997; ISBN 0-7277-3945-X. [Google Scholar]
- Hargis, C.W.; Telesca, A.; Monteiro, P.J.M. Calcium sulfoaluminate (Ye’elimite) hydration in the presence of gypsum, calcite, and vaterite. Cem. Concr. Res. 2014, 65, 15–20. [Google Scholar] [CrossRef]
- Zunino, F.; Lopez, M. A methodology for assessing the chemical and physical potential of industrially sourced rice husk ash on strength development and early-age hydration of cement paste. Constr. Build. Mater. 2017, 149, 869–881. [Google Scholar] [CrossRef]
- Park, K.B.; Kwon, S.J.; Wang, X.Y. Analysis of the effects of rice husk ash on the hydration of cementitious materials. Constr. Build. Mater. 2016, 105, 196–205. [Google Scholar] [CrossRef]
Sample Name | Control | Neat RHA | f-RHA | ||||
---|---|---|---|---|---|---|---|
C0 | RHA3 | RHA5 | RHA10 | f-RHA3 | f-RHA5 | f-RHA10 | |
RHA (wt%) | 0 | 3 | 5 | 10 | 3 | 5 | 10 |
Cement (g) | 930 | 930 | 930 | 930 | 930 | 930 | 930 |
Silica Sand 1 (g) B20 | 900 | 900 | 900 | 900 | 900 | 900 | 900 |
Silica Sand 2 (g) B55 | 900 | 900 | 900 | 900 | 900 | 900 | 900 |
Bentonite (g) | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
RHA (g) | - | 27.9 | 46.5 | 93 | - | - | - |
f-RHA (g) | - | - | - | - | 27.9 | 46.5 | 93 |
Superplasticizer (g) | 18.6 | 18.6 | 18.6 | 18.6 | 18.6 | 18.6 | 18.6 |
Water (g) | 650 | 680 | 700 | 730 | 670 | 690 | 720 |
Sample Name | Carbon (at%) | Oxygen (at%) | Silicon (at%) | Nitrogen (at%) | Sulphur (at%) | Others (at%) |
---|---|---|---|---|---|---|
RHA | 62.81 | 25.48 | 5.88 | - | 3.52 | 2.31 |
f-RHA | 57.46 | 30.44 | 8.15 | 1.53 | 2.42 | - |
Sample Name | Benchmark | Control | Neat RHA | f-RHA | ||||
---|---|---|---|---|---|---|---|---|
C0 | RHA3 | RHA5 | RHA10 | f-RHA3 | f-RHA5 | f-RHA10 | ||
Rice husk ash (wt%) | 0 | 3 | 5 | 10 | 3 | 5 | 10 | |
Water to cement ratio | 0.70 | 0.73 | 0.75 | 0.78 | 0.72 | 0.74 | 0.77 | |
Marsh cone time (s) | 100–120 | 98 | 83 | 83 | 96 | 113 | 99 | 106 |
Flow spread (cm) | 23–28 cm | 24 | 26 | 28 | 27 | 25 | 25 | 25 |
Bleeding (%) | <2% | 0.5 | 0.6 | 0.6 | 0.6 | 0.3 | 0.3 | 0.2 |
Density (g/cc) | >1.3 | 2.10 | 2.09 | 2.07 | 2.05 | 2.11 | 2.08 | 2.04 |
Thermal conductivity (W/mK) | 1.80 | 1.85 | 1.88 | 1.52 | 1.78 | 1.75 | 1.55 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berktas, I.; Chaudhari, O.; Ghafar, A.N.; Menceloglu, Y.; Okan, B.S. Silanization of SiO2 Decorated Carbon Nanosheets from Rice Husk Ash and Its Effect on Workability and Hydration of Cement Grouts. Nanomaterials 2021, 11, 655. https://doi.org/10.3390/nano11030655
Berktas I, Chaudhari O, Ghafar AN, Menceloglu Y, Okan BS. Silanization of SiO2 Decorated Carbon Nanosheets from Rice Husk Ash and Its Effect on Workability and Hydration of Cement Grouts. Nanomaterials. 2021; 11(3):655. https://doi.org/10.3390/nano11030655
Chicago/Turabian StyleBerktas, Ilayda, Ojas Chaudhari, Ali Nejad Ghafar, Yusuf Menceloglu, and Burcu Saner Okan. 2021. "Silanization of SiO2 Decorated Carbon Nanosheets from Rice Husk Ash and Its Effect on Workability and Hydration of Cement Grouts" Nanomaterials 11, no. 3: 655. https://doi.org/10.3390/nano11030655
APA StyleBerktas, I., Chaudhari, O., Ghafar, A. N., Menceloglu, Y., & Okan, B. S. (2021). Silanization of SiO2 Decorated Carbon Nanosheets from Rice Husk Ash and Its Effect on Workability and Hydration of Cement Grouts. Nanomaterials, 11(3), 655. https://doi.org/10.3390/nano11030655