Tunable Split-Disk Metamaterial Absorber for Sensing Application
Abstract
1. Introduction
2. Designs and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Informed Consent Statement
Conflicts of Interest
References
- Srinives, S.; Sarkar, T.; Hernandez, R.; Mulchandani, A. A miniature chemiresistor sensor for carbon dioxide. Anal. Chim. Acta 2015, 874, 54–58. [Google Scholar] [CrossRef] [PubMed]
- Dinh, T.-V.; Choi, I.-Y.; Son, Y.-S.; Kim, J.-C. A review on non-dispersive infrared gas sensors: Improvement of sensor detection limit and interference correction. Sens. Actuators B Chem. 2016, 231, 529–538. [Google Scholar] [CrossRef]
- Smith, D.R.; Pendry, J.B.; Wiltshire, M.C. Metamaterials and negative refractive index. Science 2004, 305, 788–792. [Google Scholar] [CrossRef]
- Hasan, D.; Lee, C. Hybrid metamaterial absorber platform for sensing of co2 gas at mid-IR. Adv. Sci. 2018, 5, 1700581. [Google Scholar] [CrossRef] [PubMed]
- Hasan, D.; Pitchappa, P.; Pei Ho, C.; Lee, C. High Temperature Coupling of IR Inactive C=C Mode in Complementary Metal Oxide Semiconductor Metamaterial Structure. Adv. Opt. Mater. 2017, 5, 1600778. [Google Scholar] [CrossRef]
- Xu, R.; Lin, Y.-S. Tunable Infrared Metamaterial Emitter for Gas Sensing Application. Nanomaterials 2020, 10, 1442. [Google Scholar] [CrossRef]
- Xu, R.; Luo, J.; Sha, J.; Zhong, J.; Xu, Z.; Tong, Y.; Lin, Y.-S. Stretchable IR metamaterial with ultra-narrowband perfect absorption. Appl. Phys. Lett. 2018, 113, 101907. [Google Scholar] [CrossRef]
- Xu, R.; Lin, Y.-S. Characterizations of reconfigurable infrared metamaterial absorbers. Opt. Lett. 2018, 43, 4783–4786. [Google Scholar] [CrossRef]
- Valentine, J.; Zhang, S.; Zentgraf, T.; Ulin-Avila, E.; Genov, D.A.; Bartal, G.; Zhang, X. Three-dimensional optical metamaterial with a negative refractive index. Nature 2008, 455, 376–379. [Google Scholar] [CrossRef]
- Lin, Y.-S.; Chen, W.S.; Chen, W. Perfect meta-absorber by using pod-like nanostructures with ultra-broadband, omnidirectional, and polarization-independent characteristics. Sci. Rep. 2018, 8, 7150. [Google Scholar] [CrossRef]
- Xu, Z.; Xu, R.; Sha, J.; Zhang, B.; Tong, Y.; Lin, Y.-S. Infrared metamaterial absorber by using chalcogenide glass material with a cyclic ring-disk structure. OSA Contin. 2018, 1, 573–580. [Google Scholar] [CrossRef]
- Liu, X.; Jia, X.; Fischer, M.; Huang, Z.; Smith, D.R. Enhanced two-photon photochromism in metasurface perfect absorbers. Nano Lett. 2018, 18, 6181–6187. [Google Scholar] [CrossRef] [PubMed]
- Lu, F.; Ou, H.; Lin, Y.-S. Reconfigurable Terahertz Switch Using Flexible L-shaped Metamaterial. Opt. Lett. 2020, 45, 6482–6485. [Google Scholar] [CrossRef] [PubMed]
- Zheng, D.; Lin, Y.-S. Tunable Dual-Split-Disk Resonator with Electromagnetically Induced Transparency Characteristic. Adv. Mater. Technol. 2020, 5, 202000584. [Google Scholar] [CrossRef]
- Han, Y.; Lin, J.; Lin, Y.-S. Tunable Metamaterial-Based Silicon Waveguide. Opt. Lett. 2020, 45, 6619–6622. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Lin, Y.-S. Programmable Terahertz Metamaterial with Multiple Logic Characteristics. Results Phys. 2020, 18, 103267. [Google Scholar] [CrossRef]
- Xu, R.; Liu, X.; Lin, Y.-S. Tunable ultra-narrowband terahertz perfect absorber by using metal-insulator-metal microstructures. Results Phys. 2019, 13, 102176. [Google Scholar] [CrossRef]
- Ou, H.; Lu, F.; Liao, Y.; Zhu, F.; Lin, Y.-S. Tunable terahertz metamaterial for high-efficiency switch application. Results Phys. 2020, 16, 102897. [Google Scholar] [CrossRef]
- Lin, Y.-S.; Xu, Z. Reconfigurable Metamaterials for Optoelectronic Applications. Int. J. Optomechatronics 2020, 14, 78–93. [Google Scholar] [CrossRef]
- Zhu, F.; Lin, Y.-S. Programmable multidigit metamaterial using terahertz electric spilt-ring resonator. Opt. Laser Technol. 2021, 134, 106635. [Google Scholar] [CrossRef]
- Wen, Y.; Liang, Z.; Lin, Y.-S. Tunable Perfect Meta-Absorber with High-Sensitive Polarization Characteristic. Adv. Photon. Res. 2020, 1, 2000027. [Google Scholar] [CrossRef]
- Xu, T.; Xu, R.; Lin, Y.-S. Tunable terahertz metamaterial using electrostatically electric split-ring resonator. Results Phys. 2020, 19, 103638. [Google Scholar] [CrossRef]
- Pitchappa, P.; Manjappa, M.; Krishnamoorthy, H.N.; Chang, Y.; Lee, C.; Singh, R. Bidirectional reconfiguration and thermal tuning of microcantilever metamaterial device operating from 77 K to 400 K. Appl. Phys. Lett. 2017, 111, 261101. [Google Scholar] [CrossRef]
- Li, X.; Yang, T.; Zhu, W.; Li, X. Continuously tunable terahertz metamaterial employing a thermal actuator. Microsyst. Technol. 2013, 19, 1145–1151. [Google Scholar] [CrossRef]
- Davis, B.L.; Hussein, M.I. Nanophononic metamaterial: Thermal conductivity reduction by local resonance. Phys. Rev. Lett. 2014, 112, 055505. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Sturmberg, B.C.; Lin, K.-T.; Yang, Y.; Zheng, X.; Chong, T.K.; de Sterke, C.M.; Jia, B. A 90-nm-thick graphene metamaterial for strong and extremely broadband absorption of unpolarized light. Nat. Photon. 2019, 13, 270–276. [Google Scholar] [CrossRef]
- Sun, X.; Fu, Q.; Fan, Y.; Wu, H.; Qiu, K.; Yang, R.; Cai, W.; Zhang, N.; Zhang, F. Thermally controllable Mie resonances in a water-based metamaterial. Sci. Rep. 2019, 9, 1–8. [Google Scholar] [CrossRef]
- Qu, Y.; Li, Q.; Du, K.; Cai, L.; Lu, J.; Qiu, M. Dynamic Thermal Emission Control Based on Ultrathin Plasmonic Metamaterials Including Phase-Changing Material GST. Laser Photon. Rev. 2017, 11, 1700091. [Google Scholar] [CrossRef]
- Lin, Z.; Wang, F.; Wang, M.; Zhang, L.; Feng, S.; Gao, G.; Wang, S.; Yu, C.; Hu, L. Maintaining broadband gain in a Nd 3+/Yb 3+ co-doped silica fiber amplifier via dual-laser pumping. Opt. Lett. 2018, 43, 3361–3364. [Google Scholar] [CrossRef]
- Ryzhii, V.; Ryzhii, M.; Otsuji, T. Negative dynamic conductivity of graphene with optical pumping. J. Appl. Phys. 2007, 101, 083114. [Google Scholar] [CrossRef]
- Gholipour, B.; Piccinotti, D.; Karvounis, A.; MacDonald, K.F.; Zheludev, N.I. Reconfigurable ultraviolet and high-energy visible dielectric metamaterials. Nano Lett. 2019, 19, 1643–1648. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-Y.; Pan, C.-L.; Hsieh, C.-F.; Lin, Y.-F.; Pan, R.-P. Liquid-crystal-based terahertz tunable Lyot filter. Appl. Phys. Lett. 2006, 88, 101107. [Google Scholar] [CrossRef]
- Lee, C.-R.; Lin, S.-H.; Wang, S.-M.; Lin, J.-D.; Chen, Y.-S.; Hsu, M.-C.; Liu, J.-K.; Mo, T.-S.; Huang, C.-Y. Optically controllable photonic crystals and passively tunable terahertz metamaterials using dye-doped liquid crystal cells. J. Mater. Chem. C 2018, 6, 4959–4966. [Google Scholar] [CrossRef]
- Xu, Z.; Lin, Y.-S. A Stretchable Terahertz Parabolic-Shaped Metamaterial. Adv. Opt. Mater. 2019, 7, 1900379. [Google Scholar] [CrossRef]
- Xu, R.; Lin, Y.-S. Reconfigurable Multiband Terahertz Metamaterial Using Triple-Cantilevers Resonator Array. IEEE/ASME J. Microelectromech. Syst. 2020, 29, 1167–1172. [Google Scholar] [CrossRef]
- Zhang, X.; Lin, Y.-S.; Yang, B.-R. Tunable Color Switch Using Split-Ring Metamaterial. Opt. Laser Technol. 2020, 131, 106461. [Google Scholar] [CrossRef]
- Dai, J.; Xu, R.; Lin, Y.-S.; Chen, C.-H. Tunable electromagnetic characteristics of suspended nanodisk metasurface. Opt. Laser Technol. 2020, 128, 106214. [Google Scholar] [CrossRef]
- Mo, Y.; Zhong, J.; Lin, Y.-S. Tunable chevron-shaped infrared metamaterial. Mater. Lett. 2020, 263, 127291. [Google Scholar] [CrossRef]
- Yang, W.; Lin, Y.-S. Tunable metamaterial filter for optical communication in the terahertz frequency range. Opt. Express 2020, 28, 17620–17629. [Google Scholar] [CrossRef]
- Lin, Y.-S.; Dai, J.; Zeng, Z.; Yang, B.-R. Metasurface Color Filters Using Aluminum and Lithium Niobate Configurations. Nanoscale Res. Lett. 2020, 15, 77. [Google Scholar] [CrossRef]
- Ou, H.; Lu, F.; Xu, Z.; Lin, Y.-S. Terahertz Metamaterial with Multiple Resonances for Biosensing Application. Nanomaterials 2020, 10, 1038. [Google Scholar] [CrossRef] [PubMed]
- Zhan, F.; Lin, Y.-S. Tunable Multi-Resonance Using Complementary Circular Metamaterial. Opt. Lett. 2020, 45, 3633–3636. [Google Scholar] [CrossRef] [PubMed]
- Sreekanth, K.V.; Alapan, Y.; ElKabbash, M.; Ilker, E.; Hinczewski, M.; Gurkan, U.A.; De Luca, A.; Strangi, G. Extreme sensitivity biosensing platform based on hyperbolic metamaterials. Nat. Mater. 2016, 15, 621–627. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.; Zhan, P.; Cao, Z.; Pan, J.; Chen, Z.; Wang, Z. Magnetic field enhancement at optical frequencies through diffraction coupling of magnetic plasmon resonances in metamaterials. Phys. Rev. B 2011, 83, 041402. [Google Scholar] [CrossRef]
- Yousuf, S.E.H.; Sakib, M.A.; Islam, M.Z. A high-performance plasmonic nanosensor based on an elliptical nanorod in an MIM configuration. IEEE Sens. J. 2018, 18, 6145–6153. [Google Scholar] [CrossRef]
- Lin, Y.-S.; Chen, W. A large-area, wide-incident-angle, and polarization-independent plasmonic color filter for glucose sensing. Opt. Mater. 2018, 75, 739–743. [Google Scholar] [CrossRef]
- Haynes, W.M. (Ed.) CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data, 97th ed.; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Palik, E.D. Handbook of Optical Constants of Solids; Academic: London, UK, 1985. [Google Scholar]
- Liang, Z.; Wen, Y.; Zhang, Z.; Liang, Z.; Xu, Z.; Lin, Y.-S. Plasmonic metamaterial using metal-insulator-metal nanogratings for high-sensitive refraction index sensor. Results Phys. 2019, 15, 102602. [Google Scholar] [CrossRef]
- Huang, H.; Xia, H.; Guo, Z.; Xie, D.; Li, H. Dynamically tunable dendritic graphene-based absorber with thermal stability at infrared regions. Appl. Phys. A 2018, 124, 429. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, J.; He, X.; Zhang, J.; Huang, J.; Chen, D.; Han, Y. Plasmonic refractive index sensor with high figure of merit based on concentric-rings resonator. Sensors 2018, 18, 116. [Google Scholar] [CrossRef]
- Tavakoli, F.; Zarrabi, F.B.; Saghaei, H. Modeling and analysis of high-sensitivity refractive index sensors based on plasmonic absorbers with Fano response in the near-infrared spectral region. Appl. Opt. 2019, 58, 5404–5414. [Google Scholar] [CrossRef]
- Muhammad, N.; Liu, Q.; Tang, X.; Fu, T.; Daud Khan, A.; Ouyang, Z. Highly flexible and voltage based wavelength tunable biosensor. Phys. Status Solidi (A) 2019, 216, 1800633. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Lin, P.; Lin, Y.-S. Tunable Split-Disk Metamaterial Absorber for Sensing Application. Nanomaterials 2021, 11, 598. https://doi.org/10.3390/nano11030598
Zhang Y, Lin P, Lin Y-S. Tunable Split-Disk Metamaterial Absorber for Sensing Application. Nanomaterials. 2021; 11(3):598. https://doi.org/10.3390/nano11030598
Chicago/Turabian StyleZhang, Yusheng, Peng Lin, and Yu-Sheng Lin. 2021. "Tunable Split-Disk Metamaterial Absorber for Sensing Application" Nanomaterials 11, no. 3: 598. https://doi.org/10.3390/nano11030598
APA StyleZhang, Y., Lin, P., & Lin, Y.-S. (2021). Tunable Split-Disk Metamaterial Absorber for Sensing Application. Nanomaterials, 11(3), 598. https://doi.org/10.3390/nano11030598