Forced Vibration Analysis of Composite Beams Reinforced by Carbon Nanotubes
Abstract
1. Introduction
2. Theory and Formulation
3. Numerical Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Akbas, S.D. Large deflection analysis of a fiber reinforced composite beam. Steel Compos. Struct. 2018, 27, 567–576. [Google Scholar] [CrossRef]
- Xie, Q.; Sinaei, H.; Shariati, M.; Khorami, M.; Mohamad, E.T.; Bui, D.T. An experimental study on the effect of CFRP on behavior of reinforce concrete beam column connections. Steel Compos. Struct. 2019, 30, 433–441. [Google Scholar] [CrossRef]
- Akbas, S.D. Nonlinear behavior of fiber reinforced cracked composite beams. Steel Compos. Struct. 2019, 30, 327–336. [Google Scholar] [CrossRef]
- Luo, Z.Y.; Sinaei, H.; Ibrahim, Z.; Shariati, M.; Jumaat, Z.; Wakil, K.; Pham, B.T.; Mohamad, E.T.; Khorami, M. Computational and experimental analysis of beam to column joints reinforced with CFRP plates. Steel Compos. Struct. 2019, 30, 271–280. [Google Scholar] [CrossRef]
- Shariat, M.; Shariati, M.; Madadi, A.; Wakil, K. Computational Lagrangian Multiplier Method by using for optimization and sensitivity analysis of rectangular reinforced concrete beams. Steel Compos. Struct. 2018, 29, 243–256. [Google Scholar] [CrossRef]
- Souza, P.R.; Nunes, C.S.; Freitas, A.R.; Belinato, J.R.; Pilau, E.J.; Fajardo, A.R.; da Silva, E.A.; Schreiner, W.H.; Muniz, E.C. Sub- and supercritical D-limonene technology as a green process to recover glass fibres from glass fibre-reinforced polyester composites. J. Clean. Prod. 2020, 254, 119984. [Google Scholar] [CrossRef]
- Huang, W.J.; Yan, W.; He, W.T.; Wang, K.; Long, L.J.; He, M.; Qin, S.H.; Yu, J. Synergistic flame-retardant effect of DOPO-based derivative and organo-montmorillonite on glass-fiber-reinforced polyamide 6 T. Polym. Advan. Technol. 2020, 31, 2083–2093. [Google Scholar] [CrossRef]
- Amiri, A.; Krosbakken, T.; Schoen, W.; Theisen, D.; Ulven, C.A. Design and manufacturing of a hybrid flax/carbon fiber composite bicycle frame. Proc. Ins. Mech. Eng. P-J. Sport. Eng. Technol. 2018, 232, 28–38. [Google Scholar] [CrossRef]
- De Cicco, D.; Asaee, Z.; Taheri, F. Use of Nanoparticles for Enhancing the Interlaminar Properties of Fiber-Reinforced Composites and Adhesively Bonded Joints—A Review. Nanomaterials 2017, 7, 360. [Google Scholar] [CrossRef] [PubMed]
- Iijima, S. Helical Microtubules of Graphitic Carbon. Nature 1991, 354, 56–58. [Google Scholar] [CrossRef]
- Gao, L.; Zhou, X.F.; Ding, Y.L. Effective thermal and electrical conductivity of carbon nanotube composites. Chem. Phys. Lett. 2007, 434, 297–300. [Google Scholar] [CrossRef]
- Li-Chung, P.J.; Rajagopal, A.K. Green’s function theory of electrical and thermal transport in single-wall carbon nanotubes. Phys. Rev. B 2002, 65, 113408. [Google Scholar] [CrossRef]
- Moisala, A.; Li, Q.; Kinloch, I.A.; Windle, A.H. Thermal and electrical conductivity of single- and multi-walled carbon nanotube-epoxy composites. Compos. Sci. Technol. 2006, 66, 1285–1288. [Google Scholar] [CrossRef]
- Yakobson, B.I.; Avouris, P. Mechanical properties of carbon nanotubes. Appl. Phys. 2001, 80, 287–327. [Google Scholar] [CrossRef]
- Salvetat, J.P.; Bonard, J.M.; Thomson, N.H.; Kulik, A.J.; Forro, L.; Benoit, W.; Zuppiroli, L. Mechanical properties of carbon nanotubes. Appl. Phys. A-Mater. 1999, 69, 255–260. [Google Scholar] [CrossRef]
- Kuo, C.Y. Water purification of removal aqueous copper (II) by as-grown and modified multi-walled carbon nanotubes. Desalination 2009, 249, 781–785. [Google Scholar] [CrossRef]
- Star, A.; Hwang, S.I. Picking Flowers with Carbon Nanotube Sensors. ACS. Cent. Sci. 2020, 6, 461–463. [Google Scholar] [CrossRef]
- Santos, A.; Amorim, L.; Nunes, J.P.; Rocha, L.A.; Silva, A.F.; Viana, J.C. Aligned carbon nanotube-based sensors for strain sensing applications. Sens. Actuat. A-Phys. 2019, 289, 157–164. [Google Scholar] [CrossRef]
- Selmi, A.; Bisharat, A. Free vibration of functionally graded SWNT reinforced aluminum alloy beam. J. Vibroeng. 2018, 20, 2151–2164. [Google Scholar] [CrossRef]
- Vodenitcharova, T.; Zhang, L.C. Bending and local buckling of a nanocomposite beam reinforced by a single-walled carbon nanotube. Int. J. Solids Struct. 2006, 43, 3006–3024. [Google Scholar] [CrossRef]
- Ke, L.L.; Yang, J.; Kitipornchai, S. Nonlinear free vibration of functionally graded carbon nanotube-reinforced composite beams. Compos. Struct. 2010, 92, 676–683. [Google Scholar] [CrossRef]
- Yas, M.H.; Heshmati, M. Dynamic analysis of functionally graded nanocomposite beams reinforced by randomly oriented carbon nanotube under the action of moving load. Appl. Math. Model. 2012, 36, 1371–1394. [Google Scholar] [CrossRef]
- Yas, M.H.; Samadi, N. Free vibrations and buckling analysis of carbon nanotube-reinforced composite Timoshenko beams on elastic foundation. Int. J. Pres. Ves. Pip. 2012, 98, 119–128. [Google Scholar] [CrossRef]
- Deepak, B.P.; Ganguli, R.; Gopalakrishnan, S. Dynamics of rotating composite beams: A comparative study between CNT reinforced polymer composite beams and laminated composite beams using spectral finite elements. Int. J. Mech. Sci. 2012, 64, 110–126. [Google Scholar] [CrossRef]
- Ke, L.L.; Yang, J.; Kitipornchai, S. Dynamic Stability of Functionally Graded Carbon Nanotube-Reinforced Composite Beams. Mech. Adv. Mater. Struc. 2013, 20, 28–37. [Google Scholar] [CrossRef]
- Heshmati, M.; Yas, M.H. Free vibration analysis of functionally graded CNT-reinforced nanocomposite beam using Eshelby-Mori-Tanaka approach. J. Mech. Sci. Technol. 2013, 27, 3403–3408. [Google Scholar] [CrossRef]
- Wattanasakulpong, N.; Ungbhakorn, V. Analytical solutions for bending, buckling and vibration responses of carbon nanotube-reinforced composite beams resting on elastic foundation. Comp. Mater. Sci. 2013, 71, 201–208. [Google Scholar] [CrossRef]
- Lin, F.; Xiang, Y. Numerical Analysis on Nonlinear Free Vibration of Carbon Nanotube Reinforced Composite Beams. Int. J. Struct. Stab. Dyn. 2014, 14, 1350056. [Google Scholar] [CrossRef]
- Lin, F.; Xiang, Y. Vibration of carbon nanotube reinforced composite beams based on the first and third order beam theories. Appl. Math. Model. 2014, 38, 3741–3754. [Google Scholar] [CrossRef]
- Ansari, R.; Shojaei, M.F.; Mohammadi, V.; Gholami, R.; Sadeghi, F. Nonlinear forced vibration analysis of functionally graded carbon nanotube-reinforced composite Timoshenko beams. Compos. Struct. 2014, 113, 316–327. [Google Scholar] [CrossRef]
- Heshmati, M.; Yas, M.H.; Daneshmand, F. A comprehensive study on the vibrational behavior of CNT-reinforced composite beams. Compos. Struct. 2015, 125, 434–448. [Google Scholar] [CrossRef]
- Heidari, M.; Arvin, H. Nonlinear free vibration analysis of functionally graded rotating composite Timoshenko beams reinforced by carbon nanotubes. J. Vib. Control. 2019, 25, 2063–2078. [Google Scholar] [CrossRef]
- Mayandi, K.; Jeyaraj, P. Bending, buckling and free vibration characteristics of FG-CNT-reinforced polymer composite beam under non-uniform thermal load. Proc. Ins. Mech. Eng. L-J. Mat. Des. Appl. 2015, 229, 13–28. [Google Scholar] [CrossRef]
- Fattahi, A.M.; Safaei, B. Buckling analysis of CNT-reinforced beams with arbitrary boundary conditions. Microsyst. Technol. 2017, 23, 5079–5091. [Google Scholar] [CrossRef]
- Babu Arumugam, A.; Rajamohan, V.; Bandaru, N.; Sudhagar, P.E.; Kumbhar, S.G. Vibration Analysis of a Carbon Nanotube Reinforced Uniform and Tapered Composite Beams. Arch. Acoust. 2019, 44, 309–320. [Google Scholar] [CrossRef]
- Mohseni, A.; Shakouri, M. Vibration and stability analysis of functionally graded CNT-reinforced composite beams with variable thickness on elastic foundation. Proc. Ins. Mech. Eng. L-J. Mat. Des. Appl. 2019, 233, 2478–2489. [Google Scholar] [CrossRef]
- Shenas, A.G.; Malekzadeh, P.; Ziaee, S. Vibration analysis of pre-twisted functionally graded carbon nanotube reinforced composite beams in thermal environment. Compos. Struct. 2017, 162, 325–340. [Google Scholar] [CrossRef]
- Khosravi, S.; Arvin, H.; Kiani, Y. Interactive thermal and inertial buckling of rotating temperature-dependent FG-CNT reinforced composite beams. Compos. Part B-Eng. 2019, 175, 107178. [Google Scholar] [CrossRef]
- Civalek, Ö.; Dastjerdi, S.; Akbaş, Ş.D.; Akgöz, B. Vibration analysis of carbon nanotube-reinforced composite microbeams. Math. Meth. Appl. Sci 2021. [Google Scholar] [CrossRef]
- Jalaei, M.; Civalek, O. On dynamic instability of magnetically embedded viscoelastic porous FG nanobeam. Int. J. Eng. Sci. 2019, 143, 14–32. [Google Scholar] [CrossRef]
- Akgöz, B.; Civalek, O. Buckling analysis of functionally graded microbeams based on the strain gradient theory. Acta Mech. 2013, 224, 2185–2201. [Google Scholar] [CrossRef]
- Van Do, V.N.; Jeon, J.T.; Lee, C.H. Dynamic analysis of carbon nanotube reinforced composite plates by using Bezier extraction based isogeometric finite element combined with higher-order shear deformation theory. Mech. Mater. 2020, 142, 103307. [Google Scholar] [CrossRef]
- Boulal, A.; Bensattalah, T.; Karas, A.; Zidour, M.; Heireche, H.; Bedia, E.A.A. Buckling of carbon nanotube reinforced composite plates supported by Kerr foundation using Hamilton’s energy principle. Struct. Eng. Mech. 2020, 73, 209–223. [Google Scholar] [CrossRef]
- Bouazza, M.; Zenkour, A.M. Vibration of carbon nanotube-reinforced plates via refined nth-higher-order theory. Arch. Appl. Mech. 2020, 90, 1755–1769. [Google Scholar] [CrossRef]
- Tornabene, F.; Fantuzzi, N.; Bacciocchi, M. Linear static response of nanocomposite plates and shells reinforced by agglomerated carbon nanotubes. Compos. Part B-Eng. 2017, 115, 449–476. [Google Scholar] [CrossRef]
- Thang, P.T.; Nguyen, T.T.; Lee, J. A new approach for nonlinear buckling analysis of imperfect functionally graded carbon nanotube-reinforced composite plates. Compos. Part B-Eng. 2017, 127, 166–174. [Google Scholar] [CrossRef]
- Fantuzzi, N.; Tornabene, F.; Bacciocchi, M.; Dimitri, R. Free vibration analysis of arbitrarily shaped Functionally Graded Carbon Nanotube-reinforced plates. Compos. Part B-Eng. 2017, 115, 384–408. [Google Scholar] [CrossRef]
- Civalek, O. Free vibration of carbon nanotubes reinforced (CNTR) and functionally graded shells and plates based on FSDT via discrete singular convolution method. Compos. Part B-Eng. 2017, 111, 45–59. [Google Scholar] [CrossRef]
- Ansari, R.; Torabi, J.; Shojaei, M.F. Buckling and vibration analysis of embedded functionally graded carbon nanotube-reinforced composite annular sector plates under thermal loading. Compos. Part B-Eng. 2017, 109, 197–213. [Google Scholar] [CrossRef]
- Vinyas, M. A higher-order free vibration analysis of carbon nanotube-reinforced magneto-electro-elastic plates using finite element methods. Compos. Part B-Eng. 2019, 158, 286–301. [Google Scholar] [CrossRef]
- Civalek, Ö.; Dastjerdi, S.; Akgöz, B. Buckling and free vibrations of CNT-reinforced cross-ply laminated composite plates. Mech. Based Des. Struc. Mach. 2020, 1–18. [Google Scholar] [CrossRef]
- Gholami, R.; Ansari, R. Geometrically nonlinear resonance of higher-order shear deformable functionally graded carbon-nanotube-reinforced composite annular sector plates excited by harmonic transverse loading. Eur. Phys. J. Plus 2018, 133, 56. [Google Scholar] [CrossRef]
- Gholami, R.; Ansari, R. Nonlinear bending of third-order shear deformable carbon nanotube/fiber/polymer multiscale laminated composite rectangular plates with different edge supports. Eur. Phys. J. Plus 2018, 133, 282. [Google Scholar] [CrossRef]
- Mohammadi, M.; Arefi, M.; Dimitri, R.; Tornabene, F. Higher-Order Thermo-Elastic Analysis of FG-CNTRC Cylindrical Vessels Surrounded by a Pasternak Foundation. Nanomaterials 2019, 9, 79. [Google Scholar] [CrossRef]
- Sofiyev, A.H.; Tornabene, F.; Dimitri, R.; Kuruoglu, N. Buckling Behavior of FG-CNT Reinforced Composite Conical Shells Subjected to a Combined Loading. Nanomaterials 2020, 10, 419. [Google Scholar] [CrossRef]
- Farajpour, M.R.; Karimi, M.; Shahidi, A.R.; Farajpour, A. Smart reinforced nano/microscale plates for mass detection at ultrasmall levels: A nonlocal continuum-based approach. Eur. Phys. J. Plus 2019, 134, 568. [Google Scholar] [CrossRef]
- Shen, H.S. Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments. Compos. Struct. 2009, 91, 9–19. [Google Scholar] [CrossRef]
Patterns of CNTs | |
---|---|
UD | |
FG-V | |
FG-Λ | |
FG-O | |
FG-X |
k | 0 | 0.4 | 1 | 2 | 5 | 10 | Al-Alloy |
---|---|---|---|---|---|---|---|
ANSYS [19] | 3.4668 | 3.2718 | 3.1496 | 3.0795 | 3.0084 | 2.9546 | 2.8500 |
Present | 3.663 | 3.459 | 3.342 | 3.271 | 3.193 | 3.134 | 2.971 |
Volume Fractions of CNTs | Present | Wattanasakulpong and Ungbhakorn [27] |
---|---|---|
UD-Beam | 0.9905 | 0.9976 |
Ʌ-Beam | 0.8562 | 0.8592 |
X-Beam | 1.1373 | 1.1485 |
VCNT | (rd/s) | ||
---|---|---|---|
UD-Beam | Ʌ-Beam | X-Beam | |
0.12 | 592.98 | 445.39 | 692.32 |
0.17 | 723.80 | 538.75 | 850.10 |
0.28 | 881.36 | 664.42 | 1028.80 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Civalek, Ö.; Akbaş, Ş.D.; Akgöz, B.; Dastjerdi, S. Forced Vibration Analysis of Composite Beams Reinforced by Carbon Nanotubes. Nanomaterials 2021, 11, 571. https://doi.org/10.3390/nano11030571
Civalek Ö, Akbaş ŞD, Akgöz B, Dastjerdi S. Forced Vibration Analysis of Composite Beams Reinforced by Carbon Nanotubes. Nanomaterials. 2021; 11(3):571. https://doi.org/10.3390/nano11030571
Chicago/Turabian StyleCivalek, Ömer, Şeref D. Akbaş, Bekir Akgöz, and Shahriar Dastjerdi. 2021. "Forced Vibration Analysis of Composite Beams Reinforced by Carbon Nanotubes" Nanomaterials 11, no. 3: 571. https://doi.org/10.3390/nano11030571
APA StyleCivalek, Ö., Akbaş, Ş. D., Akgöz, B., & Dastjerdi, S. (2021). Forced Vibration Analysis of Composite Beams Reinforced by Carbon Nanotubes. Nanomaterials, 11(3), 571. https://doi.org/10.3390/nano11030571