Stable and Multilevel Data Storage Resistive Switching of Organic Bulk Heterojunction
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cho, B.; Song, S.; Ji, Y.; Choi, H.-G.; Ko, H.C.; Lee, J.-S.; Jung, G.-Y.; Lee, T. Demonstration of Addressable Organic Resistive Memory Utilizing a PC-Interface Memory Cell Tester. IEEE Electron Device Lett. 2012, 34, 51–53. [Google Scholar] [CrossRef]
- Kim, Y.; Yoo, D.; Jang, J.; Song, Y.; Jeong, H.; Cho, K.; Hwang, W.-T.; Lee, W.; Kim, T.-W.; Lee, T. Characterization of PI:PCBM organic nonvolatile resistive memory devices under thermal stress. Org. Electron. 2016, 33, 48–54. [Google Scholar] [CrossRef]
- Kim, H.; Kumar, S.; Kim, O.J.; Iyer, S.S.K.; Kim, D.-K. Ag back electrode bonding process for inverted organic solar cells. J. Alloy. Compd. 2019, 777, 294–301. [Google Scholar] [CrossRef]
- Rehman, S.; Kim, H.; Khan, M.F.; Hur, J.-H.; Eom, J.; Kim, D.-K. Tunable resistive switching of vertical ReSe2/graphene hetero-structure enabled by Schottky barrier height and DUV light. J. Alloys Compd. 2020, 855, 157310. [Google Scholar] [CrossRef]
- Sun, Y.; Wen, D.; Sun, F. Influence of blending ratio on resistive switching effect in donor-acceptor type composite of PCBM and PVK-based memory devices. Org. Electron. 2019, 65, 141–149. [Google Scholar] [CrossRef]
- Lian, S.-L.; Liu, C.; Chen, W.-C. Conjugated Fluorene Based Rod–Coil Block Copolymers and Their PCBM Composites for Resistive Memory Switching Devices. ACS Appl. Mater. Interfaces 2011, 3, 4504–4511. [Google Scholar] [CrossRef] [PubMed]
- Song, S.; Cho, B.; Kim, T.-W.; Ji, Y.; Jo, M.; Wang, G.; Choe, M.; Kahng, Y.H.; Hwang, H.; Lee, T. Three-Dimensional Integration of Organic Resistive Memory Devices. Adv. Mater. 2010, 22, 5048–5052. [Google Scholar] [CrossRef] [PubMed]
- Rehman, S.; Kim, H.; Khan, M.F.; Hur, J.-H.; Lee, A.D.; Kim, D.-K. Tuning of ionic mobility to improve the resistive switching behavior of Zn-doped CeO2. Sci. Rep. 2019, 9, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Wen, D.; Bai, X. Nonvolatile ternary resistive switching memory devices based on the polymer composites containing zinc oxide nanoparticles. Phys. Chem. Chem. Phys. 2018, 20, 5771–5779. [Google Scholar] [CrossRef]
- Lv, W.; Wang, H.; Jia, L.; Tang, X.; Lin, C.; Yuwen, L. Tunable nonvolatile memory behaviors of PCBM–MoS2 2D nanocomposites through Surface deposition ratio control. ACS Appl. Mater. Interfaces 2018, 10, 6552–6559. [Google Scholar] [CrossRef]
- Huang, R.; Cai, Y.; Liu, Y.; Bai, W.; Kuang, Y.; Wang, Y. Resistive switching in organic memory devices for flexible applications. In Proceedings of the Book Resistive switching in Organic Memory Devices for Flexible Applications, Melbourne, Australia, 1–5 June 2014; pp. 838–841. [Google Scholar]
- Ali, S.; Bae, J.; Lee, C.H.; Shin, S.; Kobayashi, N.P. Ultra-low power non-volatile resistive crossbar memory based on pull up resistors. Org. Electron. 2017, 41, 73–78. [Google Scholar] [CrossRef]
- Quinteros, C.; Zazpe, R.; Marlasca, F.; Golmar, F.; Casanova, F.; Stoliar, P. HfO2 based memory devices with rectifying capabilities. J. Appl. Phys. 2014, 115, 024501. [Google Scholar] [CrossRef]
- Minnekhanov, A.; Emelyanov, A.; Lapkin, D.A.; Nikiruy, K.E.; Shvetsov, B.S.; Nesmelov, A.A.; Rylkov, V.V.; Demin, V.A.; Erokhin, V. Parylene based memristive devices with multilevel resistive switching for neuromorphic applications. Sci. Rep. 2019, 9, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Matsukatova, A.N.; Emelyanov, A.V.; Minnekhanov, A.A.; Demin, V.A.; Rylkov, V.V.; Forsh, P.A.; Kashkarov, P.K. Second-Order Nanoscale Thermal Effects in Memristive Structures Based on Poly-p-Xylylene. JETP Lett. 2020, 112, 357–363. [Google Scholar] [CrossRef]
- Wu, C.; Kim, T.W.; Choi, H.Y.; Strukov, D.B.; Yang, J.J. Flexible three-dimensional artificial synapse networks with correlated learning and trainable memory capability. Nat. Commun. 2017, 8, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Lin, M.; Wang, Z.; Zhao, X.; Cai, Y.; Qi, L.; Fang, Y.; Yang, Y.; He, M.; Huang, R. Low Power Parylene-Based Memristors with a Graphene Barrier Layer for Flexible Electronics Applications. Adv. Electron. Mater. 2019, 5, 1800852. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, X.; Huang, J.; Bai, J.; Hou, Y.; Wang, C. Bistable non-volatile resistive memory devices based on ZnO nanoparticles embedded in polyvinylpyrrolidone. RSC Adv. 2020, 10, 14662–14669. [Google Scholar] [CrossRef]
- Varun, I.; Bharti, D.; Mahato, A.K.; Raghuwanshi, V.; Tiwari, S.P. High-Performance Flexible Resistive RAM With PVP:GO Composite and Ultrathin HfO x Hybrid Bilayer. IEEE Trans. Electron Devices 2020, 67, 949–954. [Google Scholar] [CrossRef]
- Zhao, Y.; Sun, W.; Wang, M.; He, J.; Lu, J. Flexible Ternary Resistive Memory from Organic Bulk Heterojunction. Adv. Mater. Technol. 2019, 5, 1900681. [Google Scholar] [CrossRef]
- Gao, S.; Song, C.; Chen, C.; Zeng, F.; Pan, F. Dynamic Processes of Resistive Switching in Metallic Filament-Based Organic Memory Devices. J. Phys. Chem. C 2012, 116, 17955–17959. [Google Scholar] [CrossRef]
- Pawar, K.K.; Desai, D.V.; Bodake, S.M.; Patil, H.S.; More, S.M.; Nimbalkar, A.S.; Mali, S.S.; Hong, C.K.; Kim, S.; Patil, P.S.; et al. Highly reliable multilevel resistive switching in a nanoparticulated In2O3 thin-film memristive device. J. Phys. D: Appl. Phys. 2019, 52, 175306. [Google Scholar] [CrossRef]
- Deshpande, S.; Nair, V.V. Resistive switching of Al/Sol-Gel ZnO/Al devices for resistive random access memory applications. In Proceedings of the Book Resistive switching of Al/Sol-Gel ZnO/Al devices for resistive random access memory applications, Trivandrum, Kerala, India, 28–29 December 2009; pp. 471–473. [Google Scholar]
- Ren, S.; Dong, W.; Tang, H.; Tang, L.; Li, Z.; Sun, Q.; Yang, H.; Yang, Z.; Zhao, J. High-efficiency magnetic modulation in Ti/ZnO/Pt resistive random-access memory devices using amorphous zinc oxide film. Appl. Surf. Sci. 2019, 488, 92–97. [Google Scholar] [CrossRef]
- Ismail, M.; Talib, I.; Rana, A.M.; Akbar, T.; Jabeen, S.; Lee, J.; Kim, S. Effect of Bilayer CeO2−x/ZnO and ZnO/CeO2−x Heterostructures and Electroforming Polarity on Switching Properties of Non-volatile Memory. Nanoscale Res. Lett. 2018, 13, 318. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Meng, F.; Cai, Y.; Zheng, L.; Li, Y.; Liu, Y.; Jiang, Y.; Wang, X.; Chen, X. Sericin for Resistance Switching Device with Multilevel Nonvolatile Memory. Adv. Mater. 2013, 25, 5498–5503. [Google Scholar] [CrossRef]
- Verbakel, F.; Meskers, S.C.J.; Janssen, R.A.J.; Gomes, H.L.; Cölle, M.; Büchel, M.; De Leeuw, D.M. Reproducible resistive switching in nonvolatile organic memories. Appl. Phys. Lett. 2007, 91, 192103. [Google Scholar] [CrossRef]
- Lee, W.; Kim, Y.; Song, Y.; Cho, K.; Yoo, D.; Ahn, H.; Kang, K.; Lee, T. Investigation of Time-Dependent Resistive Switching Behaviors of Unipolar Nonvolatile Organic Memory Devices. Adv. Funct. Mater. 2018, 28, 1801162. [Google Scholar] [CrossRef]
- Wu, Y.; Wei, Y.; Huang, Y.; Cao, F.; Yu, D.; Li, X.; Zeng, H. Capping CsPbBr3 with ZnO to improve performance and stability of perovskite memristors. Nano Res. 2017, 10, 1584–1594. [Google Scholar] [CrossRef]
- Rehman, M.M.; Yang, B.-S.; Yang, Y.-J.; Karimov, K.S.; Choi, K.H. Effect of device structure on the resistive switching characteristics of organic polymers fabricated through all printed technology. Curr. Appl. Phys. 2017, 17, 533–540. [Google Scholar] [CrossRef]
- Wang, T.Y.; Meng, J.L.; He, Z.Y.; Chen, L.; Zhu, H.; Sun, Q.Q.; Ding, S.J.; Zhang, D.W. Atomic layer deposited Hf0.5Zr0.5O2-based flexible memristor with short/long-term synaptic plasticity. Nanoscale Res. Lett. 2019, 14, 102. [Google Scholar] [CrossRef]
- Ji, Y.; Zeigler, D.F.; Lee, D.S.; Choi, H.; Jen, A.K.-Y.; Ko, H.C.; Kim, T.-W. Flexible and twistable non-volatile memory cell array with all-organic one diode–one resistor architecture. Nat. Commun. 2013, 4, 2707. [Google Scholar] [CrossRef]
- Gao, S.; Zeng, F.; Chen, C.; Tang, G.; Lin, Y.; Zheng, Z.; Song, C.; Pan, F. Conductance quantization in a Ag filament-based polymer resistive memory. Nanotechnology 2013, 24, 335201. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Yin, Z.; Cao, X.; Zhao, F.; Lin, A.; Xie, L.; Fan, Q.; Boey, F.; Zhang, H.; Li, Y.-H. Bulk Heterojunction Polymer Memory Devices with Reduced Graphene Oxide as Electrodes. ACS Nano 2010, 4, 3987–3992. [Google Scholar] [CrossRef] [PubMed]
- Jin, Z.; Liu, G.; Wang, J. Organic nonvolatile resistive memory devices based on thermally deposited Au nanoparticle. AIP Adv. 2013, 3, 052113. [Google Scholar] [CrossRef]
- Khan, M.U.; Hassan, G.; Raza, M.A.; Bae, J.; Kobayashi, N.P. Schottky diode based resistive switching device based on ZnO/PEDOT: PSS heterojunction to reduce sneak current problem. J. Mater. Sci. Mater. Electron. 2019, 30, 4607–4617. [Google Scholar] [CrossRef]
- Oh, S.H.; Heo, S.J.; Yang, J.S.; Kim, H.J. Effects of ZnO nanoparticles on P3HT: PCBM organic solar cells with DMF-modulated PEDOT: PSS buffer layers. ACS Appl. Mater. Interfaces 2013, 5, 11530–11534. [Google Scholar] [CrossRef] [PubMed]
- Bejtka, K.; Milano, G.; Ricciardi, C.; Pirri, C.F.; Porro, S. TEM nano-structural investigation of Ag conductive filaments in polycrystalline ZnO-based resistive switching devices. ACS Appl. Mater. Interfaces 2020, 12, 29451–29460. [Google Scholar] [PubMed]
- Aziz, J.; Kim, H.; Rehman, S.; Khan, M.F.; Kim, D.-K. Chemical Nature of Electrode and the Switching Response of RF-Sputtered NbOx Films. Nanomaterials 2020, 10, 2164. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patil, H.; Kim, H.; Rehman, S.; Kadam, K.D.; Aziz, J.; Khan, M.F.; Kim, D.-k. Stable and Multilevel Data Storage Resistive Switching of Organic Bulk Heterojunction. Nanomaterials 2021, 11, 359. https://doi.org/10.3390/nano11020359
Patil H, Kim H, Rehman S, Kadam KD, Aziz J, Khan MF, Kim D-k. Stable and Multilevel Data Storage Resistive Switching of Organic Bulk Heterojunction. Nanomaterials. 2021; 11(2):359. https://doi.org/10.3390/nano11020359
Chicago/Turabian StylePatil, Harshada, Honggyun Kim, Shania Rehman, Kalyani D. Kadam, Jamal Aziz, Muhammad Farooq Khan, and Deok-kee Kim. 2021. "Stable and Multilevel Data Storage Resistive Switching of Organic Bulk Heterojunction" Nanomaterials 11, no. 2: 359. https://doi.org/10.3390/nano11020359
APA StylePatil, H., Kim, H., Rehman, S., Kadam, K. D., Aziz, J., Khan, M. F., & Kim, D.-k. (2021). Stable and Multilevel Data Storage Resistive Switching of Organic Bulk Heterojunction. Nanomaterials, 11(2), 359. https://doi.org/10.3390/nano11020359