The Influence of Nanoparticles on Fire Retardancy of Pedunculate Oak Wood
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wood Treatment
2.2. Samples Analyses
2.2.1. Thermal Analysis
2.2.2. Infrared Spectroscopy
2.2.3. Scanning Electron Microscopy–X-ray Spectroscopy Observations
3. Results and Discussion
3.1. Thermal Analysis
3.2. Infrared Spectroscopy
3.3. Scanning Electron Microscopy–X-ray Spectroscopy Observations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Seo, H.J.; Hwang, W.; Lee, M.C. Fire properties of Pinus densiflora utilizing fire-retardant chemicals based on borated and phosphorus (I)—Combustion characteristics. Bioresources 2017, 12, 5417–5427. [Google Scholar] [CrossRef] [Green Version]
- Vakhitova, L.N. Fire retardant nanocoating for wood protection. In Nanotechnology in Eco-Efficient Construction; Woodhead Publishing: Cambridge, UK, 2019. [Google Scholar]
- Papadopoulos, A.N.; Bikiaris, D.N.; Mitropoulos, A.C.; Kyzas, G.Z. Nanomaterials and chemical modifications for enhanced key wood properties: A review. Nanomaterials 2019, 9, 607. [Google Scholar] [CrossRef] [Green Version]
- Luyt, A.S.; Malik, S.S.; Gasmi, S.A.; Porfyris, A.; Andronopoulou, A.; Korres, D.; Vouyiouka, S.; Grosshauser, M.; Pfaendner, R.; Brüll, R.; et al. Halogen-Free Flame-Retardant Compounds. Thermal Decomposition and Flammability Behavior for Alternative Polyethylene Grades. Polymers 2019, 11, 1479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Popescu, C.M.; Pfriem, A. Treatments and modification to improve the reaction to fire of wood and wood based products—An overview. Fire Mater. 2020, 44, 100–111. [Google Scholar] [CrossRef] [Green Version]
- Sauerbier, P.; Mayer, A.K.; Emmerich, L.; Militz, H. Fire retardant treatment of wood—State of the art and future perspectives. In Wood & Fire Safety; Makovicka Osvaldova, L., Markert, F., Zelinka, S., Eds.; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Xia, W.; Fan, S.; Xu, T. Inhibitory action of halogen-free fire retardants on combustion and volatile emission of bituminous components. Sci. Prog. 2021, 104, 00368504211035215. [Google Scholar] [CrossRef]
- Xia, W.; Wang, S.; Xu, T.; Jin, G. Flame retarding and smoke suppressing mechanisms of nano composite flame retardants on bitumen and bituminous mixture. Constr. Build. Mater. 2021, 266, 121203. [Google Scholar] [CrossRef]
- Giudice, C.A.; Pereyra, A.M. Silica nanoparticles in high silica/alkali molar ratio solutions as fire-retardant impregnants for woods. Fire Mater. 2010, 34, 177–187. [Google Scholar] [CrossRef]
- Wang, Z.; Han, E.; Liu, F.; Ke, W. Thermal behavior of nano-TiO2 in fire-resistant coating. J. Mater. Sci. Technol. 2007, 23, 547–550. [Google Scholar]
- Spear, M.J.; Curling, S.F.; Dimitriou, A.; Ormondroyd, G.A. Review of Functional Treatments for Modified Wood. Coatings 2021, 11, 327. [Google Scholar] [CrossRef]
- Vahidi, G.; Bajwa, D.S.; Shojaeiarani, J.; Stark, N.; Darabi, A. Advancements in traditional and nanosized flame retardants for polymers—A review. J. Appl. Polym. Sci. 2021, 138, 50050. [Google Scholar] [CrossRef]
- Fu, B.; Li, X.; Yuan, G.; Chen, W.; Pan, Y. Preparation and flame retardant and smoke suppression properties of bamboo-wood hybrid scrimber filled with calcium and magnesium nanoparticles. J. Nanomater. 2014, 2014, 3. [Google Scholar] [CrossRef]
- Zhao, X.; Babu, H.; Llorca, J.; Wang, D. Impact of halogen-free flame retardant with varied phosphorus chemical surrounding on the properties of diglycidyl ether of bisphenol-A type epoxy resin: Synthesis, fire behaviour, flame-retardant mechanism and mechanical properties. RSC Adv. 2016, 6, 59226–59236. [Google Scholar] [CrossRef] [Green Version]
- Favarim, H.R.; Leite, L.O. Performance of ZnO nanoparticles for fire retardant and UV protection of pine wood. BioResources 2018, 13, 6963–6969. [Google Scholar] [CrossRef]
- Samanta, A.K.; Bhattacharyya, R.; Jose, S.; Basu, G.; Chowdhury, R. Fire retardant finish of jute fabric with nano zinc oxide. Cellulose 2017, 24, 1143–1157. [Google Scholar] [CrossRef]
- Nageswara Rao, T.; Naidu, T.M.; Kim, M.S.; Parvatamma, B.; Prashanthi, Y.; Heun Koo, B. Influence of zinc oxide nanoparticles and char forming agent polymer on flame retardancy of intumescent flame retardant coatings. Nanomaterials 2020, 10, 42. [Google Scholar] [CrossRef] [Green Version]
- Deveci, I.; Sacli, C.; Turkoglu, T.; Baysal, E.; Toker, H.; Peker, H. Effect of SiO2 and Al2O3 nanoparticles treatment on thermal behavior of oriental beech wood. Wood Res. Slovak. 2018, 63, 573–581. [Google Scholar]
- Bueno, A.B.F.; Banonn, M.V.N.; Morentin, L.; Garcia, M.J.M. Treatment of natural woodveneers with nanooxides to improve their fire behaviour. In Proceedings of the 2nd International Conference on Structural Nano Composites, Madrid, Spain, 20–21 May 2014. [Google Scholar] [CrossRef] [Green Version]
- Li, H.F.; Hu, Z.W.; Zhang, S.; Gu, X.Y.; Wang, H.J.; Jiang, P.; Zhao, Q. Effects of titanium dioxide on the flammability and char formation of water-based coatings containing intumescent flame retardants. Prog. Org. Coat. 2015, 78, 318–324. [Google Scholar] [CrossRef]
- Garskaite, E.; Karlsson, O.; Stankeviciute, Z.; Kareiva, A.; Jones, D.; Sandberg, D. Surface hardness and flammability of Na2SiO3 and nano-TiO2 reinforced wood composites. RSC Adv. 2019, 9, 27973–27986. [Google Scholar] [CrossRef] [Green Version]
- Taghiyari, H.R.; Tajvidi, Μ.; Soltani, A.; Esmailpour, A.; Khodadoosti, G.; Jafarzadeh, H.; Militz, H.; Papadopoulos, A.N. Improving fire retardancy of unheated and heat-treated fir wood by nano-sepiolite. Eur. J. Wood Prod. 2021, 79, 841–849. [Google Scholar] [CrossRef]
- Erceg, I.; Selmani, A.; Gajović, A.; Radatović, B.; Šegota, S.; Ćurlin, M.; Strasser, V.; Kontrec, J.; Kralj, D.; Maltar-Strmečki, N.; et al. Precipitation at Room Temperature as a Fast and Versatile Method for Calcium Phosphate/TiO2 Nanocomposites Synthesis. Nanomaterials 2021, 11, 1523. [Google Scholar] [CrossRef]
- Sun, Q.F.; Lu, Y.; Xia, Y.Z.; Yang, D.J.; Li, J.; Liu, Y.X. Flame retardancy of wood treated by TiO2/ZnO coating. Surf. Eng. 2012, 28, 555–559. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Yu, H.; Sun, Q.; Liu, Y.; Cui, Y.; Lu, Y. Growth of TiO2 coating on wood surface using controlled hydrothermal method at low temperatures. Appl. Surf. Sci. 2010, 256, 5046–5050. [Google Scholar] [CrossRef]
- Sun, Q.; Yu, H.; Liu, Y.; Li, J.; Cui, Y.; Lu, Y. Prolonging the combustion duration of wood by TiO2 coating synthesized using cosolvent-controlled hydrothermal method. J. Mater. Sci. 2010, 45, 6661–6667. [Google Scholar] [CrossRef]
- Sebio-Puñal, T.; Naya, S.; López-Beceiro, J.; Tarrío-Saavedra, J.; Artiaga, R. Thermogravimetric analysis of wood, holocellulose, and lignin from five wood species. J. Therm. Anal. Calorim. 2012, 109, 1163–1167. [Google Scholar] [CrossRef]
- Čabalová, I.; Kačík, F.; Lagaňa, R.; Výbohová, E.; Bubeníková, T.; Čaňová, I.; Ďurkovič, J. Effect of thermal treatment on the chemical, physical, and mechanical properties of pedunculate oak (Quercus robur L.) wood. BioResources 2018, 13, 157–170. [Google Scholar] [CrossRef]
- González-Díaz, E.; Alonso-López, J.M. Characterization by thermogravimetric analysis of the wood used in Canary architectural heritage. J. Cult. Herit. 2017, 23, 111–118. [Google Scholar] [CrossRef]
- Lühr, C.; Pecenka, R. Development of a model for the fast analysis of polymer mixtures based on cellulose, hemicellulose (xylan), lignin using thermogravimetric analysis and application of the model to poplar wood. Fuel 2020, 277, 118169. [Google Scholar] [CrossRef]
- Rowell, R.M.; LeVan-Green, S.L. Thermal properties. In Handbook of Wood Chemistry and Wood Composites; CRC Press: Boca Raton, FL, USA, 2005; pp. 121–138. [Google Scholar]
- Xu, E.; Wang, D.; Lin, L. Chemical structure and mechanical properties of wood cell walls treated with acid and alkali solution. Forests 2020, 11, 87. [Google Scholar] [CrossRef] [Green Version]
- Sundberg, K.E.; Holmbom, B.R.; Pranovich, A.V. Chemical changes in thermomechanical pulp at alkaline conditions. J. Wood Chem. Technol. 2003, 23, 89–112. [Google Scholar] [CrossRef]
- Shabir Mahr, M.; Hübert, T.; Schartel, B.; Bahr, H.; Sabel, M.; Militz, H. Fire retardancy effects in single and double layered sol-gel derived TiO2 and SiO2-wood composites. J. Sol. Gel. Sci. Technol. 2012, 64, 452–464. [Google Scholar] [CrossRef]
- Li, P.; Zhang, Y.; Zuo, Y.; Wu, Y.; Yuan, G.; Lu, J. Comparison of silicate impregnation methods to reinforce Chinese fir wood. Holzforschung 2021, 75, 126–137. [Google Scholar] [CrossRef]
- Sun, Z.; Lv, J.; Wang, Z.; Wu, Y.; Yuan, G.; Zou, Y. Sodium silicate/waterborne epoxy resin hybrid-modified Chinese fir wood. Wood Sci. Technol. 2021, 55, 837–855. [Google Scholar] [CrossRef]
- Kubovský, I.; Kačíková, D.; Kačík, F. Structural Changes of Oak Wood Main Components Caused by Thermal Modification. Polymers 2020, 12, 485. [Google Scholar] [CrossRef] [Green Version]
- Bobrowski, A.; Stypuła, B.; Hutera, B.; Kmita, A.; Drożyński, D.; Starowicz, M. FTIR spectroscopy of water glass—The binder moulding modified by ZnO nanoparticles. Metalurgija 2012, 51, 477–480. [Google Scholar]
- Vartanian, E.; Barres, O.; Roque, C. FTIR spectroscopy of woods: A new approach to study the weathering of the carving face of a sculpture. Spectrochim. Acta A 2015, 136, 1255–1259. [Google Scholar] [CrossRef]
- Colom, X.; Carrillo, F.; Nogués, F.; Garriga, P. Structural analysis of photodegraded wood by means of FTIR spectroscopy. Polym. Degrad. Stabil. 2003, 80, 543–549. [Google Scholar] [CrossRef]
- Popescu, M.C.; Popescu, C.M.; Lisa, G.; Sakata, Y. Evaluation of morphological and chemical aspects of different wood species by spectroscopy and thermal methods. J. Mol. Struct. 2011, 988, 65–72. [Google Scholar] [CrossRef]
- Dibdiaková, J.; Geffertová, J.; Rázgová, Z. Alkali and alkali/oxidation treatment of poplar wood (Populus Nigra)—Influence on the kraft pulp properties. Acta Facultatis Xylologiae Zvolen 2010, 52, 53–62. [Google Scholar]
- Jayarambabu, N.; Kumari, B.S.; Rao, K.V.; Prabhu, Y.T. Germination and growth characteristics of mungbean seeds (Vigna radiata L.) affected by synthesized zinc oxide nanoparticles. Int. J. Curr. Eng. Technol. 2014, 4, 2347–5161. [Google Scholar]
- Etcheverry, L.P.; Flores, W.H.; Silva, D.L.; Moreira, E.C. Annealing effects on the structural and optical properties of ZnO nanostructures. Mater. Res. 2018, 21, 1–7. [Google Scholar] [CrossRef]
- Guo, J.; Song, K.; Salmén, L.; Yin, Y. Changes of wood cell walls in response to hygro-mechanical steam treatment. Carbohydr. Polym. 2015, 115, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Lourenço, A.; Pereira, H. Compositional Variability of Lignin in Biomass. Intech Open 2018, 2, 64–98. [Google Scholar] [CrossRef] [Green Version]
- Faix, O.; Lin, S.Y.; Dence, C.W. Fourier transform infrared spectroscopy. In Methods in Lignin Chemistry; Lin, S.Y., Dence, C.W., Eds.; Springer: Berlin, Germany, 1992; pp. 83–109. [Google Scholar]
- Müller, G.; Schöpper, C.; Vos, H.; Kharazipour, A.; Polle, A. FTIR-ATR spectroscopic analysis of changes in wood properties during particle and fibreboard production of hard and softwood trees. BioResources 2009, 4, 49–71. [Google Scholar] [CrossRef]
- Lionetto, F.; Del Sole, R.; Cannoletta, D.; Vasapollo, G.; Maffezzoli, A. Monitoring wood degradation during weathering by cellulose crystallinity. Materials 2012, 5, 1910–1922. [Google Scholar] [CrossRef] [Green Version]
- Kubovský, I.; Oberhofnerová, E.; Kačík, F.; Pánek, M. Surface changes of selected hardwoods due to weather conditions. Forests 2018, 9, 557. [Google Scholar] [CrossRef] [Green Version]
- Pfeffer, A.; Mai, C.; Militz, H. Weathering characteristics of wood treated with water glass, siloxane or DMDHEU. Eur. J. Wood Prod. 2012, 70, 165–176. [Google Scholar] [CrossRef] [Green Version]
- Ciolacu, D.; Ciolacu, F.; Popa, V. Amorphous cellulose-structure and characterization. Cell. Chem. Technol. 2011, 45, 13–21. [Google Scholar]
Sample | T1 (°C) | T2 (°C) | Residue at 600 °C (%) |
---|---|---|---|
Oak wood | 290.0 | 350.4 | 18.3 |
Oak wood + WG | – | 306.5 | 25.8 |
Oak wood + TiO2 | 294.0 | 348.5 | 17.5 |
Oak wood + WG + TiO2 | 262.1 | 310.7 | 26.0 |
Oak wood + SiO2 | 294.0 | 354.5 | 16.2 |
Oak wood + WG + SiO2 | – | 318.2 | 25.3 |
Oak wood + ZnO | 293.0 | 348.6 | 17.2 |
Oak wood + WG + ZnO | 219.0 | 305.3 | 28.4 |
Sample | T1 (°C) | ΔH (J/g) | T2 (°C) | ΔH (J/g) |
---|---|---|---|---|
Oak wood | 352.5 | 60.1 | 440.3 | 57.9 |
Oak wood + WG | – | – | 406.9 | 13.7 |
Oak wood + TiO2 | 351.5 | 59.6 | 450.8 | 78.1 |
Oak wood + WG + TiO2 | 364.0 | 7.8 | – | – |
Oak wood + SiO2 | 358.4 | 53.1 | 409.4 | 59.8 |
Oak wood + WG + SiO2 | 374.7 | 7.1 | 442.6 | 10.3 |
Oak wood + ZnO | 351.1 | 69.2 | 434.5 | 52.7 |
Oak wood + WG + ZnO | 357.6 | –1.3 | – | – |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kačíková, D.; Kubovský, I.; Eštoková, A.; Kačík, F.; Kmeťová, E.; Kováč, J.; Ďurkovič, J. The Influence of Nanoparticles on Fire Retardancy of Pedunculate Oak Wood. Nanomaterials 2021, 11, 3405. https://doi.org/10.3390/nano11123405
Kačíková D, Kubovský I, Eštoková A, Kačík F, Kmeťová E, Kováč J, Ďurkovič J. The Influence of Nanoparticles on Fire Retardancy of Pedunculate Oak Wood. Nanomaterials. 2021; 11(12):3405. https://doi.org/10.3390/nano11123405
Chicago/Turabian StyleKačíková, Danica, Ivan Kubovský, Adriana Eštoková, František Kačík, Elena Kmeťová, Ján Kováč, and Jaroslav Ďurkovič. 2021. "The Influence of Nanoparticles on Fire Retardancy of Pedunculate Oak Wood" Nanomaterials 11, no. 12: 3405. https://doi.org/10.3390/nano11123405
APA StyleKačíková, D., Kubovský, I., Eštoková, A., Kačík, F., Kmeťová, E., Kováč, J., & Ďurkovič, J. (2021). The Influence of Nanoparticles on Fire Retardancy of Pedunculate Oak Wood. Nanomaterials, 11(12), 3405. https://doi.org/10.3390/nano11123405