Polarization Angle Dependence of Optical Gain in a Hybrid Structure of Alexa-Flour 488/M13 Bacteriophage
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fan, X.; Yun, S.H. The potential of optofluidic biolasers. Nat. Methods 2014, 11, 141–147. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Fan, X. Biological lasers for biomedical applications. Adv. Opt. Mater. 2019, 7, 1900377. [Google Scholar] [CrossRef]
- Toropov, N.; Cabello, G.; Serrano, M.P.; Gutha, R.R.; Rafti, M.; Vollmer, F. Review of biosensing with whispering-gallery mode lasers. Light Sci. Appl. 2021, 10, 42. [Google Scholar] [CrossRef]
- Gather, M.C.; Yun, S.H. Single-cell biological lasers. Nat. Photonics 2011, 5, 406–410. [Google Scholar] [CrossRef]
- Gather, M.C.; Yun, S.H. Lasing from escherichia coli bacteria genetically programmed to express green fluorescent protein. Opt. Lett. 2011, 36, 3299–3301. [Google Scholar] [CrossRef] [PubMed]
- Hales, J.E.; Matmon, G.; Dalby, P.A.; Ward, J.M.; Aeppli, G. Virus laser for biological detection. Nat. Commun. 2019, 10, 3594. [Google Scholar] [CrossRef] [Green Version]
- Halperin-Sternfeld, M.; Ghosh, M.; Adler-Abramovich, L. Advantages of self-assembled supramolecular polymers toward biological applications. In Supramolecular Chemistry of Biomimetic Systems; Li, J., Ed.; Springer: Singapore, 2017; pp. 9–35. [Google Scholar]
- Lee, J.H.; Jin, H.-E.; Desai, M.S.; Ren, S.; Kim, S.; Lee, S.-W. Biomimetic sensor design. Nanoscale 2015, 7, 18379. [Google Scholar] [CrossRef]
- Mao, C.; Liu, A.; Cao, B. Virus-based chemical and biological sensing. Angew. Chem. Int. Ed. 2009, 48, 6790–6810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, B.Y.; Zhang, J.; Zueger, C.; Chung, W.-J.; Yoo, S.Y.; Wang, E.; Meyer, J.; Ramesh, R.; Lee, S.-W. Virus-based piezoelectric energy generation. Nat. Nanotechnol. 2012, 7, 351–356. [Google Scholar] [CrossRef] [PubMed]
- Nam, K.T.; Kim, D.-W.; Yoo, P.J.; Chiang, C.-Y.; Meethong, N.; Hammond, P.T.; Chiang, Y.-M.; Belchert, A.M. Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science 2016, 312, 885–888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dang, X.; Yi, H.; Ham, M.-H.; Qi, J.; Yun, D.S.; Ladewski, R.; Strano, M.S.; Hammond, P.T.; Belcher, A.M. Virus-templated self-assembled single-walled carbon nanotubes for highly efficient electron collection in photovoltaic devices. Nat. Nanotechnol. 2011, 6, 377–384. [Google Scholar] [CrossRef]
- Kim, W.-G.; Kim, K.; Ha, S.-H.; Song, H.; Yu, H.-W.; Kim, C.; Kim, J.-M.; Oh, J.-W. Virus based full colour pixels using a microheater. Sci. Rep. 2015, 5, 13757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chung, W.-J.; Oh, J.-W.; Kwak, K.; Lee, B.Y.; Meyer, J.; Wang, E.; Hexemer, A.; Lee, S.-W. Biomimetic self-templating supramolecular structures. Nature 2011, 478, 364–368. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.-W.; Chung, W.-J.; Heo, K.; Jin, H.-E.; Lee, B.Y.; Wang, E.; Zueger, C.; Wong, W.; Meyer, J.; Kim, C.; et al. Biomimetic virus-based colourimetric sensors. Nat. Commun. 2014, 5, 3043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoo, S.Y.; Chung, W.-J.; Kim, T.H.; Le, M.; Lee, S.-W. Facile patterning of genetically engineered M13 bacteriophage for directional growth of human fibroblast cells. Soft Matter 2011, 7, 363–368. [Google Scholar] [CrossRef]
- Yoo, S.Y.; Oh, J.-W.; Lee, S.-W. Phage-chips for novel optically readable tissue engineering assays. Langmuir 2012, 28, 2166–2172. [Google Scholar] [CrossRef] [Green Version]
- Turitsyn, S.K.; Babin, S.A.; El-Taher, A.E.; Harper, P.; Churkin, D.V.; Kablukov, S.I.; Ania-Castañón, J.D.; Karalekas, V.; Podivilov, E.V. Random distributed feedback fibre laser. Nat. Photonics 2010, 4, 231–235. [Google Scholar] [CrossRef]
- Mahler, L.; Tredicucci, A.; Beltram, F.; Walther, C.; Faist, J.; Beere, H.E.; Ritchie, D.A.; Wiersma, D.S. Quasi-periodic distributed feedback laser. Nat. Photonics 2010, 4, 165–169. [Google Scholar] [CrossRef]
- Yuan, Z.; Zhou, Y.; Qiao, Z.; Aik, C.E.; Tu, W.-C.; Wu, X.; Chen, Y.-C. Stimulated chiral light-matter interactions in biological microlasers. ACS Nano 2021, 15, 8965–8975. [Google Scholar] [CrossRef]
- Yuan, Z.; Cheng, X.; Zhou, Y.; Tan, X.; Gong, X.; Rivy, H.; Gong, C.; Fan, X.; Wang, W.-J.; Chen, Y.-C. Distinguishing small molecules in microcavity with molecular laser polarization. ACS Photonics 2020, 7, 1908–1914. [Google Scholar] [CrossRef]
- Gozhyk, I.; Clavier, G.; Meallet-Renault, R.; Dvorko, M.; Pansu, R.; Audibert, J.-F.; Brosseau, A.; Lafargue, C.; Tsvirkun, V.; Lozenko, S.; et al. Polarization properties of solid-state organic lasers. Phys. Rev. A 2012, 86, 043817. [Google Scholar] [CrossRef] [Green Version]
- Gozhyk, I.; Boudreau, M.; Rabbani Haghighi, H.; Djellali, N.; Forget, S.; Chénais, S.; Ulysse, C.; Brosseau, A.; Pansu, R.; Audibert, J.-F.; et al. Gain properties of dye-doped polymer thin films. Phys. Rev. B 2015, 92, 214202. [Google Scholar] [CrossRef] [Green Version]
- Brinker, C.J. Dip coating. In Chemical Solution Deposition of Functional Oxide Thin Films; Schneller, T., Waser, R., Kosec, M., Payne, D., Eds.; Springer: Wien, Austria, 2013; pp. 233–261. [Google Scholar]
- Kim, B.J.; Kyhm, K. Optical modal gain saturation of exciton-exciton scattering and electron-hole plasma in ZnO. J. Korean Phys. Soc. 2007, 51, 1726–1731. [Google Scholar] [CrossRef]
- Jang, J.; Song, G.; Kyhm, K.; Cho, C.-H. Optical gain of inelastic exciton-exciton scattering in CdS nanowires. Appl. Phys. Lett. 2019, 114, 081101. [Google Scholar] [CrossRef]
- Jang, J.; Lee, S.; Kim, M.; Woo, S.; Kim, I.; Kyhm, J.; Song, J.; Taylor, R.A.; Kyhm, K. Excitation and temperature dependence of the broad gain spectrum in GaAs/AlGaAs quantum rings. Appl. Phys. Lett. 2020, 117, 213101. [Google Scholar] [CrossRef]
- Bagnall, D.M.; Chen, Y.F.; Zhu, Z.; Yao, T.; Koyama, S.; Shen, M.Y.; Goto, T. Optically pumped lasing of ZnO at room temperature. Appl. Phys. Lett. 1997, 70, 2230. [Google Scholar] [CrossRef]
- Monk, G.S. Light Principles and Experiments, 1st ed.; McGraw-Hill Book Company: New York, NY, USA; London, UK, 1937; pp. 376–380. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, I.; Jang, J.; Lee, S.; Kim, W.-G.; Oh, J.-W.; Wang, I.; Vial, J.-C.; Kyhm, K. Polarization Angle Dependence of Optical Gain in a Hybrid Structure of Alexa-Flour 488/M13 Bacteriophage. Nanomaterials 2021, 11, 3309. https://doi.org/10.3390/nano11123309
Kim I, Jang J, Lee S, Kim W-G, Oh J-W, Wang I, Vial J-C, Kyhm K. Polarization Angle Dependence of Optical Gain in a Hybrid Structure of Alexa-Flour 488/M13 Bacteriophage. Nanomaterials. 2021; 11(12):3309. https://doi.org/10.3390/nano11123309
Chicago/Turabian StyleKim, Inhong, Juyeong Jang, Seunghwan Lee, Won-Geun Kim, Jin-Woo Oh, Irène Wang, Jean-Claude Vial, and Kwangseuk Kyhm. 2021. "Polarization Angle Dependence of Optical Gain in a Hybrid Structure of Alexa-Flour 488/M13 Bacteriophage" Nanomaterials 11, no. 12: 3309. https://doi.org/10.3390/nano11123309
APA StyleKim, I., Jang, J., Lee, S., Kim, W.-G., Oh, J.-W., Wang, I., Vial, J.-C., & Kyhm, K. (2021). Polarization Angle Dependence of Optical Gain in a Hybrid Structure of Alexa-Flour 488/M13 Bacteriophage. Nanomaterials, 11(12), 3309. https://doi.org/10.3390/nano11123309