Functionalized Activated Carbon Derived from Palm Kernel Shells for the Treatment of Simulated Heavy Metal-Contaminated Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. Instrumentation
2.2. Pretreatment, Activation and Preparation of the Activated Carbon
2.3. Optimization of the Temperature, Holding Time and Functionalization
2.4. Batch Experiment Set-Up
2.4.1. pH Optimization
2.4.2. Adsorption Dosage Optimization
2.4.3. Optimization of the Metal Ion Concentrations
2.4.4. Optimization of the Contact Time
3. Results and Discussion
3.1. BET Surface Area Analysis
3.2. Adsorption–Desorption Isotherms
3.3. Raman Spectroscopic Analysis
3.4. X-ray Diffraction and Surface Morphology
3.5. Infrared Spectroscopy
3.6. Batch Studies
3.6.1. Effect of pH
3.6.2. Effect of the Adsorbent Dosage
3.6.3. Effect of the Metal Ion Concentration
3.6.4. Effect of Contact Time
3.7. Kinetics of the Metal Ion Adsorption
4. Adsorption Isotherms
5. Adsorption Capacity
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, Z.-Z.; Zhang, C.; Zeng, G.-M.; Tan, X.-F.; Wang, H.; Huang, D.-L.; Yang, K.-H.; Wei, J.-J.; Ma, C.; Nie, K. Design and engineering of layered double hydroxide based catalysts for water depollution by advanced oxidation processes: A review. J. Mater. Chem. A 2020, 8, 4141–4173. [Google Scholar] [CrossRef]
- Shi, X.; Ding, Z.; Wang, C.; Song, S.; Zhou, X. Effect of different cellulose polymers on the crystal growth of celecoxib polymorphs. J. Cryst. Growth 2020, 539, 125638. [Google Scholar] [CrossRef]
- Ali, H.; Khan, E.; Ilahi, I. Environmental Chemistry and Ecotoxicology of Hazardous Heavy Metals: Environmental Persistence, Toxicity, and Bioaccumulation. J. Chem. 2019, 2019, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Baby, R.; Saifullah, B.; Hussein, M.Z. Palm Kernel Shell as an effective adsorbent for the treatment of heavy metal contaminated water. Sci. Rep. 2019, 9, 18955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baby, R.; Saifullah, B.; Hussein, M.Z. Carbon Nanomaterials for the Treatment of Heavy Metal-Contaminated Water and Environmental Remediation. Nanoscale Res. Lett. 2019, 14, 341. [Google Scholar] [CrossRef] [Green Version]
- Baby Shaikh, R.; Saifullah, B.; Rehman, F.U. Greener Method for the Removal of Toxic Metal Ions from the Wastewater by Application of Agricultural Waste as an Adsorbent. Water 2018, 10, 1316. [Google Scholar] [CrossRef] [Green Version]
- Cooper, A.M.; Felix, D.; Alcantara, F.; Zaslavsky, I.; Work, A.; Watson, P.L.; Pezzoli, K.; Yu, Q.; Zhu, D.; Scavo, A.J.; et al. Monitoring and mitigation of toxic heavy metals and arsenic accumulation in food crops: A case study of an urban community garden. Plant Direct 2020, 4, e00198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Dib, F.I.; Mohamed, D.E.; El-Shamy, O.A.A.; Mishrif, M.R. Study the adsorption properties of magnetite nanoparticles in the presence of different synthesized surfactants for heavy metal ions removal. Egypt. J. Pet. 2020, 29, 1–7. [Google Scholar] [CrossRef]
- Li, Z.; Wang, L.; Meng, J.; Liu, X.; Xu, J.; Wang, F.; Brookes, P. Zeolite-supported nanoscale zero-valent iron: New findings on simultaneous adsorption of Cd(II), Pb(II), and As(III) in aqueous solution and soil. J. Hazard. Mater. 2018, 344, 1–11. [Google Scholar] [CrossRef]
- Liu, X.; Xu, X.; Dong, X.; Park, J. Competitive Adsorption of Heavy Metal Ions from Aqueous Solutions onto Activated Carbon and Agricultural Waste Materials. Pol. J. Environ. Stud. 2019, 29, 749–761. [Google Scholar] [CrossRef]
- Bansal, N. Industrial Development and Challenges of Water Pollution in Coastal Areas: The Case of Surat, India. IOP Conf. Ser. Earth Environ. Sci. 2018, 120, 012001. [Google Scholar] [CrossRef]
- Baruthio, F. Toxic effects of chromium and its compounds. Biol. Trace Element Res. 1992, 32, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Sankhla, M.S.; Kumar, R.; Prasad, L. Zinc Impurity in Drinking Water and Its Toxic Effect on Human Health. Indian Internet J. Forensic Med. Toxicol. 2019, 17, 4. [Google Scholar] [CrossRef]
- Ahmed, M.J. Application of agricultural based activated carbons by microwave and conventional activations for basic dye adsorption: Review. J. Environ. Chem. Eng. 2016, 4, 10. [Google Scholar] [CrossRef]
- Jang, S.; Song, S.; Lim, J.H.; Kim, H.S.; Phan, B.T.; Ha, K.-T.; Park, S.; Park, K.H. Application of Various Metal-Organic Frameworks (MOFs) as Catalysts for Air and Water Pollution Environmental Remediation. Catalysts 2020, 10, 195. [Google Scholar] [CrossRef] [Green Version]
- Katoch, A.; Goyal, N.; Gautam, S. Applications and advances in coordination cages: Metal-Organic Frameworks. Vacuum 2019, 167, 287–300. [Google Scholar] [CrossRef]
- Namasivayam, S.K.R.; Kumar, S.N.; Kamil, T.M.; Ravi, T. Biopolymer-Mediated Coating Influence on Wastewater Treatment Efficacy of Silver Nanoparticles Synthesized from Fungal Consortium. Natl. Acad. Sci. Lett. 2020, 43, 557–561. [Google Scholar] [CrossRef]
- Yuan, J.; Mohamadi, A. Study the adsorption process of 5-Fluorouracil drug on the pristine and doped graphdiyne nanosheet. J. Mol. Model. 2021, 27, 1–9. [Google Scholar] [CrossRef]
- Hamzezadeh, A.; Rashtbari, Y.; Afshin, S.; Morovati, M.; Vosoughi, M. Application of low-cost material for adsorption of dye from aqueous solution. Int. J. Environ. Anal. Chem. 2020, 2020, 1–16. [Google Scholar] [CrossRef]
- Vilardi, G.; Bubbico, R.; Di Palma, L.; Verdone, N. Nitrate green removal by fixed-bed columns packed with waste biomass: Modelling and friction parameter estimation. Chem. Eng. Res. Des. 2020, 154, 250–261. [Google Scholar] [CrossRef]
- Negara, D.N.K.P.; Nindhia, T.G.T.; Surata, I.W.; Hidajat, F.; Sucipta, M. Textural characteristics of activated carbons derived from tabah bamboo manufactured by using H3PO4 chemical activation. Mater. Today Proc. 2020, 22, 148–155. [Google Scholar] [CrossRef]
- Ekpete, O.A.; Marcus, A.C.; Osi, V. Preparation and Characterization of Activated Carbon Obtained from Plantain (Musa paradisiaca) Fruit Stem. J. Chem. 2017, 2017, 8635615. [Google Scholar] [CrossRef] [Green Version]
- Lu, Z.; Sun, W.; Li, C.; Cao, W.; Jing, Z.; Li, S.; Ao, X.; Chen, C.; Liu, S. Effect of granular activated carbon pore-size distribution on biological activated carbon filter performance. Water Res. 2020, 177, 115768. [Google Scholar] [CrossRef]
- Lei, B.; Xie, H.; Chen, S.; Liu, B.; Zhou, G. Control of pore structure and surface chemistry of activated carbon derived from waste Zanthoxylum bungeanum branches for toluene removal in air. Environ. Sci. Pollut. Res. 2020, 27, 27072–27092. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Rosas, R.; García-Mateos, F.J.; Gutiérrez, M.d.C.; Rodríguez-Mirasol, J.; Cordero, T. About the Role of Porosity and Surface Chemistry of Phosphorus-Containing Activated Carbons in the Removal of Micropollutants. Front. Mater. 2019, 6. [Google Scholar] [CrossRef] [Green Version]
- Khamkeaw, A.; Asavamongkolkul, T.; Perngyai, T.; Jongsomjit, B.; Phisalaphong, M. Interconnected Micro, Meso, and Macro Porous Activated Carbon from Bacterial Nanocellulose for Superior Adsorption Properties and Effective Catalytic Performance. Molecules 2020, 25, 4063. [Google Scholar] [CrossRef] [PubMed]
- Baby, R.; Hussein, M.Z. Ecofriendly Approach for Treatment of Heavy-Metal-Contaminated Water Using Activated Carbon of Kernel Shell of Oil Palm. Materials 2020, 13, 2627. [Google Scholar] [CrossRef]
- Nicholas, A.F.; Hussein, M.Z.; Zainal, Z.; Khadiran, T. Palm Kernel Shell Activated Carbon as an Inorganic Framework for Shape-Stabilized Phase Change Material. Nanomaterials 2018, 8, 689. [Google Scholar] [CrossRef] [Green Version]
- Lazzarini, A.; Piovano, A.; Pellegrini, R.; Agostini, G.; Rudić, S.; Lamberti, C.; Groppo, E. Graphitization of Activated Carbons: A Molecular-level Investigation by INS, DRIFT, XRD and Raman Techniques. Phys. Procedia 2016, 85, 20–26. [Google Scholar] [CrossRef]
- Chen, C.-J.; Zhu, W.; Chao, J.-H.; Shang, A.; Lee, Y.G.; Liu, R.; Yin, S.; Dubinskii, M.; Hoffman, R.C. Study of thermal and spatial dependent electric field-induced phase transition in relaxor ferroelectric crystals using Raman spectroscopy. J. Alloys Compd. 2019, 804, 35–41. [Google Scholar] [CrossRef]
- Murillo Pulgarín, J.A.; Alañón Molina, A.; Jiménez García, E.; García Gómez, L. A sensitive resonance Rayleigh scattering sensor for dopamine in urine using upconversion nanoparticles. J. Raman Spectrosc. 2020, 51, 406–413. [Google Scholar] [CrossRef]
- Bock, P.; Nousiainen, P.; Elder, T.; Blaukopf, M.; Amer, H.; Zirbs, R.; Potthast, A.; Gierlinger, N. Infrared and Raman spectra of lignin substructures: Dibenzodioxocin. J. Raman Spectrosc. 2020, 51, 422–431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiley’s Solomons, Fryhle & Synder’s Organic Chemistry, 11th ed.; Yee, J. (Ed.) Wiley: Hoboken, NJ, USA, 2018; 1139p. [Google Scholar]
- Donald LPavia, G.M.L.; Kriz, G.S.; Vyvyan, J.R. Inroduction to Spectroscopy, 4th ed.; Brooks/Cole Cengage Learning: Boston, MA, USA, 2009. [Google Scholar]
- Egbosiuba, T.C.; Abdulkareem, A.S.; Kovo, A.S.; Afolabi, E.A.; Tijani, J.O.; Bankole, M.T.; Bo, S.; Roos, W.D. Adsorption of Cr(VI), Ni(II), Fe(II) and Cd(II) ions by KIAgNPs decorated MWCNTs in a batch and fixed bed process. Sci. Rep. 2021, 11, 75. [Google Scholar] [CrossRef]
- Ullah, M.; Nazir, R.; Khan, M.; Khan, W.; Shah, M.; Afridi, S.G.; Zada, A. The effective removal of heavy metals from water by activated carbon adsorbents of Albizia lebbeck and Melia azedarach seed shells. Soil Water Res. 2019, 15, 8. [Google Scholar] [CrossRef]
- Shahrokhi-Shahraki, R.; Benally, C.; El-Din, M.G.; Park, J. High efficiency removal of heavy metals using tire-derived activated carbon vs commercial activated carbon: Insights into the adsorption mechanisms. Chemosphere 2021, 264, 128455. [Google Scholar] [CrossRef] [PubMed]
- Zaini, M.A.A.; Zhi, L.L.; Hui, T.S.; Amano, Y.; Machida, M. Effects of physical activation on pore textures and heavy metals removal of fiber-based activated carbons. Mater. Today Proc. 2021, 39, 917–921. [Google Scholar] [CrossRef]
- Manirethan, V.; Balakrishnan, R.M. Batch and continuous studies on the removal of heavy metals using biosynthesized melanin impregnated activated carbon. Environ. Technol. Innov. 2020, 20, 101085. [Google Scholar] [CrossRef]
- Li, J.; Xing, X.; Li, J.; Shi, M.; Lin, A.; Xu, C.; Zheng, J.; Li, R. Preparation of thiol-functionalized activated carbon from sewage sludge with coal blending for heavy metal removal from contaminated water. Environ. Pollut. 2018, 234, 677–683. [Google Scholar] [CrossRef]
- Zhong, Q.; Jin, M. Nanoscalar Structures of Spray-Dried Zein Microcapsules and in Vitro Release Kinetics of the Encapsulated Lysozyme As Affected by Formulations. J. Agric. Food Chem. 2009, 57, 3886–3894. [Google Scholar] [CrossRef]
- McKay, G. The adsorption of dyestuffs from aqueous solutions using the activated carbon adsorption model to determine breakthrough curves. Chem. Eng. J. 1984, 28, 95–104. [Google Scholar] [CrossRef]
- Ammari, A.; Schroen, K. Flavor Retention and Release from Beverages: A Kinetic and Thermodynamic Perspective. J. Agric. Food Chem. 2018, 66, 9869–9881. [Google Scholar] [CrossRef] [PubMed]
- Redman, Z.C.; Tran, K.H.; Parikh, S.J.; Tjeerdema, R.S. Influence of pH and Divalent Metals Relevant to California Rice Fields on the Hydroxide-Mediated Hydrolysis of the Insecticide Chlorantraniliprole. J. Agric. Food Chem. 2019, 67, 12402–12407. [Google Scholar] [CrossRef] [PubMed]
Assignment | FAC | FAC-Cr6+ | FAC-Pb2+ | FAC-Cd2+ | FAC-Zn2+ | Reference |
---|---|---|---|---|---|---|
V (C-H) | 2815 | 2878 | 2793 | 2844 | 2830 | [27,28,33] |
C=O | 1707 | 1720 | 1715 | 1725 | 1725 | [27,28,33] |
N=O | 1581 | 1590 | 1587 | 1588 | 1590 | [27,28,33] |
1520 | 1527 | 1525 | 1528 | 1525 | [33,34] | |
N-O | 1328 | 1331 | 1327 | 1327 | 1336 | [33,34] |
C-N | 1250 | 1250 | 1252 | 1250 | 1256 | [33,34] |
C-C | 1162 | 1182 | 1177 | 1173 | 1182 | [27,33,34] |
1020 | 1026 | 1023 | 1020 | 1030 | ||
911 | 899 | 900 | 905 | 908 | ||
837 | 819 | 823 | 818 | 832 | ||
CH2 (rocking) | 735 | 733 | 730 | 735 | 734 |
Kinetic Model | Parameters |
---|---|
Pseudo-first-order | qe = adsorption equilibrium qt = adsorption at time t k1 = rate constant for pseudo-first-order ln = natural log |
Pseudo-second-order | qe = adsorption equilibrium qt = Adsorption at time t k2 = Rate constant for Psudo second Order |
Parabolic-Diffusion | Mo = qe Mt = (qe − qt)/qe t0.5 = at half time K = the adsorption constant |
Metal Ion | Langmuir Isotherm | Freundlich Isotherm | ||||
---|---|---|---|---|---|---|
qe (mg/g) | b (L/mg) | R2 | Kf | nf | R2 | |
Cd2+ | 38 | 0.04 | 0.82 | 0.95 | 0.45 | 0.96 |
Pb2+ | 40 | 0.03 | 0.84 | 0.32 | 1.04 | 0.97 |
Zn2+ | 37 | 0.04 | 0.93 | 0.29 | 1.60 | 0.96 |
Cr6+ | 40 | 0.04 | 0.85 | 0.64 | 0.71 | 0.96 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baby, R.; Hussein, M.Z.; Zainal, Z.; Abdullah, A.H. Functionalized Activated Carbon Derived from Palm Kernel Shells for the Treatment of Simulated Heavy Metal-Contaminated Water. Nanomaterials 2021, 11, 3133. https://doi.org/10.3390/nano11113133
Baby R, Hussein MZ, Zainal Z, Abdullah AH. Functionalized Activated Carbon Derived from Palm Kernel Shells for the Treatment of Simulated Heavy Metal-Contaminated Water. Nanomaterials. 2021; 11(11):3133. https://doi.org/10.3390/nano11113133
Chicago/Turabian StyleBaby, Rabia, Mohd Zobir Hussein, Zulkarnain Zainal, and Abdul Halim Abdullah. 2021. "Functionalized Activated Carbon Derived from Palm Kernel Shells for the Treatment of Simulated Heavy Metal-Contaminated Water" Nanomaterials 11, no. 11: 3133. https://doi.org/10.3390/nano11113133
APA StyleBaby, R., Hussein, M. Z., Zainal, Z., & Abdullah, A. H. (2021). Functionalized Activated Carbon Derived from Palm Kernel Shells for the Treatment of Simulated Heavy Metal-Contaminated Water. Nanomaterials, 11(11), 3133. https://doi.org/10.3390/nano11113133