Fully Vacuum-Sealed Diode-Structure Addressable ZnO Nanowire Cold Cathode Flat-Panel X-ray Source: Fabrication and Imaging Application
Abstract
:1. Introduction
2. Device Structure and Experimental Details
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shepp, L.A.; Kruskal, J.B. Computerized tomography: The new medical X-ray technology. Am. Math. Mon. 1978, 85, 420–439. [Google Scholar] [CrossRef]
- Harding, G.; Fleckenstein, H.; Kosciesza, D.; Olesinski, S.; Strecker, H.; Theedt, T.; Zienert, G. X-ray diffraction imaging with the Multiple Inverse Fan Beam topology: Principles, performance and potential for security screening. Appl. Radiat. Isot. 2012, 70, 1228–1237. [Google Scholar] [CrossRef] [PubMed]
- Hanke, R.; Fuchs, T.; Uhlmann, N. X-ray based methods for non-destructive testing and material characterization. Nucl. Instrum. Methods Phys. Res. Sect. A 2008, 591, 14–18. [Google Scholar] [CrossRef]
- Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58. [Google Scholar] [CrossRef]
- Chernozatonskii, L.; Gulyaev, Y.V.; Kosakovskaja, Z.J.; Sinitsyn, N.; Torgashov, G.; Zakharchenko, Y.F.; Fedorov, E.; Val’chuk, V. Electron field emission from nanofilament carbon films. Chem. Phys. Lett. 1995, 233, 63–68. [Google Scholar] [CrossRef]
- Xun, T.; Zhao, X.L.; Li, G.Y.; Hu, T.J.; Yang, J.; Yang, H.W.; Zhang, J.D. High-current, pulsed electron beam sources with SiC nanowire cathodes. Vacuum 2016, 125, 81–84. [Google Scholar] [CrossRef]
- Jyouzuka, A.; Nakamura, T.; Onizuka, Y.; Mimura, H.; Matsumoto, T.; Kume, H. Emission characteristics and application of graphite nanospine cathode. J. Vac. Sci. Technol. B Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 2010, 28, C2C31–C2C36. [Google Scholar] [CrossRef]
- Lee, S.H.; Han, J.S.; Jeon, J.; Go, H.B.; Lee, C.J.; Song, Y.H. CNT field emitter based high performance X-ray source. In Proceedings of the 31st International Vacuum Nanoelectronics Conference (IVNC), Kyoto, Japan, 9–13 July 2018. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, S.; He, K.; Wang, L.; Sui, F.; Hong, X.; Li, W.; Li, N.; Jia, M.; Li, W.; et al. High-performance X-ray source based on graphene oxide-coated Cu2S nanowires grown on copper film. Nanotechnology 2020, 31, 485202. [Google Scholar] [CrossRef]
- Sugie, H.; Tanemura, M.; Filip, V.; Iwata, K.; Takahashi, K.; Okuyama, F. Carbon nanotubes as electron source in an X-ray tube. Appl. Phys. Lett. 2001, 78, 2578–2580. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhang, J.; Lee, Y.; Gao, B.; Dike, S.; Lin, W.; Lu, J.; Zhou, O. Dynamic radiography using a carbon-nanotube-based field-emission X-ray source. Rev. Sci. Instrum. 2004, 75, 3264–3267. [Google Scholar] [CrossRef]
- Zhang, J.; Cheng, Y.; Lee, Y.; Gao, B.; Qiu, Q.; Lin, W.; Lalush, D.; Lu, J.; Zhou, O. A nanotube-based field emission X-ray source for microcomputed tomography. Rev. Sci. Instrum. 2005, 76, 094301. [Google Scholar] [CrossRef]
- Sun, Y.; Jaffray, D.A.; Yeow, J.T. The design and fabrication of carbon-nanotube-based field emission X-ray cathode with ballast resistor. IEEE Trans. Electron Devices 2012, 60, 464–470. [Google Scholar] [CrossRef]
- Kang, J.-T.; Lee, H.-R.; Jeong, J.-W.; Kim, J.-W.; Park, S.; Shin, M.-S.; Yeon, J.-H.; Jeon, H.; Kim, S.-H.; Choi, Y.C.; et al. Fast and stable operation of carbon nanotube field-emission X-ray tubes achieved using an advanced active-current control. IEEE Electron Device Lett. 2015, 36, 1209–1211. [Google Scholar] [CrossRef]
- Matsumoto, T.; Mimura, H. Point X-ray source using graphite nanofibers and its application to X-ray radiography. Appl. Phys. Lett. 2003, 82, 1637–1639. [Google Scholar] [CrossRef]
- Liu, Z.; Yang, G.; Lee, Y.Z.; Bordelon, D.; Lu, J.; Zhou, O. Carbon nanotube based microfocus field emission X-ray source for microcomputed tomography. Appl. Phys. Lett. 2006, 89, 103111. [Google Scholar] [CrossRef]
- Yabushita, R.; Hata, K. Newly developed high spatial resolution X-ray microscope equipped with carbon nanotube field emission cathode. Surf. Interface Anal. 2008, 40, 1664–1668. [Google Scholar] [CrossRef]
- Park, S.; Kang, J.-T.; Jeong, J.-W.; Kim, J.-W.; Yun, K.N.; Jeon, H.; Go, E.; Lee, J.-W.; Ahn, Y.; Yeon, J.-H.; et al. A fully closed nano-focus X-ray source with carbon nanotube field emitters. IEEE Electron Device Lett. 2018, 39, 1936–1939. [Google Scholar] [CrossRef]
- Li, X.; Zhou, J.; Wu, Q.; Liu, M.; Zhou, R.; Chen, Z. Fast microfocus X-ray tube based on carbon nanotube array. J. Vac. Sci. Technol. B Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 2019, 37, 051203. [Google Scholar] [CrossRef]
- Senda, S.; Sakai, Y.; Mizuta, Y.; Kita, S.; Okuyama, F. Super-miniature X-ray tube. Appl. Phys. Lett. 2004, 85, 5679–5681. [Google Scholar] [CrossRef]
- Musatov, A.; Gulyaev, Y.V.; Izrael’yants, K.; Kukovitskii, E.; Kiselev, N.; Maslennikov, O.Y.; Guzilov, I.; Ormont, A.; Chirkova, E. A compact X-ray tube with a field emitter based on carbon nanotubes. J. Commun. Technol. Electron. 2007, 52, 714–716. [Google Scholar] [CrossRef]
- Heo, S.H.; Kim, H.J.; Ha, J.M.; Cho, S.O. A vacuum-sealed miniature X-ray tube based on carbon nanotube field emitters. Nanoscale Res. Lett. 2012, 7, 258. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.-W.; Kim, J.-W.; Kang, J.-T.; Choi, S.; Ahn, S.; Song, Y.-H. A vacuum-sealed compact X-ray tube based on focused carbon nanotube field-emission electrons. Nanotechnology 2013, 24, 085201. [Google Scholar] [CrossRef] [PubMed]
- Alivov, Y.; Molloi, S. WE-E-204B-04: TiO2 Nanotube Field Emitter as a New Cold Cathode for X-ray Generation. Med. Phys. 2010, 37, 3438. [Google Scholar] [CrossRef]
- Lin, Z.; Xie, P.; Zhan, R.; Chen, D.; She, J.; Deng, S.; Xu, N.; Chen, J. Defect-enhanced field emission from WO3 nanowires for flat-panel X-ray sources. ACS Appl. Nano Mater. 2019, 2, 5206–5213. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, G.; Cheng, Y.; Gao, B.; Qiu, Q.; Lee, Y.; Lu, J.; Zhou, O. Stationary scanning X-ray source based on carbon nanotube field emitters. Appl. Phys. Lett. 2005, 86, 184104. [Google Scholar] [CrossRef] [Green Version]
- Sprenger, F.; Calderon, X.; Gidcumb, E.; Lu, J.; Qian, X.; Spronk, D.; Tucker, A.; Yang, G.; Zhou, O. Stationary digital breast tomosynthesis with distributed field emission X-ray tube. In Proceedings of the Medical Imaging 2011: Physics of Medical Imaging, Lake Buena Vista, FL, USA, 12–17 February 2011. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Yu, S.; Liang, X.; Zhu, Y.; Xie, Y. A novel design of ultrafast micro-CT system based on carbon nanotube: A feasibility study in phantom. Phys. Med. 2016, 32, 1302–1307. [Google Scholar] [CrossRef]
- Li, Y.; Duan, J.; Zhi, S.; Cai, J.; Mou, X. Multi-energy CT image restoration algorithm based on the flat-panel X-ray source. In Proceedings of the Fourth International Symposium on Image Computing and Digital Medicine, Xi’an, China, 24–26 August 2019. [Google Scholar] [CrossRef]
- Duan, Y.; Cheng, H.; Wang, K.; Mou, X. A Novel Stationary CT Scheme Based on High-Density X-ray Sources Device. IEEE Access 2020, 8, 112910–112921. [Google Scholar] [CrossRef]
- Wang, S.; Calderon, X.; Peng, R.; Schreiber, E.C.; Zhou, O.; Chang, S. A carbon nanotube field emission multipixel X-ray array source for microradiotherapy application. Appl. Phys. Lett. 2011, 98, 213701. [Google Scholar] [CrossRef] [Green Version]
- Grant, E.J.; Posada, C.M.; Castano, C.H.; Lee, H.K. A Monte Carlo simulation study of a flat-panel X-ray source. Appl. Radiat. Isot. 2012, 70, 1658–1666. [Google Scholar] [CrossRef]
- Posada, C.M.; Grant, E.J.; Divan, R.; Sumant, A.V.; Rosenmann, D.; Stan, L.; Lee, H.K.; Castano, C.H. Nitrogen incorporated ultrananocrystalline diamond based field emitter array for a flat-panel X-ray source. J. Appl. Phys. 2014, 115, 134506. [Google Scholar] [CrossRef]
- Travish, G.; Rangel, F.J.; Evans, M.A.; Hollister, B.; Schmiedehausen, K. Addressable flat-panel X-ray sources for medical, security, and industrial applications. In Proceedings of the Advances in X-ray/EUV Optics and Components VII, San Diego, CA, USA, 12–16 August 2012. [Google Scholar] [CrossRef]
- Chen, D.; Song, X.; Zhang, Z.; Li, Z.; She, J.; Deng, S.; Xu, N.; Chen, J. Transmission type flat-panel X-ray source using ZnO nanowire field emitters. Appl. Phys. Lett. 2015, 107, 243105. [Google Scholar] [CrossRef]
- Chen, D.K.; Xu, Y.; Zhang, G.F.; Zhang, Z.P.; She, J.C.; Deng, S.Z.; Xu, N.S.; Chen, J. A double-sided radiating flat-panel X-ray source using ZnO nanowire field emitters. Vacuum 2017, 144, 266–271. [Google Scholar] [CrossRef]
- Wang, L.; Xu, Y.; Cao, X.; Huang, J.; Deng, S.; Xu, N.; Chen, J. Diagonal 4-in ZnO Nanowire Cold Cathode Flat-Panel X-ray Source: Preparation and Projection Imaging Properties. IEEE Trans. Nucl. Sci. 2021, 68, 338–345. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, Y.; Zhang, G.; Zhan, R.; She, J.; Deng, S.; Chen, J. High Current Field Emission from Large-Area Indium Doped ZnO Nanowire Field Emitter Arrays for Flat-Panel X-ray Source Application. Nanomaterials 2021, 11, 240. [Google Scholar] [CrossRef]
- Cao, X.; Zhang, G.; Zhao, Y.; Xu, Y.; She, J.; Deng, S.; Xu, N.; Chen, J. Fully vacuum-sealed addressable nanowire cold cathode flat-panel X-ray source. Appl. Phys. Lett. 2021, 119, 053501. [Google Scholar] [CrossRef]
- Pang, L.; Long, T.; He, K.; Huang, Y.; Zhang, Q. A compact series-connected SiC MOSFETs module and its application in high voltage nanosecond pulse generator. IEEE Trans. Ind. Electron. 2019, 66, 9238–9247. [Google Scholar] [CrossRef]
- Fowler, R.H.; Nordheim, L. Electron emission in intense electric fields. Proc. R. Soc. Lond. A 1928, 119, 173–181. [Google Scholar] [CrossRef]
- Matsukawa, T.; Kanemaru, S.; Tokunaga, K.; Itoh, J. Effects of conduction type on field-electron emission from single Si emitter tips with extraction gate. J. Vac. Sci. Technol. B Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 2000, 18, 1111–1114. [Google Scholar] [CrossRef]
- Zhao, C.; Li, Y.; Zhou, J.; Li, L.; Deng, S.; Xu, N.; Chen, J. Large-scale synthesis of bicrystalline ZnO nanowire arrays by thermal oxidation of zinc film: Growth mechanism and high-performance field emission. Cryst. Growth Des. 2013, 13, 2897–2905. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, Y.; Zheng, K.; She, J.; Deng, S.; Xu, N.; Chen, J. Fabrication of large-area ZnO nanowire field emitter arrays by thermal oxidation for high-current application. Appl. Surf. Sci. 2019, 484, 966–974. [Google Scholar] [CrossRef]
- Gureyev, T.E.; Nesterets, Y.I.; Stevenson, A.W.; Miller, P.R.; Pogany, A.; Wilkins, S.W. Some simple rules for contrast, signal-to-noise and resolution in in-line X-ray phase-contrast imaging. Opt. Express 2008, 16, 3223–3241. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Zhang, G.; Xu, Y.; Chen, Y.; Deng, S.; Chen, J. Fully Vacuum-Sealed Diode-Structure Addressable ZnO Nanowire Cold Cathode Flat-Panel X-ray Source: Fabrication and Imaging Application. Nanomaterials 2021, 11, 3115. https://doi.org/10.3390/nano11113115
Wang C, Zhang G, Xu Y, Chen Y, Deng S, Chen J. Fully Vacuum-Sealed Diode-Structure Addressable ZnO Nanowire Cold Cathode Flat-Panel X-ray Source: Fabrication and Imaging Application. Nanomaterials. 2021; 11(11):3115. https://doi.org/10.3390/nano11113115
Chicago/Turabian StyleWang, Chengyun, Guofu Zhang, Yuan Xu, Yicong Chen, Shaozhi Deng, and Jun Chen. 2021. "Fully Vacuum-Sealed Diode-Structure Addressable ZnO Nanowire Cold Cathode Flat-Panel X-ray Source: Fabrication and Imaging Application" Nanomaterials 11, no. 11: 3115. https://doi.org/10.3390/nano11113115
APA StyleWang, C., Zhang, G., Xu, Y., Chen, Y., Deng, S., & Chen, J. (2021). Fully Vacuum-Sealed Diode-Structure Addressable ZnO Nanowire Cold Cathode Flat-Panel X-ray Source: Fabrication and Imaging Application. Nanomaterials, 11(11), 3115. https://doi.org/10.3390/nano11113115