Facile Synthesis, Static, and Dynamic Magnetic Characteristics of Varying Size Double-Surfactant-Coated Mesoscopic Magnetic Nanoparticles Dispersed Stable Aqueous Magnetic Fluids
Abstract
:1. Introduction
2. Synthesis and Characterization of AMF Samples
3. Results and Analysis
3.1. Stability Analysis of AMFs Using Magneto-Rheometer
3.2. Structural Analysis of Aqueous Magnetic Fluids Using X-ray Diffraction Method
3.3. Size Distribution of Aqueous Magnetic Fluids Using Transmission Electron Microscopy
3.4. Size Distribution Using Small-Angle X-ray Scattering Measurement
3.5. DC Magnetic Measurement of the Double-Surfactant-Coated Fe3O4-Based Aqueous Magnetic Fluid Sample Using Vibrating Sample Magnetometer
3.6. Room Temperature Spin Dynamics Investigation of Fe3O4-MNPs-Dispersed AMF
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sheoran, N.; Kumar, V.; Kumar, A. Comparative study of structural, magnetic and dielectric properties of CoFe2O4 @ BiFeO3 and BiFeO3@ CoFe2O4 core-shell nanocomposites. J. Magn. Magn. Mater. 2019, 475, 30–37. [Google Scholar] [CrossRef]
- Kumar, P.; Sharma, V.; Singh, J.P.; Kumar, A.; Chahal, S.; Sachdev, K.; Chae, K.H.; Kumar, A.; Asokan, K.; Kanjilal, D. Investigations on magnetic and electrical properties of Zn doped Fe2O3 nanoparticles and their correlation with local electronic structures. J. Magn. Magn. Mater. 2019, 489, 165398. [Google Scholar] [CrossRef]
- Mizuguchi, M.; Nakatsuji, S. Energy-harvesting materials based on the anomalous Nernst effect. Sci. Technol. Adv. Mater. 2019, 20, 262–275. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Pathak, S.; Singh, A.; Kuldeep Khanduri, H.; Wang, X.; Basheed, G.A.; Pant, R.P. Optimization of cobalt concentration for improved magnetic characteristics and stability of CoxFe3-xO4 mixed ferrite nanomagnetic fluids. Mater. Chem. Phys. 2021, 265, 124476. [Google Scholar] [CrossRef]
- Victory, M.; Pant, R.P.; Phanjoubam, S. Synthesis and characterization of oleic acid coated Fe–Mn ferrite based ferrofluid. Mater. Chem. Phys. 2020, 240, 122210. [Google Scholar] [CrossRef]
- Joshi, L.M.; Verma, A.; Rout, P.K.; Kaur, M.; Gupta, A.; Budhani, R.C. The 2D–3D crossover and anisotropy of upper critical fields in Nb and NbN superconducting thin films. Phys. C Supercond. Appl. 2017, 542, 12–17. [Google Scholar] [CrossRef]
- Phor, L.; Chahal, S.; Kumar, V. Zn2+ substituted superparamagnetic MgFe2O4 spinel-ferrites: Investigations on structural and spin-interactions. J. Adv. Ceram. 2020, 9, 576–587. [Google Scholar] [CrossRef]
- Gbadamasi, S.; Mohiuddin, M.; Krishnamurthi, V.; Verma, R.; Khan, M.W.; Pathak, S.; Kalantar-Zadeh, K.; Mahmood, N. Interface chemistry of two-dimensional heterostructures—Fundamentals to applications. Chem. Soc. Rev. 2021, 50, 4684–4729. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Alekhya, V.V.; Pathak, S.; Jain, K.; Tomar, P.; Basheed, G.A.; Maurya, K.K.; Pant, R.P. A novel experimental approach for direct observation of magnetic field induced structuration in ferrofluid. J. Magn. Magn. Mater. 2021, 534, 168024. [Google Scholar] [CrossRef]
- Chahal, S.; Kumar, A.; Kumar, P. Zn Doped α-Fe2O3: An Efficient Material for UV Driven Photocatalysis and Electrical Conductivity. Crystals 2020, 10, 273. [Google Scholar] [CrossRef] [Green Version]
- Basheed, G.A.; Jain, K.; Pathak, S.; Pant, R.P. Dipolar Interaction and Magneto-Viscoelasticity in Nanomagnetic Fluid. J. Nanosci. Nanotechnol. 2018, 18, 2746–2751. [Google Scholar] [CrossRef] [PubMed]
- Mousavi, N.S.S.; Khapli, S.D.; Kumar, S. Direct observations of field-induced assemblies in magnetite ferrofluids. J. Appl. Phys. 2015, 117, 103907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pathak, S.; Jain, K.; Kumar, V.; Pant, R.P. Magnetic Fluid Based High Precision Temperature Sensor. IEEE Sens. J. 2017, 17, 2670–2675. [Google Scholar] [CrossRef]
- Phor, L.; Kumar, V. Self-cooling by ferrofluid in magnetic field. SN Appl. Sci. 2019, 1, 1696. [Google Scholar] [CrossRef] [Green Version]
- Jain, K.; Pathak, S.; Pant, R.P. Enhanced magnetic properties in ordered oriented ferrofibres. RSC Adv. 2016, 6, 70943–70946. [Google Scholar] [CrossRef]
- Jain, K.; Pathak, S.; Kumar, P.; Singh, A.; Pant, R.P. Dynamic magneto-optical inversion in magnetic fluid using NanoMOKE. J. Magn. Magn. Mater. 2019, 475, 782–786. [Google Scholar] [CrossRef]
- Jahan, N.; Pathak, S.; Jain, K.; Pant, R.P. Enchancment in viscoelastic properties of flake-shaped iron based magnetorheological fluid using ferrofluid. Colloids Surf. A Physicochem. Eng. Asp. 2017, 529, 88–94. [Google Scholar] [CrossRef]
- Pathak, S.; Jain, K.; Pant, R.P. Improved magneto-viscoelasticity of cross-linked PVA hydrogels using magnetic nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 2018, 539, 273–279. [Google Scholar] [CrossRef]
- Pathak, S.; Verma, R.; Singhal, S.; Chaturvedi, R.; Kumar, P.; Sharma, P.; Pant, R.P.; Wang, X. Spin dynamics investigations of multifunctional ambient scalable Fe3O4 surface decorated ZnO magnetic nanocomposite using FMR. Sci. Rep. 2021, 11, 3799. [Google Scholar] [CrossRef]
- Pathak, S.; Jain, K.; Kumar, P.; Wang, X.; Pant, R.P. Improved thermal performance of annular fin-shell tube storage system using magnetic fluid. Appl. Energy 2019, 239, 1524–1535. [Google Scholar] [CrossRef]
- Mishra, A.; Pathak, S.; Kumar, P.; Singh, A.; Jain, K.; Chaturvedi, R.; Singh, D.; Basheed, G.A.; Pant, R.P. Measurement of Static and Dynamic Magneto-Viscoelasticity in Facile Varying pH Synthesized CoFe2O4-Based Magnetic Fluid. IEEE Trans. Magn. 2019, 55, 1–7. [Google Scholar] [CrossRef]
- Mirkhani, N.; Christiansen, M.G.; Schuerle, S. Living, Self-Replicating Ferrofluids for Fluidic Transport. Adv. Funct. Mater. 2020, 30, 2003912. [Google Scholar] [CrossRef]
- Genc, S.; Derin, B. Synthesis and rheology of ferrofluids: A review. Curr. Opin. Chem. Eng. 2014, 3, 118–124. [Google Scholar] [CrossRef]
- Radha, S.; Mohan, S.; Pai, C. Diffraction patterns in ferrofluids: Effect of magnetic field and gravity. Phys. B Condens. Matter 2014, 448, 341–345. [Google Scholar] [CrossRef]
- Clark, N.A. Ferromagnetic ferrofluids. Nature 2013, 504, 229–230. [Google Scholar] [CrossRef]
- Fang, A. Generic theory of the dynamic magnetic response of ferrofluids. Soft Matter 2020, 16, 10928–10934. [Google Scholar] [CrossRef] [PubMed]
- Petrenko, V.I.; Artykulnyi, O.P.; Bulavin, L.A.; Almásy, L.; Garamus, V.M.; Ivankov, O.I.; Grigoryeva, N.A.; Vekas, L.; Kopcansky, P.; Avdeev, M.V. On the impact of surfactant type on the structure of aqueous ferrofluids. Colloids Surf. A Physicochem. Eng. Asp. 2018, 541, 222–226. [Google Scholar] [CrossRef]
- Verma, R.; Pathak, S.; Srivastava, A.K.; Prawer, S.; Tomljenovic-Hanic, S. ZnO nanomaterials: Green synthesis, toxicity evaluation and new insights in biomedical applications. J. Alloys Compd. 2021, 876, 160175. [Google Scholar] [CrossRef]
- Sharifianjazi, F.; Moradi, M.; Parvin, N.; Nemati, A.; Jafari Rad, A.; Sheysi, N.; Abouchenari, A.; Mohammadi, A.; Karbasi, S.; Ahmadi, Z.; et al. Magnetic CoFe2O4 nanoparticles doped with metal ions: A review. Ceram. Int. 2020, 46, 18391–18412. [Google Scholar] [CrossRef]
- Pathak, S.; Zhang, R.; Bun, K.; Zhang, H.; Gayen, B.; Wang, X. Development of a novel wind to electrical energy converter of passive ferrofluid levitation through its parameter modelling and optimization. Sustain. Energy Technol. Assess. 2021, 48, 101641. [Google Scholar] [CrossRef]
- Mallick, A.; Mahapatra, A.S.; Mitra, A.; Greneche, J.M.; Ningthoujam, R.S.; Chakrabarti, P.K. Magnetic properties and bio-medical applications in hyperthermia of lithium zinc ferrite nanoparticles integrated with reduced graphene oxide. J. Appl. Phys. 2018, 123, 055103. [Google Scholar] [CrossRef]
- Shokrollahi, H. A review of the magnetic properties, synthesis methods and applications of maghemite. J. Magn. Magn. Mater. 2017, 426, 74–81. [Google Scholar] [CrossRef]
- Verma, R.; Gangwar, J.; Srivastava, A.K. Multiphase TiO2 nanostructures: A review of efficient synthesis, growth mechanism, probing capabilities, and applications in bio-safety and health. RSC Adv. 2017, 7, 44199–44224. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Khalid, A.; Verma, R.; Abraham, A.; Qazi, F.; Dong, X.; Liang, G.; Tomljenovic-Hanic, S. Silk Fibroin Coated Magnesium Oxide Nanospheres: A Biocompatible and Biodegradable Tool for Noninvasive Bioimaging Applications. Nanomaterials 2021, 11, 695. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Miao, Y.; Li, G.; Su, M.; Chen, X.; Zhang, H.; Zhang, Y.; Jiao, W.; He, Y.; Yi, J.; et al. Engineering ferrite nanoparticles with enhanced magnetic response for advanced biomedical applications. Mater. Today Adv. 2020, 8, 100119. [Google Scholar] [CrossRef]
- Hergt, R.; Dutz, S. Magnetic particle hyperthermia—Biophysical limitations of a visionary tumour therapy. J. Magn. Magn. Mater. 2007, 311, 187–192. [Google Scholar] [CrossRef]
- László, J.; Reiczigel, J.; Székely, L.; Gasparics, A.; Bogár, I.; Bors, L.; Rácz, B.; Gyires, K. Optimization of static magnetic field parameters improves analgesic effect in mice. Bioelectromagnetics 2007, 28, 615–627. [Google Scholar] [CrossRef] [PubMed]
- Koo, O.M.; Rubinstein, I.; Onyuksel, H. Role of nanotechnology in targeted drug delivery and imaging: A concise review. Nanomed. Nanotechnol. Biol. Med. 2005, 1, 193–212. [Google Scholar] [CrossRef]
- Pathak, S. Optimization of Magneto-Viscoelasticity of Magnetic Fluids and Development of Its Applications in Thermal and Mechanical Systems; RMIT University: Melbourne, Australia, 2020. [Google Scholar]
- Cao, Q.; Zhang, Z.; Yu, J.; Di, N.; Zang, G.; Li, D. Research on the effect of different surfactants on fluidity of water-based magnetic fluid. Smart Mater. Struct. 2020, 29, 035028. [Google Scholar] [CrossRef]
- Dai, Z.; Huang, Y.; Yang, H.; Yao, P.; Yang, Y.; Ni, C. Preparation and Biological Applications of Graphene Oxide Functionalized Water-Based Magnetic Fluids. J. Nanosci. Nanotechnol. 2018, 18, 735–742. [Google Scholar] [CrossRef]
- Morales, M.A.; Jain, T.K.; Labhasetwar, V.; Leslie-Pelecky, D.L. Magnetic studies of iron oxide nanoparticles coated with oleic acid and Pluronic® block copolymer. J. Appl. Phys. 2005, 97, 10Q905. [Google Scholar] [CrossRef] [Green Version]
- Bica, D.; Vékás, L.; Avdeev, M.V.; Marinică, O.; Socoliuc, V.; Bălăsoiu, M.; Garamus, V.M. Sterically stabilized water based magnetic fluids: Synthesis, structure and properties. J. Magn. Magn. Mater. 2007, 311, 17–21. [Google Scholar] [CrossRef]
- Vékás, L.; Bica, D.; Avdeev, M.V. Magnetic nanoparticles and concentrated magnetic nanofluids: Synthesis, properties and some applications. China Particuol. 2007, 5, 43–49. [Google Scholar] [CrossRef]
- Kuncser, V.; Schinteie, G.; Sahoo, B.; Keune, W.; Bica, D.; Vekas, L.; Filoti, G. Magnetic interactions in water based ferrofluids studied by Mössbauer spectroscopy. J. Phys. Condens. Matter 2006, 19, 016205. [Google Scholar] [CrossRef]
- Kumar, P.; Khanduri, H.; Pathak, S.; Singh, A.; Basheed, G.A.; Pant, R.P. Temperature selectivity for single phase hydrothermal synthesis of PEG-400 coated magnetite nanoparticles. Dalton Trans. 2020, 49, 8672–8683. [Google Scholar] [CrossRef]
- Kraus, L. 15-Ferromagnetic resonance in individual wires: From micro- to nanowires. In Magnetic Nano- and Microwires; Vázquez, M., Ed.; Woodhead Publishing: Sawston, UK, 2015; pp. 449–486. [Google Scholar]
- Kumar, P.; Pathak, S.; Singh, A.; Khanduri, H.; Jain, K.; Tawale, J.; Wang, L.; Basheed, G.A.; Pant, R.P. Enhanced static and dynamic magnetic properties of PEG-400 coated CoFe2-xErxO4 (0.7 ≤ x ≤ 0) nanoferrites. J. Alloys Compd. 2021, 887, 161418. [Google Scholar] [CrossRef]
- Singh, A.; Pathak, S.; Kumar, P.; Sharma, P.; Rathi, A.; Basheed, G.A.; Maurya, K.K.; Pant, R.P. Tuning the magnetocrystalline anisotropy and spin dynamics in CoxZn1-xFe2O4 (0 ≤ x ≤ 1) nanoferrites. J. Magn. Magn. Mater. 2020, 493, 165737. [Google Scholar] [CrossRef]
- Zhang, J.; Yan, S.; Yuan, D.; Zhao, Q.; Tan, S.H.; Nguyen, N.-T.; Li, W. A novel viscoelastic-based ferrofluid for continuous sheathless microfluidic separation of nonmagnetic microparticles. Lab. A Chip 2016, 16, 3947–3956. [Google Scholar] [CrossRef] [Green Version]
- Chirikov, D.N.; Fedotov, S.P.; Iskakova, L.Y.; Zubarev, A.Y. Viscoelastic properties of ferrofluids. Phys. Rev. E 2010, 82, 051405. [Google Scholar] [CrossRef] [Green Version]
- Saldivar-Guerrero, R.; Richter, R.; Rehberg, I.; Aksel, N.; Heymann, L.; Rodriguez-Fernández, O.S. Viscoelasticity of mono- and polydisperse inverse ferrofluids. J. Chem. Phys. 2006, 125, 084907. [Google Scholar] [CrossRef]
- Odenbach, S. Magnetoviscous and Viscoelastic Effects in Ferrofluids. Int. J. Mod. Phys. B 2000, 14, 1615–1631. [Google Scholar] [CrossRef]
- De Gans, B.J.; Blom, C.; Philipse, A.P.; Mellema, J. Linear viscoelasticity of an inverse ferrofluid. Phys. Rev. E 1999, 60, 4518–4527. [Google Scholar] [CrossRef] [Green Version]
- Odenbach, S.; Rylewicz, T.; Heyen, M. A rheometer dedicated for the investigation of viscoelastic effects in commercial magnetic fluids. J. Magn. Magn. Mater. 1999, 201, 155–158. [Google Scholar] [CrossRef]
- Odenbach, S.; Thurm, S. Magnetoviscous Effects in Ferrofluids. In Ferrofluids: Magnetically Controllable Fluids and Their Applications; Odenbach, S., Ed.; Springer: Berlin/Heidelberg, Germany, 2002; pp. 185–201. [Google Scholar]
- Kumar, P.; Pathak, S.; Singh, A.; Khanduri, H.; Basheed, G.A.; Wang, L.; Pant, R.P. Microwave spin resonance investigation on the effect of post processing annealing of CoFe2O4 nanoparticles. Nanoscale Adv. 2020, 2, 1939–1948. [Google Scholar] [CrossRef] [Green Version]
- Rosensweig, R.E. Ferrofluids: Introduction. In Reference Module in Materials Science and Materials Engineering; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Anupama, A.V.; Keune, W.; Sahoo, B. Thermally induced phase transformation in multi-phase iron oxide nanoparticles on vacuum annealing. J. Magn. Magn. Mater. 2017, 439, 156–166. [Google Scholar] [CrossRef]
- Jagadeesha Angadi, V.; Anupama, A.V.; Kumar, R.; Matteppanavar, S.; Rudraswamy, B.; Sahoo, B. Observation of enhanced magnetic pinning in Sm3+ substituted nanocrystalline MnZn ferrites prepared by propellant chemistry route. J. Alloys Compd. 2016, 682, 263–274. [Google Scholar] [CrossRef]
- Goswami, L.; Aggarwal, N.; Verma, R.; Bishnoi, S.; Husale, S.; Pandey, R.; Gupta, G. Graphene Quantum Dot-Sensitized ZnO-Nanorod/GaN-Nanotower Heterostructure-Based High-Performance UV Photodetectors. ACS Appl. Mater. Interfaces 2020, 12, 47038–47047. [Google Scholar] [CrossRef]
- Verma, R.; Singh, S.; Dalai, M.K.; Saravanan, M.; Agrawal, V.V.; Srivastava, A.K. Photocatalytic degradation of polypropylene film using TiO2-based nanomaterials under solar irradiation. Mater. Des. 2017, 133, 10–18. [Google Scholar] [CrossRef]
- Marwaha, N.; Gupta, B.K.; Verma, R.; Srivastava, A.K. Facile synthesis and characterization of pH-dependent pristine MgO nanostructures for visible light emission. J. Mater. Sci. 2017, 52, 10480–10484. [Google Scholar] [CrossRef]
- Verma, R.; Awasthi, A.; Singh, P.; Srivastava, R.; Sheng, H.; Wen, J.; Miller, D.J.; Srivastava, A.K. Interactions of titania based nanoparticles with silica and green-tea: Photo-degradation and -luminescence. J. Colloid Interface Sci. 2016, 475, 82–95. [Google Scholar] [CrossRef] [Green Version]
- Verma, R.; Naik, K.K.; Gangwar, J.; Srivastava, A.K. Morphology, mechanism and optical properties of nanometer-sized MgO synthesized via facile wet chemical method. Mater. Chem. Phys. 2014, 148, 1064–1070. [Google Scholar] [CrossRef]
- Chen, P.; Zhang, Z.; Duan, X.; Duan, X. Chemical synthesis of two-dimensional atomic crystals, heterostructures and superlattices. Chem. Soc. Rev. 2018, 47, 3129–3151. [Google Scholar] [CrossRef]
- Goswami, L.; Aggarwal, N.; Singh, M.; Verma, R.; Vashishtha, P.; Jain, S.K.; Tawale, J.; Pandey, R.; Gupta, G. GaN Nanotowers Grown on Si(111) and Functionalized with Au Nanoparticles and ZnO Nanorods for Highly Responsive UV Photodetectors. ACS Appl. Nano Mater. 2020, 3, 8104–8116. [Google Scholar] [CrossRef]
- Verma, R.; Chaudhary, V.B.; Nain, L.; Srivastava, A.K. Antibacterial characteristics of TiO2 nano-objects and their interaction with biofilm. Mater. Technol. 2017, 32, 385–390. [Google Scholar] [CrossRef]
- Okuda, M.; Eloi, J.-C.; Ward Jones, S.E.; Sarua, A.; Richardson, R.M.; Schwarzacher, W. Fe3O4 nanoparticles: Protein-mediated crystalline magnetic superstructures. Nanotechnology 2012, 23, 415601. [Google Scholar] [CrossRef]
- Suzuki, N.; Gupta, P.; Sukegawa, H.; Inomata, K.; Inoue, S.; Yamauchi, Y. Aerosol-Assisted Synthesis of Thiol-Functionalized Mesoporous Silica Spheres with Fe3O4 Nanoparticles. J. Nanosci. Nanotechnol. 2010, 10, 6612–6617. [Google Scholar] [CrossRef]
- Doniach, S.; Lipfert, J. Chapter 11—Use of Small Angle X-ray Scattering (SAXS) to Characterize Conformational States of Functional RNAs. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 2009; Volume 469, pp. 237–251. [Google Scholar]
- Balasoiu, M.; Erhan, R.; Craus, M.L.; Plestil, J.; Haramus, V.; Lozovan, M.; Kuklin, A.I.; Bica, I. Microstructure of Magnetite Doped Elastomers Investigated by SAXS and SANS; Frank Laboratory of Neutron Physics: Dubna, Russia, 2008. [Google Scholar]
- Jain, N.; Marwaha, N.; Verma, R.; Gupta, B.K.; Srivastava, A.K. Facile synthesis of defect-induced highly-luminescent pristine MgO nanostructures for promising solid-state lighting applications. RSC Adv. 2016, 6, 4960–4968. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, L.; Yu, Y.; Zhao, Y. Flexible Ferrofluids: Design and Applications. Adv. Mater. 2019, 31, 1903497. [Google Scholar] [CrossRef]
- Kalaiselvan, C.R.; Thorat, N.D.; Sahu, N.K. Carboxylated PEG-Functionalized MnFe2O4 Nanocubes Synthesized in a Mixed Solvent: Morphology, Magnetic Properties, and Biomedical Applications. ACS Omega 2021, 6, 5266–5275. [Google Scholar] [CrossRef]
- Kopyl, S.; Timopheev, A.A.; Bystrov, V.S.; Bdikin, I.; Teixeira, B.M.S.; Maevskij, E.; Sobolev, N.A.; Sousa, A.C.M. FMR study of carbon nanotubes filled with Fe3O4 nanoparticles. J. Magn. Magn. Mater. 2014, 358, 44–49. [Google Scholar] [CrossRef]
- Kurlyandskaya, G.V.; Cunanan, J.; Bhagat, S.M.; Aphesteguy, J.C.; Jacobo, S.E. Field-induced microwave absorption in Fe3O4 nanoparticles and Fe3O4/polyaniline composites synthesized by different methods. J. Phys. Chem. Solids 2007, 68, 1527–1532. [Google Scholar] [CrossRef]
- Shankar, A.; Chand, M.; Basheed, G.A.; Thakur, S.; Pant, R.P. Low temperature FMR investigations on double surfactant water based ferrofluid. J. Magn. Magn. Mater. 2015, 374, 696–702. [Google Scholar] [CrossRef]
- Owens, F.J. Ferromagnetic resonance of magnetic field oriented Fe3O4 nanoparticles in frozen ferrofluids. J. Phys. Chem. Solids 2003, 64, 2289–2292. [Google Scholar] [CrossRef]
- Dixit, G.; Pal Singh, J.; Srivastava, R.C.; Agrawal, H.M. Magnetic resonance study of Ce and Gd doped NiFe2O4 nanoparticles. J. Magn. Magn. Mater. 2012, 324, 479–483. [Google Scholar] [CrossRef]
- Wu, K.H.; Yu, C.H.; Chang, Y.C.; Horng, D.N. Effect of pH on the formation and combustion process of sol–gel auto-combustion derived NiZn ferrite/SiO2 composites. J. Solid State Chem. 2004, 177, 4119–4125. [Google Scholar] [CrossRef]
- Noginova, N.; Weaver, T.; Andreyev, A.; Radocea, A.; Atsarkin, V.A. NMR and spin relaxation in systems with magnetic nanoparticles: Effects of size and molecular motion. J. Phys. Condens. Matter 2009, 21, 255301. [Google Scholar] [CrossRef]
- Yin, J.; Xu, F.; Qu, H.; Li, C.; Liu, S.; Liu, L.; Shao, Y. Dysprosium-doped iron oxide nanoparticles boosting spin–spin relaxation: A computational and experimental study. Phys. Chem. Chem. Phys. 2019, 21, 11883–11891. [Google Scholar] [CrossRef] [PubMed]
Figure 2 | FWHM (Degree) | Crystallite Size (nm) D-S Method | W-H Method | χ2 | Bragg R-Factor | RF-Factor (Crystallographic Factor) | Rwp (Discrepancy Factor) | Rexp (Expected Value) | RP | Lattice Parameter (a = b = c) (Å) | Unit Cell Volume (Å)3 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Crystallite Size (nm) | Strain | |||||||||||
A | 0.83 | 9.73 | 10.6 | 0.0020 | 1.43 | 1.356 | 1.008 | 54.8 | 47.26 | 133 | 8.3482 | 581.81 |
B | 0.86 | 9.32 | 10.1 | 0.0026 | 1.23 | 1.097 | 0.782 | 56.8 | 50.12 | 117 | 8.3460 | 581.37 |
C | 1.03 | 7.46 | 8.5 | 0.0060 | 1.23 | 1.154 | 0.745 | 65.4 | 48.33 | 120 | 8.3451 | 581.16 |
D | 1.51 | 5.32 | 5.8 | 0.0150 | 1.42 | 1.334 | 0.998 | 45.8 | 47.93 | 115 | 8.3440 | 580.93 |
Sample | Average Diameter (SAXS) (nm) | Average Diameter (TEM) (nm) | Resize Distribution |
---|---|---|---|
A | 16.6 | 17.2 | 51.08 |
B | 12.3 | 10.2 | 65.08 |
C | 9.30 | 8.3 | 57.9 |
D | 7.2 | 7.5 | 63.7 |
Sample | Ms (emu/g) | Hc (G) | Mr (emu/g) | kanis (erg/cm3) | μm (10−19 Am2) | Hydrodynamic Diameter (nm) | Md (105 A/m) | σm |
---|---|---|---|---|---|---|---|---|
A | 54.5 | 52.44 | 2.18 | 27,682.0 | 1.05 | 12.06 | 2.80 | 0.70 |
B | 50.2 | 51.36 | 1.98 | 32,383.1 | 1.10 | 11.72 | 3.40 | 0.80 |
C | 46.3 | 28.69 | 1.33 | 16,684.0 | 0.95 | 10.70 | 4.20 | 0.84 |
D | 40.1 | 21.92 | 1.27 | 11,040.1 | 0.9 | 7.25 | 4.70 | 0.86 |
Sample | Crystallite Size (nm) | g-Value | Resonance Field, HR (G) | ΔHpp (G) | ΔH1/2 (G) | Relaxation Time, T2 (×10−12 s) | Spin Concentration Ns (×1022 Spins/G) |
---|---|---|---|---|---|---|---|
A | 10.6 | 2.236 | 3150.51 | 1188.66 | 1364.22 | 37.2779 | 1499.665 |
B | 10.1 | 2.159 | 3262.246 | 1180.84 | 1377.68 | 38.2303 | 1568.469 |
C | 8.5 | 2.156 | 3267.196 | 1164.95 | 1276.35 | 41.3226 | 1455.136 |
D | 5.8 | 2.109 | 3338.789 | 1102.64 | 1254.60 | 42.8301 | 1462.217 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pathak, S.; Verma, R.; Kumar, P.; Singh, A.; Singhal, S.; Sharma, P.; Jain, K.; Pant, R.P.; Wang, X. Facile Synthesis, Static, and Dynamic Magnetic Characteristics of Varying Size Double-Surfactant-Coated Mesoscopic Magnetic Nanoparticles Dispersed Stable Aqueous Magnetic Fluids. Nanomaterials 2021, 11, 3009. https://doi.org/10.3390/nano11113009
Pathak S, Verma R, Kumar P, Singh A, Singhal S, Sharma P, Jain K, Pant RP, Wang X. Facile Synthesis, Static, and Dynamic Magnetic Characteristics of Varying Size Double-Surfactant-Coated Mesoscopic Magnetic Nanoparticles Dispersed Stable Aqueous Magnetic Fluids. Nanomaterials. 2021; 11(11):3009. https://doi.org/10.3390/nano11113009
Chicago/Turabian StylePathak, Saurabh, Rajni Verma, Prashant Kumar, Arjun Singh, Sakshi Singhal, Pragati Sharma, Komal Jain, Rajendra Prasad Pant, and Xu Wang. 2021. "Facile Synthesis, Static, and Dynamic Magnetic Characteristics of Varying Size Double-Surfactant-Coated Mesoscopic Magnetic Nanoparticles Dispersed Stable Aqueous Magnetic Fluids" Nanomaterials 11, no. 11: 3009. https://doi.org/10.3390/nano11113009
APA StylePathak, S., Verma, R., Kumar, P., Singh, A., Singhal, S., Sharma, P., Jain, K., Pant, R. P., & Wang, X. (2021). Facile Synthesis, Static, and Dynamic Magnetic Characteristics of Varying Size Double-Surfactant-Coated Mesoscopic Magnetic Nanoparticles Dispersed Stable Aqueous Magnetic Fluids. Nanomaterials, 11(11), 3009. https://doi.org/10.3390/nano11113009