Metamaterial-Engineered Silicon Beam Splitter Fabricated with Deep UV Immersion Lithography
Abstract
:1. Introduction
2. Working Principle and Device Design
3. Fabrication and Experimental Results
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cheben, P.; Halir, R.; Schmid, J.H.; Atwater, H.A.; Smith, D.R. Subwavelength Integrated Photonics. Nature 2018, 560, 565–572. [Google Scholar] [CrossRef]
- Zhao, J.; Chen, Y.; Feng, Y. Polarization beam splitting through an anisotropic metamaterial slab realized by a layered metal-dielectric structure. Appl. Phys. Lett. 2008, 92, 071114. [Google Scholar] [CrossRef]
- Halir, R.; Bock, P.J.; Cheben, P.; Ortega-Moñux, A.; Alonso-Ramos, C.; Schmid, J.H.; Lapointe, J.; Xu, D.X.; Wangüemert-Pérez, J.G.; Molina-Fernández, Í.; et al. Waveguide Sub-Wavelength Structures: A Review of Principles and Applications. Laser Photonics Rev. 2015, 9, 25–49. [Google Scholar] [CrossRef]
- Halir, R.; Ortega-Moñux, A.; Benedikovic, D.; Mashanovich, G.Z.; Wangüemert-Pérez, J.G.; Schmid, J.H.; Molina-Fernández, Í.; Cheben, P. Subwavelength-Grating Metamaterial Structures for Silicon Photonic Devices. Proc. IEEE 2018, 106, 2144–2157. [Google Scholar] [CrossRef] [Green Version]
- Luque-González, J.M.; Sánchez-Postigo, A.; Hadij-ElHouati, A.; Ortega-Moñux, A.; Wangüemert-Pérez, J.G.; Schmid, J.H.; Cheben, P.; Molina-Fernández, Í.; Halir, R. A Review of Silicon Subwavelength Gratings: Building Break-through Devices with Anisotropic Metamaterials. Nanophotonics 2021, 10, 2765–2797. [Google Scholar] [CrossRef]
- Cheben, P.; Xu, D.X.; Janz, S.; Densmore, A. Subwavelength Waveguide Grating for Mode Conversion and Light Coupling in Integrated Optics. Opt. Express OE 2006, 14, 4695–4702. [Google Scholar] [CrossRef]
- Cheben, P.; Bock, P.J.; Schmid, J.H.; Lapointe, J.; Janz, S.; Xu, D.X.; Densmore, A.; Delâge, A.; Lamontagne, B.; Hall, T.J. Refractive Index Engineering with Subwavelength Gratings for Efficient Microphotonic Couplers and Planar Waveguide Multiplexers. Opt. Lett. OL 2010, 35, 2526–2528. [Google Scholar] [CrossRef] [Green Version]
- Bock, P.J.; Cheben, P.; Schmid, J.H.; Lapointe, J.; Delâge, A.; Janz, S.; Aers, G.C.; Xu, D.X.; Densmore, A.; Hall, T.J. Subwavelength Grating Periodic Structures in Silicon-on-Insulator: A New Type of Microphotonic Waveguide. Opt. Express 2010, 18, 20251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheben, P.; Schmid, J.H.; Wang, S.; Xu, D.X.; Vachon, M.; Janz, S.; Lapointe, J.; Painchaud, Y.; Picard, M.J. Broadband Polarization Independent Nanophotonic Coupler for Silicon Waveguides with Ultra-High Efficiency. Opt. Express 2015, 23, 22553. [Google Scholar] [CrossRef]
- Barwicz, T.; Peng, B.; Leidy, R.; Janta-Polczynski, A.; Houghton, T.; Khater, M.; Kamlapurkar, S.; Engelmann, S.; Fortier, P.; Boyer, N.; et al. Integrated Metamaterial Interfaces for Self-Aligned Fiber-to-Chip Coupling in Volume Manufacturing. IEEE J. Sel. Top. Quantum Electron. 2019, 25, 1–13. [Google Scholar] [CrossRef]
- Benedikovic, D.; Alonso-Ramos, C.; Guerber, S.; Le Roux, X.; Cheben, P.; Dupré, C.; Szelag, B.; Fowler, D.; Cassan, É.; Marris-Morini, D.; et al. Sub-Decibel Silicon Grating Couplers Based on L-Shaped Waveguides and Engineered Subwavelength Metamaterials. Opt. Express 2019, 27, 26239. [Google Scholar] [CrossRef] [Green Version]
- Kang, J.; Cheng, Z.; Zhou, W.; Xiao, T.H.; Gopalakrisna, K.L.; Takenaka, M.; Tsang, H.K.; Goda, K. Focusing Subwavelength Grating Coupler for Mid-Infrared Suspended Membrane Germanium Waveguides. Opt. Lett. OL 2017, 42, 2094–2097. [Google Scholar] [CrossRef]
- Zhang, L.; Dai, D. Subwavelength Grating Microdisk for Mid-Infrared Optical Sensing. In Proceedings of the 2018 Asia Communications and Photonics Conference (ACP), Hangzhou, China, 26–29 October 2018; pp. 1–2. [Google Scholar] [CrossRef]
- Wang, J.; Glesk, I.; Chen, L.R. Subwavelength Grating Filtering Devices. Opt. Express OE 2014, 22, 15335–15345. [Google Scholar] [CrossRef] [Green Version]
- Huang, M.C.Y.; Zhou, Y.; Chang-Hasnain, C.J. A Surface-Emitting Laser Incorporating a High-Index-Contrast Subwavelength Grating. Nat. Photon 2007, 1, 119–122. [Google Scholar] [CrossRef]
- Xu, H.; Shi, Y. Ultra-Compact Polarization-Independent Directional Couplers Utilizing a Subwavelength Structure. Opt. Lett. 2017, 42, 5202. [Google Scholar] [CrossRef]
- Charron, D.; St-Yves, J.; Jafari, O.; LaRochelle, S.; Shi, W. Subwavelength-Grating Contradirectional Couplers for Large Stopband Filters. Opt. Lett. 2018, 43, 895. [Google Scholar] [CrossRef]
- Herrero-Bermello, A.; Luque-González, J.M.; Velasco, A.V.; Ortega-Moñux, A.; Cheben, P.; Halir, R. Design of a Broadband Polarization Splitter Based on Anisotropy-Engineered Tilted Subwavelength Gratings. IEEE Photonics J. 2019, 11, 1–8. [Google Scholar] [CrossRef]
- Xu, H.; Dai, D.; Shi, Y. Metamaterial Polarization Beam Splitter: Ultra-Broadband and Ultra-Compact On-Chip Silicon Polarization Beam Splitter by Using Hetero-Anisotropic Metamaterials (Laser Photonics Rev. 13(4)/2019). Laser Photonics Rev. 2019, 13, 1970021. [Google Scholar] [CrossRef] [Green Version]
- Maese-Novo, A.; Halir, R.; Romero-García, S.; Pérez-Galacho, D.; Zavargo-Peche, L.; Ortega-Moñux, A.; Molina-Fernández, I.; Wangüemert-Pérez, J.G.; Cheben, P. Wavelength Independent Multimode Interference Coupler. Opt. Express 2013, 21, 7033. [Google Scholar] [CrossRef]
- Puts, L.; Leijtens, X.; Cheben, P.; Schmid, J.; Reniers, S.; Melati, D. Anti-Reflection Subwavelength Gratings for InP-Based Waveguide Facets. Opt. Lett. OL 2021, 46, 3701–3704. [Google Scholar] [CrossRef]
- Siew, S.Y.; Li, B.; Gao, F.; Zheng, H.Y.; Zhang, W.; Guo, P.; Xie, S.W.; Song, A.; Dong, B.; Luo, L.W.; et al. Review of Silicon Photonics Technology and Platform Development. J. Light. Technol. 2021, 39, 4374–4389. [Google Scholar] [CrossRef]
- Dezfouli, M.K.; Grinberg, Y.; Melati, D.; Cheben, P.; Schmid, J.H.; Sánchez-Postigo, A.; Ortega-Moñux, A.; Wangüemert-Pérez, G.; Cheriton, R.; Janz, S.; et al. Perfectly Vertical Surface Grating Couplers Using Subwavelength Engineering for Increased Feature Sizes. Opt. Lett. OL 2020, 45, 3701–3704. [Google Scholar] [CrossRef]
- Feilchenfeld, N.B.; Nummy, K.; Barwicz, T.; Gill, D.; Kiewra, E.; Leidy, R.; Orcutt, J.S.; Rosenberg, J.; Stricker, A.D.; Whiting, C.; et al. Silicon Photonics and Challenges for Fabrication. In Advanced Etch Technology for Nanopatterning VI; International Society for Optics and Photonics: San Jose, CA, USA, 2017; Volume 10149, p. 101490D. [Google Scholar] [CrossRef]
- Selvaraja, S.K.; Heyn, P.D.; Winroth, G.; Ong, P.; Lepage, G.; Cailler, C.; Rigny, A.; Bourdelle, K.K.; Bogaerts, W.; Thourhout, D.V.; et al. Highly Uniform and Low-Loss Passive Silicon Photonics Devices Using a 300mm CMOS Platform. In Optical Fiber Communication Conference (2014), Paper Th2A-33; Optical Society of America: San Francisco, CA, USA, 2014; p. Th2A.33. [Google Scholar] [CrossRef] [Green Version]
- Baudot, C.; Douix, M.; Guerber, S.; Crémer, S.; Vulliet, N.; Planchot, J.; Blanc, R.; Babaud, L.; Alonso-Ramos, C.; Benedikovich, D.; et al. Developments in 300mm Silicon Photonics Using Traditional CMOS Fabrication Methods and Materials. In Proceedings of the 2017 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2–6 December 2017; pp. 34.3.1–34.3.4. [Google Scholar] [CrossRef]
- Horikawa, T.; Shimura, D.; Okayama, H.; Jeong, S.H.; Takahashi, H.; Ushida, J.; Sobu, Y.; Shiina, A.; Tokushima, M.; Kinoshita, K.; et al. A 300-Mm Silicon Photonics Platform for Large-Scale Device Integration. IEEE J. Sel. Top. Quantum Electron. 2018, 24, 1–15. [Google Scholar] [CrossRef]
- Xie, W.; Fiers, M.; Selvaraja, S.; Bienstman, P.; Campenhout, J.V.; Absil, P.; Thourhout, D.V. High-Q Photonic Crystal Nanocavities on 300 Mm SOI Substrate Fabricated With 193 Nm Immersion Lithography. J. Light. Technol. JLT 2014, 32, 1457–1462. [Google Scholar] [CrossRef]
- Selvaraja, S.K.; Winroth, G.; Locorotondo, S.; Murdoch, G.; Milenin, A.; Delvaux, C.; Ong, P.; Pathak, S.; Xie, W.; Sterckx, G.; et al. 193nm Immersion Lithography for High-Performance Silicon Photonic Circuits. In Optical Microlithography XXVII; International Society for Optics and Photonics: San Jose, CA, USA, 2014; Volume 9052, p. 90520F. [Google Scholar] [CrossRef]
- Bachmann, M.; Besse, P.A.; Melchior, H. General Self-Imaging Properties in N × N Multimode Interference Couplers Including Phase Relations. Appl. Opt. AO 1994, 33, 3905–3911. [Google Scholar] [CrossRef]
- Soldano, L.B.; Pennings, E.C.M. Optical Multi-Mode Interference Devices Based on Self-Imaging: Principles and Applications. J. Light. Technol. 1995, 13, 615–627. [Google Scholar] [CrossRef] [Green Version]
- Halir, R.; Cheben, P.; Luque-González, J.M.; Sarmiento-Merenguel, J.D.; Schmid, J.H.; Wangüemert-Pérez, G.; Xu, D.X.; Wang, S.; Ortega-Moñux, A.; Molina-Fernández, Í. Ultra-Broadband Nanophotonic Beamsplitter Using an Anisotropic Sub-Wavelength Metamaterial. Laser Photonics Rev. 2016, 10, 1039–1046. [Google Scholar] [CrossRef]
- Rytov, S.M. Electromagnetic Properties of a Finely Stratified Medium. Sov. Phys. JEPT 1956, 2, 466–475. [Google Scholar]
- Halir, R.; Molina-Fernández, Í.; Wangüemert-Pérez, J.G.; Ortega-Moñux, A.; de-Oliva-Rubio, J.; Cheben, P. Characterization of Integrated Photonic Devices with Minimum Phase Technique. Opt. Express 2009, 17, 8349. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Lu, Z.; Ma, M.; Yun, H.; Zhang, F.; Jaeger, N.A.F.; Chrostowski, L. Compact Broadband Directional Couplers Using Subwavelength Gratings. IEEE Photonics J. 2016, 8, 1–8. [Google Scholar] [CrossRef]
- González-Andrade, D.; Lafforgue, C.; Durán-Valdeiglesias, E.; Le Roux, X.; Berciano, M.; Cassan, E.; Marris-Morini, D.; Velasco, A.V.; Cheben, P.; Vivien, L.; et al. Polarization- and Wavelength-Agnostic Nanophotonic Beam Splitter. Sci. Rep. 2019, 9, 3604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vakarin, V.; Melati, D.; Dinh, T.T.D.; Le Roux, X.; Kan, W.K.K.; Dupré, C.; Szelag, B.; Monfray, S.; Boeuf, F.; Cheben, P.; et al. Metamaterial-Engineered Silicon Beam Splitter Fabricated with Deep UV Immersion Lithography. Nanomaterials 2021, 11, 2949. https://doi.org/10.3390/nano11112949
Vakarin V, Melati D, Dinh TTD, Le Roux X, Kan WKK, Dupré C, Szelag B, Monfray S, Boeuf F, Cheben P, et al. Metamaterial-Engineered Silicon Beam Splitter Fabricated with Deep UV Immersion Lithography. Nanomaterials. 2021; 11(11):2949. https://doi.org/10.3390/nano11112949
Chicago/Turabian StyleVakarin, Vladyslav, Daniele Melati, Thi Thuy Duong Dinh, Xavier Le Roux, Warren Kut King Kan, Cécilia Dupré, Bertrand Szelag, Stéphane Monfray, Frédéric Boeuf, Pavel Cheben, and et al. 2021. "Metamaterial-Engineered Silicon Beam Splitter Fabricated with Deep UV Immersion Lithography" Nanomaterials 11, no. 11: 2949. https://doi.org/10.3390/nano11112949
APA StyleVakarin, V., Melati, D., Dinh, T. T. D., Le Roux, X., Kan, W. K. K., Dupré, C., Szelag, B., Monfray, S., Boeuf, F., Cheben, P., Cassan, E., Marris-Morini, D., Vivien, L., & Alonso-Ramos, C. A. (2021). Metamaterial-Engineered Silicon Beam Splitter Fabricated with Deep UV Immersion Lithography. Nanomaterials, 11(11), 2949. https://doi.org/10.3390/nano11112949