Systematic Assessment of Visible-Light-Driven Microspherical V2O5 Photocatalyst for the Removal of Hazardous Organosulfur Compounds from Diesel
Abstract
:1. Introduction
2. Experimental Methods
2.1. Materials
2.2. Synthesis of Microspherical V2O5
2.3. Sample Characterization
2.4. Photocatalytic Studies
3. Results and Discussion
3.1. Characterization of the Photocatalysts
3.2. Photocatalytic Activity
3.3. Effect of Several Interfacing Agents
3.4. Kinetic Study
3.5. Proposed Mechanism
3.6. Photostability Test
3.7. Structural Stability of Photocatalyst
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shafiq, I.; Shafique, S.; Akhter, P.; Yang, W.; Hussain, M. Recent developments in alumina supported hydrodesulfurization catalysts for the production of sulfur-free refinery products: A technical review. Catal. Rev. 2020, 63, 1–86. [Google Scholar] [CrossRef]
- Shafiq, I.; Shafique, S.; Akhter, P.; Ishaq, M.; Yang, W.; Hussain, M. Recent breakthroughs in deep aerobic oxidative desulfurization of petroleum refinery products. J. Clean. Prod. 2020, 294, 125731. [Google Scholar] [CrossRef]
- Shafiq, I.; Shafique, S.; Akhter, P.; Abbas, G.; Qurashi, A.; Hussain, M. Efficient catalyst development for deep aerobic photocatalytic oxidative desulfurization: Recent advances, confines, and outlooks. Catal. Rev. 2021, 63, 1–46. [Google Scholar] [CrossRef]
- Zhang, X.; Song, H.; Sun, C.; Chen, C.; Han, F.; Li, X. Photocatalytic oxidative desulfurization and denitrogenation of fuels over sodium doped graphitic carbon nitride nanosheets under visible light irradiation. Mater. Chem. Phys. 2019, 226, 34–43. [Google Scholar] [CrossRef]
- Zeng, X.; Xiao, X.; Li, Y.; Chen, J.; Wang, H. Deep desulfurization of liquid fuels with molecular oxygen through graphene photocatalytic oxidation. Appl. Catal. B Environ. 2017, 209, 98–109. [Google Scholar] [CrossRef]
- Ja’fari, M.; Ebrahimi, S.L.; Khosravi-Nikou, M.R. Ultrasound-assisted oxidative desulfurization and denitrogenation of liquid hydrocarbon fuels: A critical review. Ultrason. Sonochem. 2018, 40, 955–968. [Google Scholar] [CrossRef]
- Chen, Z.; Ling, L.; Wang, B.; Fan, H.; Shangguan, J.; Mi, J. Adsorptive desulfurization with metal-organic frameworks: A density functional theory investigation. Appl. Surf. Sci. 2016, 387, 483–490. [Google Scholar] [CrossRef]
- Rahma, W.S.A.; Mjalli, F.S.; Al-Wahaibi, T.; Al-Hashmi, A.A. Polymeric-based deep eutectic solvents for effective extractive desulfurization of liquid fuel at ambient conditions. Chem. Eng. Res. Des. 2017, 120, 271–283. [Google Scholar] [CrossRef]
- Santolalla-Vargas, C.; Toriello, V.S.; De los Reyes, J.; Cromwell, D.; Pawelec, B.; Fierro, J. Effects of pH and chelating agent on the NiWS phase formation in NiW/γ-Al2O3 HDS catalysts. Mater. Chem. Phys. 2015, 166, 105–115. [Google Scholar] [CrossRef]
- Escobar, J.; Núñez, S.; Montesinos-Castellanos, A.; De Los Reyes, J.A.; Rodríguez, Y.; González, O.A. Dibenzothiophene hydrodesulfurization over PdPT/Al2O3–TiO2. Influence of Ti-addition on hydrogenating properties. Mater. Chem. Phys. 2016, 171, 185–194. [Google Scholar] [CrossRef]
- Zhang, G.; Ren, J.; Liu, B.; Tian, M.; Zhou, H.; Zhao, J. In situ hydrothermal preparation and photocatalytic desulfurization performance of metallophthalocyanine sensitized SnO2. Inorg. Chim. Acta 2018, 471, 782–787. [Google Scholar] [CrossRef]
- Hussain, M.; Ihm, S.-K. Synthesis, characterization, and hydrodesulfurization activity of new mesoporous carbon supported transition metal sulfide catalysts. Ind. Eng. Chem. Res. 2009, 48, 698–707. [Google Scholar] [CrossRef]
- Hussain, M.; Song, S.-K.; Ihm, S.-K. Synthesis of hydrothermally stable MCM-41 by the seed crystallization and its application as a catalyst support for hydrodesulfurization. Fuel 2013, 106, 787–792. [Google Scholar] [CrossRef]
- Hussain, M.; Song, S.-K.; Lee, J.-H.; Ihm, S.-K. Characteristics of CoMo catalysts supported on modified MCM-41 and MCM-48 materials for thiophene hydrodesulfurization. Ind. Eng. Chem. Res. 2006, 45, 536–543. [Google Scholar] [CrossRef]
- Hussain, M.; Yun, J.S.; Ihm, S.-K.; Russo, N.; Geobaldo, F. Synthesis, characterization, and thiophene hydrodesulfurization activity of novel macroporous and mesomacroporous carbon. Ind. Eng. Chem. Res. 2011, 50, 2530–2535. [Google Scholar] [CrossRef]
- Jia, Y.; Li, G.; Ning, G. Efficient oxidative desulfurization (ODS) of model fuel with H2O2 catalyzed by MoO3/γ-Al2O3 under mild and solvent free conditions. Fuel Process. Technol. 2011, 92, 106–111. [Google Scholar] [CrossRef]
- Shafiq, I.; Hussain, M.; Shafique, S.; Hamayun, M.H.; Mudassir, M.; Nawaz, Z.; Ahmed, A.; Park, Y.-K. A comprehensive numerical design of firefighting systems for onshore petroleum installations. Korean J. Chem. Eng. 2021, 38, 1768–1780. [Google Scholar] [CrossRef]
- Shafiq, I.; Shafique, S.; Mudassir, M.; Hamayun, M.H.; Hussain, M. Recommendations on Firefighting System Design, Erection, and Safe Operation. J. Pipeline Syst. Eng. Pract. 2022, 13, 05021009. [Google Scholar] [CrossRef]
- Lin, F.; Jiang, Z.; Tang, N.; Zhang, C.; Liu, T.; Dong, B. Photocatalytic oxidation of thiophene on RuO2/SO42−-TiO2: Insights for cocatalyst and solid-acid. Appl. Catal. B Environ. 2016, 188, 253–258. [Google Scholar] [CrossRef]
- Yun, L.; Yang, Z.; Yu, Z.-B.; Cai, T.; Li, Y.; Guo, C.; Qi, C.; Ren, T. Synthesis of four-angle star-like CoAl-MMO/BiVO4 p–n heterojunction and its application in photocatalytic desulfurization. RSC Adv. 2017, 7, 25455–25460. [Google Scholar] [CrossRef] [Green Version]
- Mousavi-Kamazani, M.; Ashrafi, S. Single-step sonochemical synthesis of Cu2O-CeO2 nanocomposites with enhanced photocatalytic oxidative desulfurization. Ultrason. Sonochem. 2020, 63, 104948. [Google Scholar] [CrossRef]
- Shafiq, I.; Hussain, M.; Shehzad, N.; Maafa, I.M.; Akhter, P.; Shafique, S.; Razzaq, A.; Yang, W.; Tahir, M.; Russo, N. The effect of crystal facets and induced porosity on the performance of monoclinic BiVO4 for the enhanced visible-light driven photocatalytic abatement of methylene blue. J. Environ. Chem. Eng. 2019, 7, 103265. [Google Scholar] [CrossRef]
- Shafiq, I. Mesoporous Monoclinic BiVO4 for Efficient Visible Light Driven Photocatalytic Degradation of Dyes; COMSATS University Islamabad, Lahore Campus: Lahore, Pakistan, 2018. [Google Scholar]
- Azam, K.; Raza, R.; Shezad, N.; Shabir, M.; Yang, W.; Ahmad, N.; Shafiq, I.; Akhter, P.; Razzaq, A.; Hussain, M. Development of recoverable magnetic mesoporous carbon adsorbent for removal of methyl blue and methyl orange from wastewater. J. Environ. Chem. Eng. 2020, 8, 104220. [Google Scholar] [CrossRef]
- Chen, P.; Zheng, G.; Guo, G.; Wang, Z.; Tang, J.; Li, S.; Wen, Z.; Ji, S.; Sun, J. Ce-doped V2O5 microspheres with improved electrochemical performance for high-power rechargeable lithium ion batteries. J. Alloy. Compd. 2019, 784, 574–583. [Google Scholar] [CrossRef]
- Wang, S.; Lu, Z.; Wang, D.; Li, C.; Chen, C.; Yin, Y. Porous monodisperse V2O5 microspheres as cathode materials for lithium-ion batteries. J. Mater. Chem. 2011, 21, 6365–6369. [Google Scholar] [CrossRef]
- Yin, H.; Yu, K.; Peng, H.; Zhang, Z.; Huang, R.; Travas-Sejdic, J.; Zhu, Z. Porous V2O5 micro/nano-tubes: Synthesis via a CVD route, single-tube-based humidity sensor and improved Li-ion storage properties. J. Mater. Chem. 2012, 22, 5013–5019. [Google Scholar] [CrossRef]
- Liu, J.; Zhou, Y.; Wang, J.; Pan, Y.; Xue, D. Template-free solvothermal synthesis of yolk–shell V2O5 microspheres as cathode materials for Li-ion batteries. Chem. Commun. 2011, 47, 10380–10382. [Google Scholar] [CrossRef]
- Gotić, M.; Popović, S.; Ivanda, M.; Musić, S. Sol–gel synthesis and characterization of V2O5 powders. Mater. Lett. 2003, 57, 3186–3192. [Google Scholar] [CrossRef]
- Uchaker, E.; Zhou, N.; Li, Y.; Cao, G. Polyol-mediated solvothermal synthesis and electrochemical performance of nanostructured V2O5 hollow microspheres. J. Phys. Chem. C 2013, 117, 1621–1626. [Google Scholar] [CrossRef]
- Tian, B.; Tang, W.; Su, C.; Li, Y. Reticular V2O5·0.6H2O xerogel as cathode for rechargeable potassium ion batteries. ACS Appl. Mater. Interfaces 2018, 10, 642–650. [Google Scholar] [CrossRef]
- Kundu, S.; Satpati, B.; Kar, T.; Pradhan, S.K. Microstructure characterization of hydrothermally synthesized PANI/ V2O5·nH2O heterojunction photocatalyst for visible light induced photodegradation of organic pollutants and non-absorbing colorless molecules. J. Hazard Mater. 2017, 339, 161–173. [Google Scholar] [CrossRef]
- Jadhav, C.D.; Pandit, B.; Karade, S.S.; Sankapal, B.R.; Chavan, P.G. Enhanced field emission properties of V2O5/MWCNTs nanocomposite. Appl. Phys. A 2018, 124, 794. [Google Scholar] [CrossRef]
- Abd-Alghafour, N.; Ahmed, N.M.; Hassan, Z. Fabrication and characterization of V2O5 nanorods based metal–semiconductor–metal photodetector. Sens. Actuators A Phys. 2016, 250, 250–257. [Google Scholar] [CrossRef]
- Koduru, H.K.; Obili, H.M.; Cecilia, G. Spectroscopic and electrochromic properties of activated reactive evaporated nano-crystalline V2O5 thin films grown on flexible substrates. Int. Nano Lett. 2013, 3, 24. [Google Scholar] [CrossRef] [Green Version]
- Shashank, M.; Alharthi, F.; Alsalme, A.; Al-Zaqri, N.; Nagaraju, G. Ag decorated V2O5 nanorods as cathode material for lithium ion battery. J. Mater. Sci. Mater. Electron. 2020, 31, 14279–14286. [Google Scholar] [CrossRef]
- Le, T.K.; Kang, M.; Kim, S.W. Room-temperature photoluminescence behavior of α-V2O5 and mixed α-β phase V2O5 films grown by electrodeposition. Mater. Sci. Semicond. Process. 2019, 94, 15–21. [Google Scholar] [CrossRef]
- Dong, F.; Sun, Y.; Fu, M. Enhanced visible light photocatalytic activity of V2O5 cluster modified N-doped TiO2 for degradation 38 toluene in air. Int. J. Photoenergy 2012, 2012, 569716. [Google Scholar] [CrossRef] [Green Version]
- Yalagala, B.P.; Sahatiya, P.; Kolli, C.S.R.; Khandelwal, S.; Mattela, V.; Badhulika, S. V2O5 Nanosheets for Flexible Memristors and Broadband Photodetectors. ACS Appl. Nano Mater. 2019, 2, 937–947. [Google Scholar] [CrossRef]
- Shafiq, I.; Hussain, M.; Shafique, S.; Rashid, R.; Akhter, P.; Ahmed, A.; Jeon, J.-K.; Park, Y.-K. Oxidative desulfurization of refinery diesel pool fractions using LaVO4 photocatalyst. Ind. Eng. Chem. 2021, 98, 283–288. [Google Scholar] [CrossRef]
- Todres, Z.V. Organic Ion Radicals; Marcel Dekker: New York, NY, USA, 2003. [Google Scholar]
- Lin, F.; Zhang, Y.; Wang, L.; Zhang, Y.; Wang, D.; Yang, M.; Yang, J.; Zhang, B.; Jiang, Z.; Li, C. Highly efficient photocatalytic oxidation of sulfur-containing organic compounds and dyes on TiO2 with dual cocatalysts Pt and RuO2. Appl. Catal. B Environ. 2012, 127, 363–370. [Google Scholar] [CrossRef]
- Robertson, J.; Bandosz, T.J. Photooxidation of dibenzothiophene on TiO2/hectorite thin films layered catalyst. J. Colloid Interface Sci. 2006, 299, 125–135. [Google Scholar] [CrossRef]
- Corma, A.; Garcia, H. Naphthalene included within all-silica zeolites: Influence of the host on the naphthalene photophysics. Chem. Rev. 2002, 102, 3837–3849. [Google Scholar] [CrossRef]
- Wang, B.; Zhu, J.; Ma, H. Desulfurization from thiophene by SO42−/ZrO2 catalytic oxidation at room temperature and atmospheric pressure. J. Hazard. Mater. 2009, 164, 256–264. [Google Scholar] [CrossRef]
- Shafiq, I.; Hussain, M.; Rashid, R.; Shafique, S.; Akhter, P.; Yang, W.; Ahmed, A.; Nawaz, Z.; Park, Y.-K. Development of hierarchically porous LaVO4 for efficient visible-light-driven photocatalytic desulfurization of diesel. Chem. Eng. J. 2021, 420, 130529. [Google Scholar] [CrossRef]
- Shabir, M.; Shezad, N.; Shafiq, I.; Maafa, I.M.; Akhter, P.; Azam, K.; Ahmed, A.; Lee, S.H.; Park, Y.-K.; Hussain, M. Carbon nanotubes loaded N, S-codoped TiO2: Heterojunction assembly for enhanced integrated adsorptive-photocatalytic performance. J. Ind. Eng. Chem. 2021, in press. [Google Scholar] [CrossRef]
- Siraj, Z.; Maafa, I.M.; Shafiq, I.; Shezad, N.; Akhter, P.; Yang, W.; Hussain, M. KIT-6 induced mesostructured TiO2 for photocatalytic degradation of methyl blue. Environ. Sci. Pollut. Res. 2021, 28, 53340–53352. [Google Scholar] [CrossRef]
- Rashid, R.; Shafiq, I.; Iqbal, M.J.; Shabir, M.; Akhter, P.; Hamayun, M.H.; Ahmed, A.; Hussain, M. Synergistic effect of NS co-doped TiO2 adsorbent for removal of cationic dyes. J. Environ. Chem. Eng. 2021, 9, 105480. [Google Scholar] [CrossRef]
- Rashid, R.; Shafiq, I.; Akhter, P.; Iqbal, M.J.; Hussain, M. A state-of-the-art review on wastewater treatment techniques: The effectiveness of adsorption method. Environ. Sci. Pollut. Res. 2021, 28, 9050–9066. [Google Scholar] [CrossRef]
- Li, S.; Zhang, B.; Gu, G.; Xiang, X.; Zhang, W.; Shi, X.; Zhao, K.; Zhu, Y.; Guo, J.; Cui, P. Triboelectric plasma decomposition of CO2 at room temperature driven by mechanical energy. Nano Energy 2021, 88, 106287. [Google Scholar] [CrossRef]
- Zhang, B.; Li, J.; Guo, L.; Chen, Z.; Li, C. Photothermally promoted cleavage of β-1, 4-glycosidic bonds of cellulosic biomass on Ir/HY catalyst under mild conditions. Appl. Catal. B Environ. 2018, 237, 660–664. [Google Scholar] [CrossRef]
- Zhang, B.; Yang, X.; Li, J.; Cheng, G. Selective aerobic oxidation of alkyl aromatics on Bi2MoO6 nanoplates decorated with Pt nanoparticles under visible light irradiation. Chem. Commun. 2018, 54, 12194–12197. [Google Scholar] [CrossRef]
- Zhang, B.; Li, J.; Gao, Y.; Chong, R.; Wang, Z.; Guo, L.; Zhang, X.; Li, C. To boost photocatalytic activity in selective oxidation of alcohols on ultrathin Bi2MoO6 nanoplates with Pt nanoparticles as cocatalyst. J. Catal. 2017, 345, 96–103. [Google Scholar] [CrossRef]
- Zhang, B.; Li, J.; Zhang, B.; Chong, R.; Li, R.; Yuan, B.; Lu, S.-M.; Li, C. Selective oxidation of sulfides on Pt/BiVO4 photocatalyst under visible light irradiation using water as the oxygen source and dioxygen as the electron acceptor. J. Catal. 2015, 332, 95–100. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shafiq, I.; Hussain, M.; Shafique, S.; Akhter, P.; Ahmed, A.; Ashraf, R.S.; Ali Khan, M.; Jeon, B.-H.; Park, Y.-K. Systematic Assessment of Visible-Light-Driven Microspherical V2O5 Photocatalyst for the Removal of Hazardous Organosulfur Compounds from Diesel. Nanomaterials 2021, 11, 2908. https://doi.org/10.3390/nano11112908
Shafiq I, Hussain M, Shafique S, Akhter P, Ahmed A, Ashraf RS, Ali Khan M, Jeon B-H, Park Y-K. Systematic Assessment of Visible-Light-Driven Microspherical V2O5 Photocatalyst for the Removal of Hazardous Organosulfur Compounds from Diesel. Nanomaterials. 2021; 11(11):2908. https://doi.org/10.3390/nano11112908
Chicago/Turabian StyleShafiq, Iqrash, Murid Hussain, Sumeer Shafique, Parveen Akhter, Ashfaq Ahmed, Raja Shahid Ashraf, Moonis Ali Khan, Byong-Hun Jeon, and Young-Kwon Park. 2021. "Systematic Assessment of Visible-Light-Driven Microspherical V2O5 Photocatalyst for the Removal of Hazardous Organosulfur Compounds from Diesel" Nanomaterials 11, no. 11: 2908. https://doi.org/10.3390/nano11112908
APA StyleShafiq, I., Hussain, M., Shafique, S., Akhter, P., Ahmed, A., Ashraf, R. S., Ali Khan, M., Jeon, B.-H., & Park, Y.-K. (2021). Systematic Assessment of Visible-Light-Driven Microspherical V2O5 Photocatalyst for the Removal of Hazardous Organosulfur Compounds from Diesel. Nanomaterials, 11(11), 2908. https://doi.org/10.3390/nano11112908