Recent Advances in Layered Double Hydroxide-Based Electrochemical and Optical Sensors
Abstract
:1. Introduction
2. Synthesis Methods
2.1. Co-Precipitation
2.2. Urea Hydrolysis
2.3. Hydro(solvo)thermal Synthesis
2.4. Ion Exchange
3. LDH Characterization and Analyte Detection
3.1. LDH Characterization
3.2. Electrochemical Detection
3.3. Optical Detection
4. Analyte Detection
4.1. Glucose
4.2. Dopamine
4.3. H2O2
4.4. Nitrogen-Based Toxins
4.5. Metal Ions
4.6. Organic Compounds
5. Future Prospects
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gan, T.; Liang, W.; Yang, H.; Liao, X. The Effect of Economic Development on Haze Pollution (PM2.5) Based on a Spatial Perspective: Urbanization as a Mediating Variable. J. Clean. Prod. 2020, 266, 121880. [Google Scholar] [CrossRef]
- Kong, X.; Chen, J.; Tang, Y.; Lv, Y.; Chen, T.; Wang, H. Enhanced Removal of Vanadium (V) from Groundwater by Layered Double Hydroxide-Supported Nanoscale Zerovalent Iron. J. Hazard. Mater. 2020, 392, 122392. [Google Scholar] [CrossRef]
- Hao, Y.; Zheng, S.; Zhao, M.; Wu, H.; Guo, Y.; Li, Y. Reexamining the Relationships among Urbanization, Industrial Structure, and Environmental Pollution in China—New Evidence Using the Dynamic Threshold Panel Model. Energy Rep. 2020, 6, 28–39. [Google Scholar] [CrossRef]
- Aziz, A.; Asif, M.; Azeem, M.; Ashraf, G.; Wang, Z.; Xiao, F.; Liu, H. Self-Stacking of Exfoliated Charged Nanosheets of LDHs and Graphene as Biosensor with Real-Time Tracking of Dopamine from Live Cells. Anal. Chim. Acta 2019, 1047, 197–207. [Google Scholar] [CrossRef]
- Hsine, Z.; Blili, S.; Milka, R.; Dorizon, H.; Said, A.H.; Korri-Youssoufi, H. Sensor Based on Redox Conjugated Poly(Para-Phenylene) for the Simultaneous Detection of Dopamine, Ascorbic Acid, and Uric Acid in Human Serum Sample. Anal. Bioanal. Chem. 2020, 412, 4433–4446. [Google Scholar] [CrossRef]
- Jang, Y.H.; Jang, Y.J.; Kim, S.; Quan, L.N.; Chung, K.; Kim, D.H. Plasmonic Solar Cells: From Rational Design to Mechanism Overview. Chem. Rev. 2016, 116, 14982–15034. [Google Scholar] [CrossRef] [PubMed]
- Rhouati, A.; Majdinasab, M.; Hayat, A. A Perspective on Non-Enzymatic Electrochemical Nanosensors for Direct Detection of Pesticides. Curr. Opin. Electrochem. 2018, 11, 12–18. [Google Scholar] [CrossRef]
- Thapliyal, N.; Osman, N.S.E.; Patel, H.; Karpoormath, R.; Goyal, R.N.; Moyo, T.; Patel, R. NiO-ZrO2 Nanocomposite Modified Electrode for the Sensitive and Selective Determination of Efavirenz, an Anti-HIV Drug. RSC Adv. 2015, 5, 40057–40064. [Google Scholar] [CrossRef]
- Thapliyal, N.; Patel, H.; Karpoormath, R.; Goyal, R.N.; Patel, R. A Categorical Review on Electroanalytical Determination of Non-Narcotic over-the-Counter Abused Antitussive Drugs. Talanta 2015, 142, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Jiang, M.; Su, M.; Tian, L.; Shi, W.; Yu, C. Stretchable and Transparent Electrochemical Sensor Based on Nanostructured Au on Carbon Nanotube Networks for Real-Time Analysis of H2O2Release from Cells. Anal. Chem. 2021, 93, 6723–6730. [Google Scholar] [CrossRef] [PubMed]
- Karimi-Maleh, H.; Yola, M.L.; Atar, N.; Orooji, Y.; Karimi, F.; Senthil Kumar, P.; Rouhi, J.; Baghayeri, M. A Novel Detection Method for Organophosphorus Insecticide Fenamiphos: Molecularly Imprinted Electrochemical Sensor Based on Core-Shell Co3O4@MOF-74 Nanocomposite. J. Colloid Interface Sci. 2021, 592, 174–185. [Google Scholar] [CrossRef]
- Li, Q.; Wu, J.T.; Liu, Y.; Qi, X.M.; Jin, H.G.; Yang, C.; Liu, J.; Li, G.L.; He, Q.G. Recent Advances in Black Phosphorus-Based Electrochemical Sensors: A Review. Anal. Chim. Acta 2021, 1170, 338480. [Google Scholar] [CrossRef] [PubMed]
- Meier, J.; Stapleton, J.; Hofferber, E.; Haworth, A.; Kachman, S.; Iverson, N.M. Quantification of Nitric Oxide Concentration Using Single-Walled Carbon Nanotube Sensors. Nanomaterials 2021, 11, 243. [Google Scholar] [CrossRef]
- Park, J. Optical Glucose Sensor Using Pressure Sensitive Paint. Sensors 2021, 21, 4474. [Google Scholar] [CrossRef] [PubMed]
- Saliba, D.; Al-ghoul, M. Kinetics of intercalation of fluorescent probes in magnesium–Aluminium layered double hydroxide within a multiscale reaction–Diffusion framework. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, 374, 20160138. [Google Scholar] [CrossRef] [Green Version]
- Mousty, C.; Prévot, V. Hybrid and Biohybrid Layered Double Hydroxides for Electrochemical Analysis. Anal. Bioanal. Chem. 2013, 405, 3513–3523. [Google Scholar] [CrossRef]
- Sajid, M.; Basheer, C. Layered Double Hydroxides: Emerging Sorbent Materials for Analytical Extractions. TrAC-Trends Anal. Chem. 2016, 75, 174–182. [Google Scholar] [CrossRef]
- Baig, N.; Sajid, M. Applications of Layered Double Hydroxides Based Electrochemical Sensors for Determination of Environmental Pollutants: A Review. Trends Environ. Anal. Chem. 2017, 16, 1–15. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, H.; Chen, L.; Wei, X.; Shi, J.; He, M. Facile Synthesis of Cu Doped Cobalt Hydroxide (Cu-Co(OH)2) Nano-Sheets for Efficient Electrocatalytic Oxygen Evolution. J. Mater. Chem. A 2017, 5, 22568–22575. [Google Scholar] [CrossRef]
- Sayeed, M.A.; O’Mullane, A.P. A Multifunctional Gold Doped Co(OH)2 Electrocatalyst Tailored for Water Oxidation, Oxygen Reduction, Hydrogen Evolution and Glucose Detection. J. Mater. Chem. A 2017, 5, 23776–23784. [Google Scholar] [CrossRef]
- Cao, L.M.; Wang, J.W.; Zhong, D.C.; Lu, T.B. Template-Directed Synthesis of Sulphur Doped NiCoFe Layered Double Hydroxide Porous Nanosheets with Enhanced Electrocatalytic Activity for the Oxygen Evolution Reaction. J. Mater. Chem. A 2018, 6, 3224–3230. [Google Scholar] [CrossRef]
- Gao, D.; Yu, H.; Xu, Y. Direct Photoinduced Synthesis and High H 2 -Evolution Performance of Bi-Modified TiO2 Photocatalyst in a Bi(III)-EG Complex System. Appl. Surf. Sci. 2018, 462, 623–632. [Google Scholar] [CrossRef]
- Riaz, U.; Singh, N.; Verma, A.; Aazam, E.S. Studies on Conducting Polymer Intercalated Layered Double Hydroxide Nanocomposites: Antituberculosis Drug Delivery Agents. Polym. Eng. Sci. 2020, 60, 2628–2639. [Google Scholar] [CrossRef]
- Mokhtari, S.; Solati-Hashjin, M.; Khosrowpour, Z.; Gholipourmalekabadi, M. Layered Double Hydroxide-Galactose as an Excellent Nanocarrier for Targeted Delivery of Curcumin to Hepatocellular Carcinoma Cells. Appl. Clay Sci. 2021, 200, 105891. [Google Scholar] [CrossRef]
- Sohrabnezhad, S.; Poursafar, Z.; Asadollahi, A. Synthesis of Novel Core@shell of MgAl Layered Double Hydroxide @ Porous Magnetic Shell (MgAl-LDH@PMN) as Carrier for Ciprofloxacin Drug. Appl. Clay Sci. 2020, 190, 105586. [Google Scholar] [CrossRef]
- Ameena Shirin, V.K.; Sankar, R.; Johnson, A.P.; Gangadharappa, H.V.; Pramod, K. Advanced Drug Delivery Applications of Layered Double Hydroxide. J. Control. Release 2021, 330, 398–426. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.T.; Liao, F.Y.; Liu, K.S. Electrical Analysis of Compost Solid Phase Microbial Fuel Cell. Int. J. Hydrogen Energy 2013, 38, 11124–11130. [Google Scholar] [CrossRef]
- Zhu, Z.; Ouyang, S.; Li, P.; Shan, L.; Ma, R.; Zhang, P. Persistent Organic Pollutants Removal via Hierarchical Flower-like Layered Double Hydroxide: Adsorption Behaviors and Mechanism Investigation. Appl. Clay Sci. 2020, 188, 105500. [Google Scholar] [CrossRef]
- Mohiuddin, I.; Grover, A.; Aulakh, J.S.; Malik, A.K.; Lee, S.S.; Brown, R.J.C.; Kim, K.H. Starch-Mg/Al Layered Double Hydroxide Composites as an Efficient Solid Phase Extraction Sorbent for Non-Steroidal Anti-Inflammatory Drugs as Environmental Pollutants. J. Hazard. Mater. 2021, 401, 123782. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, S.; Chen, Z.; Zhou, X.; Wang, J.; Chen, Z. Engineered Biochar with Anisotropic Layered Double Hydroxide Nanosheets to Simultaneously and Efficiently Capture Pb2+ and CrO42− from Electroplating Wastewater. Bioresour. Technol. 2020, 306, 123118. [Google Scholar] [CrossRef]
- Kong, L.; Tian, Y.; Pang, Z.; Huang, X.; Li, M.; Yang, R.; Li, N.; Zhang, J.; Zuo, W. Synchronous Phosphate and Fluoride Removal from Water by 3D Rice-like Lanthanum-Doped La@MgAl Nanocomposites. Chem. Eng. J. 2019, 371, 893–902. [Google Scholar] [CrossRef]
- Zhao, P.; Liu, X.; Tian, W.; Yan, D.; Sun, X.; Lei, X. Adsolubilization of 2,4,6-Trichlorophenol from Aqueous Solution by Surfactant Intercalated ZnAl Layered Double Hydroxides. Chem. Eng. J. 2015, 279, 597–604. [Google Scholar] [CrossRef]
- Ao, Y.; Wang, D.; Wang, P.; Wang, C.; Hou, J.; Qian, J. Enhanced Photocatalytic Properties of the 3D Flower-like Mg-Al Layered Double Hydroxides Decorated with Ag2CO3 under Visible Light Illumination. Mater. Res. Bull. 2016, 80, 23–29. [Google Scholar] [CrossRef]
- Huang, G.; Chen, J.; Wang, D.; Sun, Y.; Jiang, L.; Yu, Y.; Zhou, J.; Ma, S.; Kang, Y. Nb2O5/ZnAl-LDH Composites and Its Calcined Products for Photocatalytic Degradation of Congo Red under Visible Light Irradiation. Mater. Lett. 2016, 173, 227–230. [Google Scholar] [CrossRef] [Green Version]
- Xue, J.; Chen, T.; Meng, Y.; Zhou, X.; Pan, G.; Ni, Z.; Xia, S. Efficient Detoxication of Heterocyclics by Layered Double Hydroxides Contained Different Cobalt Components as Photocatalysts Based on Controllable Application of Active Free Radicals. J. Photochem. Photobiol. A Chem. 2019, 371, 33–43. [Google Scholar] [CrossRef]
- Wang, Z.; Liang, P.; He, X.; Wu, B.; Liu, Q.; Xu, Z.; Wu, H.; Liu, Z.; Qian, Y.; Wang, S.; et al. Etoposide Loaded Layered Double Hydroxide Nanoparticles Reversing Chemoresistance and Eradicating Human Glioma Stem Cells: In Vitro and In Vivo. Nanoscale 2018, 10, 13106–13121. [Google Scholar] [CrossRef] [PubMed]
- Xiao, F.; Liu, X.; Xiao, Y.; Chen, F.; Wu, Y. A Luminescent Layered Hybrid Ag-Ru/LDH as a Photocatalytic Antibacterial Agent. New J. Chem. 2017, 41, 7260–7266. [Google Scholar] [CrossRef]
- Kingchok, S.; Nontasorn, P.; Laohhasurayotin, K.; Traiphol, N.; Traiphol, R. Reversible Thermochromic Polydiacetylene/Zinc-Aluminium Layered Double Hydroxides Nanocomposites for Smart Paints and Colorimetric Sensors: The Crucial Role of Zinc Ions. Colloids Surf. A Physicochem. Eng. Asp. 2021, 610, 125733. [Google Scholar] [CrossRef]
- Ding, P.X.; Zeng, H.Y.; Xu, S.; Chen, C.R.; Du, J.Z.; Cao, X. Electrochemical Behaviors of Iron-Based Layered Double Hydroxide Thin-Films. J. Mater. Sci. Mater. Electron. 2018, 29, 2748–2757. [Google Scholar] [CrossRef]
- Farhat, H.; Taviot-Gueho, C.; Monier, G.; Briois, V.; Forano, C.; Mousty, C. Insights into the Structure and the Electrochemical Reactivity of Cobalt-Manganese Layered Double Hydroxides: Application to H2O2 Sensing. J. Phys. Chem. C 2020, 124, 15585–15599. [Google Scholar] [CrossRef]
- Sahoo, R.C.; Moolayadukkam, S.; Thomas, S.; Asle Zaeem, M.; Ramakrishna Matte, H.S.S. Solution Processed Ni2Co Layered Double Hydroxides for High Performance Electrochemical Sensors. Appl. Surf. Sci. 2021, 541, 148270. [Google Scholar] [CrossRef]
- Asif, M.; Aziz, A.; Wang, H.; Wang, Z.; Wang, W.; Ajmal, M.; Xiao, F.; Chen, X.; Liu, H. Superlattice Stacking by Hybridizing Layered Double Hydroxide Nanosheets with Layers of Reduced Graphene Oxide for Electrochemical Simultaneous Determination of Dopamine, Uric Acid and Ascorbic Acid. Microchim. Acta 2019, 186, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.K.; Swaathini, K.C.; Jha, N.S.; Jha, S.K. Facile in Situ Electrosynthesis and High Electrocatalytic Performance of Interconnected Layered Double Hydroxides/Graphene Hybrids for Dopamine Oxidation: A Comparative Study. Electroanalysis 2019, 31, 485–495. [Google Scholar] [CrossRef]
- Ahmadi-Kashani, M.; Dehghani, H. A Novel Selective Ternary Platform Fabricated with MgAl-Layered Double Hydroxide/NiMn2O4 Functionalized Polyaniline Nanocomposite Deposited on a Glassy Carbon Electrode for Electrochemical Sensing of Levodopa. Colloids Surf. B Biointerfaces 2020, 194, 111134. [Google Scholar] [CrossRef] [PubMed]
- Amini, R.; Asadpour-Zeynali, K. Cauliflower-like NiCo2O4-Zn/Al Layered Double Hydroxide Nanocomposite as an Efficient Electrochemical Sensing Platform for Selective Pyridoxine Detection. Electroanalysis 2020, 32, 1160–1169. [Google Scholar] [CrossRef]
- Lu, Y.; Jiang, B.; Fang, L.; Fan, S.; Wu, F.; Hu, B.; Meng, F. Highly Sensitive Nonenzymatic Glucose Sensor Based on 3D Ultrathin NiFe Layered Double Hydroxide Nanosheets. Electroanalysis 2017, 29, 1755–1761. [Google Scholar] [CrossRef]
- Zhao, Z.; Sun, Y.; Song, J.; Li, Y.; Xie, Y.; Cui, H.; Gong, W.; Hu, J.; Chen, Y. Highly Sensitive Nonenzymetic Glucose Sensing Based on Multicomponent Hierarchical NiCo-LDH/CCCH/CuF Nanostructures. Sens. Actuators B Chem. 2021, 326, 128811. [Google Scholar] [CrossRef]
- Shahrokhian, S.; Khaki Sanati, E.; Hosseini, H. Advanced On-Site Glucose Sensing Platform Based on a New Architecture of Free-Standing Hollow Cu(OH)2 Nanotubes Decorated with CoNi-LDH Nanosheets on Graphite Screen-Printed Electrode. Nanoscale 2019, 11, 12655–12671. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Zhang, P.; Zhan, T.; Yu, X.; Wen, Y.; Liu, X.; Gao, H.; Wang, P.; She, X. In Situ Growth of ZIF-67 on Ultrathin CoAl Layered Double Hydroxide Nanosheets for Electrochemical Sensing toward Naphthol Isomers. J. Colloid Interface Sci. 2020, 576, 313–321. [Google Scholar] [CrossRef]
- Zhan, T.; Kang, J.; Li, X.; Pan, L.; Li, G.; Hou, W. NiFe Layered Double Hydroxide Nanosheets as an Efficiently Mimic Enzyme for Colorimetric Determination of Glucose and H2O2. Sens. Actuators B Chem. 2018, 255, 2635–2642. [Google Scholar] [CrossRef]
- Ren, H.; Li, M.; Fu, Y.; Jin, L. Silver Nanoclusters Functionalized by Chromotropic Acid and Layered Double Hydroxides for the Turn-on Detection of Melamine. J. Mater. Chem. C 2016, 4, 6104–6109. [Google Scholar] [CrossRef]
- Cao, X.; Yang, H.; Wei, Q.; Yang, Y.; Liu, M.; Liu, Q.; Zhang, X. Fast Colorimetric Sensing of H2O2 and Glutathione Based on Pt Deposited on NiCo Layered Double Hydroxide with Double Peroxidase-/Oxidase-like Activity. Inorg. Chem. Commun. 2021, 123, 108331. [Google Scholar] [CrossRef]
- Zhou, Z.; Li, X.; Gao, J.; Tang, Y.; Wang, Q. Tetracycline Generated Red Luminescence Based on a Novel Lanthanide Functionalized Layered Double Hydroxide Nanoplatform. J. Agric. Food Chem. 2019, 67, 3871–3878. [Google Scholar] [CrossRef]
- Li, J.; Yao, H.; Su, F.; Liang, Z.; Ma, S. Layered Yttrium Hydroxide Composite as Supersensitive Fluorescent Sensor on Fe(III) Ions. Mater. Res. Bull. 2021, 135, 111135. [Google Scholar] [CrossRef]
- Su, F.; Guo, R.; Yu, Z.; Li, J.; Liang, Z.; Shi, K.; Ma, S.; Sun, G.; Li, H. Layered Rare-Earth Hydroxide (LRH, R = Tb, Y) Composites with Fluorescein: Delamination, Tunable Luminescence and Application in Chemosensoring for Detecting Fe(III) Ions. Dalton Trans. 2018, 47, 5380–5389. [Google Scholar] [CrossRef]
- Yagami, T.; Hagiwara, M.; Fujihara, S. Fabrication of Luminescence-Sensing Films Based on Surface Precipitation Reaction of Mg-Al-Eu LDHs. J. Sol-Gel Sci. Technol. 2017, 82, 380–389. [Google Scholar] [CrossRef]
- Lajevardi Esfahani, S.; Rouhani, S.; Ranjbar, Z. Layer-by-Layer Assembly of Electroactive Dye/LDHs Nanoplatelet Matrix Film for Advanced Dual Electro-Optical Sensing Applications. Nanoscale Res. Lett. 2020, 15, 1–16. [Google Scholar] [CrossRef]
- Tang, S.; Lee, H.K. Application of Dissolvable Layered Double Hydroxides as Sorbent in Dispersive Solid-Phase Extraction and Extraction by Co-Precipitation for the Determination of Aromatic Acid Anions. Anal. Chem. 2013, 85, 7426–7433. [Google Scholar] [CrossRef]
- Zhang, F.; Liu, Z.G.; Zeng, R.C.; Li, S.Q.; Cui, H.Z.; Song, L.; Han, E.H. Corrosion Resistance of Mg-Al-LDH Coating on Magnesium Alloy AZ31. Surf. Coat. Technol. 2014, 258, 1152–1158. [Google Scholar] [CrossRef]
- Zhan, T.; Song, Y.; Li, X.; Hou, W. Electrochemical Sensor for Bisphenol A Based on Ionic Liquid Functionalized Zn-Al Layered Double Hydroxide Modified Electrode. Mater. Sci. Eng. C 2016, 64, 354–361. [Google Scholar] [CrossRef] [PubMed]
- Costa, R.C.C.; Lelis, M.F.F.; Oliveira, L.C.A.; Fabris, J.D.; Ardisson, J.D.; Rios, R.R.V.A.; Silva, C.N.; Lago, R.M. Novel Active Heterogeneous Fenton System Based on Fe3-XM XO4 (Fe, Co, Mn, Ni): The Role of M2+ Species on the Reactivity towards H2O2 Reactions. J. Hazard. Mater. 2006, 129, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Xu, H.; Zhao, X.; Hui, Z.; Yu, C.; Wang, L.; Xue, J.; Zhao, Y.; Zhou, R.; Dai, H.; et al. Identifying the Active Site of Ultrathin NiCo LDH as an Efficient Peroxidase Mimic with Superior Substrate Affinity for Sensitive Detection of Hydrogen Peroxide. J. Mater. Chem. B 2019, 7, 6232–6237. [Google Scholar] [CrossRef] [PubMed]
- Khenifi, A.; Derriche, Z.; Forano, C.; Prevot, V.; Mousty, C.; Scavetta, E.; Ballarin, B.; Guadagnini, L.; Tonelli, D. Glyphosate and Glufosinate Detection at Electrogenerated NiAl-LDH Thin Films. Anal. Chim. Acta 2009, 654, 97–102. [Google Scholar] [CrossRef] [PubMed]
- Rojas Delgado, R.; Arandigoyen Vidaurre, M.; De Pauli, C.P.; Ulibarri, M.A.; Avena, M.J. Surface-Charging Behavior of Zn-Cr Layered Double Hydroxide. J. Colloid Interface Sci. 2004, 280, 431–441. [Google Scholar] [CrossRef] [PubMed]
- Amini, R.; Rahimpour, E.; Jouyban, A. An Optical Sensing Platform Based on Hexacyanoferrate Intercalated Layered Double Hydroxide Nanozyme for Determination of Chromium in Water. Anal. Chim. Acta 2020, 1117, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, P.; Ishihara, S.; Yamada, K.; Deguchi, K.; Ohki, S.; Tansho, M.; Shimizu, T.; Eisaku, N.; Sasai, R.; Labuta, J.; et al. Rapid Exchange between Atmospheric CO2 and Carbonate Anion Intercalated within Magnesium Rich Layered Double Hydroxide. ACS Appl. Mater. Interfaces 2014, 6, 18352–18359. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Qu, L.; Guo, Y.; Zeng, Y.; Sun, W.; Huang, X. Electrochemical Detection of Dopamine on a Ni/Al Layered Double Hydroxide Modified Carbon Ionic Liquid Electrode. Sens. Actuators B Chem. 2010, 151, 146–152. [Google Scholar] [CrossRef]
- Asadpour-zeynali, K.; Amini, R. Nanostructured Hexacyanoferrate Intercalated Ni/Al Layered Double Hydroxide Modified Electrode as a Sensitive Electrochemical Sensor for Paracetamol Determination. Electroanalysis 2017, 29, 635–642. [Google Scholar] [CrossRef]
- da Silva, A.F.; Duarte, J.L.D.S.; Meili, L. Different Routes for MgFe/LDH Synthesis and Application to Remove Pollutants of Emerging Concern. Sep. Purif. Technol. 2021, 264, 118353. [Google Scholar] [CrossRef]
- Hibino, T.; Ohya, H. Synthesis of Crystalline Layered Double Hydroxides: Precipitation by Using Urea Hydrolysis and Subsequent Hydrothermal Reactions in Aqueous Solutions. Appl. Clay Sci. 2009, 45, 123–132. [Google Scholar] [CrossRef]
- Rao, M.M.; Reddy, B.R.; Jayalakshmi, M.; Jaya, V.S.; Sridhar, B. Hydrothermal Synthesis of Mg-Al Hydrotalcites by Urea Hydrolysis. Mater. Res. Bull. 2005, 40, 347–359. [Google Scholar] [CrossRef]
- Naseem, S.; Gevers, B.; Boldt, R.; Labuschagné, F.J.W.J.; Leuteritz, A. Comparison of Transition Metal (Fe, Co, Ni, Cu, and Zn) Containing Tri-Metal Layered Double Hydroxides (LDHs) Prepared by Urea Hydrolysis. RSC Adv. 2019, 9, 3030–3040. [Google Scholar] [CrossRef] [Green Version]
- Hatami, H.; Fotovat, A.; Halajnia, A. Comparison of Adsorption and Desorption of Phosphate on Synthesized Zn-Al LDH by Two Methods in a Simulated Soil Solution. Appl. Clay Sci. 2018, 152, 333–341. [Google Scholar] [CrossRef]
- Ni, G.; Cheng, J.; Dai, X.; Guo, Z.; Ling, X.; Yu, T.; Sun, Z. Integrating Ultrathin Polypyrrole Framework on Nickel-Cobalt Layered Double Hydroxide as an Amperometric Sensor for Non-Enzymatic Glucose Determination. Electroanalysis 2018, 30, 2366–2373. [Google Scholar] [CrossRef]
- Okamoto, K.; Iyi, N.; Sasaki, T. Factors Affecting the Crystal Size of the MgAl-LDH (Layered Double Hydroxide) Prepared by Using Ammonia-Releasing Reagents. Appl. Clay Sci. 2007, 37, 23–31. [Google Scholar] [CrossRef]
- Li, X.; Liu, J.; Ji, X.; Jiang, J.; Ding, R.; Hu, Y.; Hu, A.; Huang, X. Ni/Al Layered Double Hydroxide Nanosheet Film Grown Directly on Ti Substrate and Its Application for a Nonenzymatic Glucose Sensor. Sens. Actuators B. Chem. 2010, 147, 241–247. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, F.; Lu, C. Evolution of Biogenic Amine Concentrations in Foods through Their Induced Chemiluminescence Inactivation of Layered Double Hydroxide Nanosheet Colloids. Biosens. Bioelectron. 2014, 60, 237–243. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Guo, J.; Zhou, T.; Zhang, Y.; Chen, L. A Novel Nonenzymatic Electrochemical Glucose Sensor Modified with Ni/Al Layered Double Hydroxide. Electrochim. Acta 2013, 109, 532–535. [Google Scholar] [CrossRef]
- Jing, F.; Zhang, Y.; Luo, S.; Chu, W.; Qian, W. Nano-Size MZnAl (M = Cu, Co, Ni) Metal Oxides Obtained by Combining Hydrothermal Synthesis with Urea Homogeneous Precipitation Procedures. Appl. Clay Sci. 2010, 48, 203–207. [Google Scholar] [CrossRef]
- Yu, W.; Du, N.; Hou, W. Solvothermal Synthesis of Carbonate-Type Layered Double Hydroxide Monolayer Nanosheets: Solvent Selection Based on Characteristic Parameter Matching Criterion. J. Colloid Interface Sci. 2021, 587, 324–333. [Google Scholar] [CrossRef] [PubMed]
- Prevot, V.; Caperaa, N.; Taviot-Guého, C.; Forano, C. Glycine-Assisted Hydrothermal Synthesis of NiAl-Layered Double Hydroxide Nanostructures. Cryst. Growth Des. 2009, 9, 3646–3654. [Google Scholar] [CrossRef]
- Liu, J.; Lv, G.; Gu, W.; Li, Z.; Tang, A.; Mei, L. A Novel Luminescence Probe Based on Layered Double Hydroxides Loaded with Quantum Dots for Simultaneous Detection of Heavy Metal Ions in Water. J. Mater. Chem. C 2017, 5, 5024–5030. [Google Scholar] [CrossRef]
- Ogawa, M.; Asai, S. Hydrothermal Synthesis of Layered Double. Chem. Mater. 2000, 12, 3253–3255. [Google Scholar] [CrossRef]
- Wang, D.; Liu, Z.; Hong, Y.; Lin, C.; Pan, Q.; Li, L.; Shi, K. Controlled Preparation of Multiple Mesoporous CoAl-LDHs Nanosheets for the High Performance of NOxdetection at Room Temperature. RSC Adv. 2020, 10, 34466–34473. [Google Scholar] [CrossRef]
- Liu, Z.; Teng, L.; Ma, L.; Liu, Y.; Zhang, X.; Xue, J.; Ikram, M.; Ullah, M.; Li, L.; Shi, K. Porous 3D Flower-like CoAl-LDH Nanocomposite with Excellent Performance for NO2 Detection at Room Temperature. RSC Adv. 2019, 9, 21911–21921. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Xie, X.; Li, C.; Wang, H.; Wang, L. The Role of Soft Colloidal Templates in the Shape Evolution of Flower-like MgAl-LDH Hierarchical Microstructures. RSC Adv. 2015, 5, 29757–29765. [Google Scholar] [CrossRef]
- Li, H.; Su, X.; Bai, C.; Xu, Y.; Pei, Z.; Sun, S. Detection of Carbon Dioxide with a Novel HPTS/NiFe-LDH Nanocomposite. Sens. Actuators B Chem. 2016, 225, 109–114. [Google Scholar] [CrossRef]
- Zhang, F.; Hou, W. Mechano-Hydrothermal Preparation of Li-Al-OH Layered Double Hydroxides. Solid State Sci. 2018, 79, 93–98. [Google Scholar] [CrossRef]
- Zhang, F.; Du, N.; Zhang, R.; Hou, W. Mechanochemical Synthesis of Fe3O4@(Mg-Al-OH LDH) Magnetic Composite. Powder Technol. 2012, 228, 250–253. [Google Scholar] [CrossRef]
- Tongamp, W.; Zhang, Q.; Saito, F. Mechanochemical Route for Synthesizing Nitrate Form of Layered Double Hydroxide. Powder Technol. 2008, 185, 43–48. [Google Scholar] [CrossRef]
- Ay, A.N.; Zümreoglu-Karan, B.; Mafra, L. A Simple Mechanochemical Route to Layered Double Hydroxides: Synthesis of Hydrotalcite-like Mg-Al-NO3-LDH by Manual Grinding in a Mortar. Z. Anorg. Allg. Chem. 2009, 635, 1470–1475. [Google Scholar] [CrossRef]
- Zhang, F.; Du, N.; Song, S.; Liu, J.; Hou, W. Mechano-Hydrothermal Synthesis of Mg2Al-NO3 Layered Double Hydroxides. J. Solid State Chem. 2013, 206, 45–50. [Google Scholar] [CrossRef]
- Zhang, F.; Du, N.; Li, H.; Liu, J.; Hou, W. Synthesis of Mg-Al-Fe-NO3 Layered Double Hydroxides via a Mechano-Hydrothermal Route. Solid State Sci. 2014, 32, 41–47. [Google Scholar] [CrossRef]
- Zhang, F.; Du, N.; Song, S.; Hou, W. Mechano-Hydrothermal Synthesis of SDS Intercalated LDH Nanohybrids and Their Removal Efficiency for 2,4-Dichlorophenoxyacetic Acid from Aqueous Solution. Mater. Chem. Phys. 2015, 152, 95–103. [Google Scholar] [CrossRef]
- Iyi, N.; Sasaki, T. Deintercalation of Carbonate Ions and Anion Exchange of an Al-Rich MgAl-LDH (Layered Double Hydroxide). Appl. Clay Sci. 2008, 42, 246–251. [Google Scholar] [CrossRef]
- Sasai, R.; Morita, M. Luminous Relative Humidity Sensing by Anionic Fluorescein Dyes Incorporated into Layered Double Hydroxide/1-Butanesulfonate Hybrid Materials. Sens. Actuators B Chem. 2017, 238, 702–705. [Google Scholar] [CrossRef] [Green Version]
- Asadpour-Zeynali, K.; Amini, R. A Novel Voltammetric Sensor for Mercury(II) Based on Mercaptocarboxylic Acid Intercalated Layered Double Hydroxide Nanoparticles Modified Electrode. Sens. Actuators B Chem. 2017, 246, 961–968. [Google Scholar] [CrossRef]
- Abdolmohammad-zadeh, H.; Zamani-kalajahi, M. A Turn-on/off Fluorescent Sensor Based on Nano-Structured Mg-Al Layered Double Hydroxide Intercalated with Salicylic Acid for Monitoring of Ferric Ion in Human Serum Samples. Anal. Chim. Acta 2019, 1061, 152–160. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.M.; Guan, M.Y.; Xu, Q.H.; Guo, Y. Multilayer Films of Layered Double Hydroxide/Polyaniline and Their Ammonia Sensing Behavior. J. Hazard. Mater. 2013, 262, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Zhan, T.; Song, Y.; Tan, Z.; Hou, W. Electrochemical Bisphenol A Sensor Based on Exfoliated Ni2Al-Layered Double Hydroxide Nanosheets Modified Electrode. Sens. Actuators B Chem. 2017, 238, 962–971. [Google Scholar] [CrossRef]
- Li, L.; Wang, S.; Xu, Y.; Zhao, S.; Sun, Z.; Ji, C.; Asghar, M.A.; Luo, J. Highly Fluorescent and Stable Ruthenium Unit/Layered Double Hydroxide Composite with Sensitive Detection of Cr2O72−. ChemistrySelect 2017, 2, 6218–6222. [Google Scholar] [CrossRef]
- Li, Z.; Zeng, H.; Cao, X.; Li, H.; Long, Y.; Feng, B.; Lv, S. High-Sensitive Sensor for the Simultaneous Determination of Phenolics Based on Multi-Walled Carbon Nanotube/NiCoAl Hydrotalcite Electrode Material. Microchim. Acta 2021, 188, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Gheibi, S.O.; Fallah Shojaei, A.; Khorshidi, A.; Hosseini-Golgoo, S.M. Synthesis, Characterization, and Gas Sensing Properties of Ni-Cr-Al LDH. Appl. Phys. A Mater. Sci. Process. 2021, 127, 1–7. [Google Scholar] [CrossRef]
- Vigna, L.; Nigro, A.; Verna, A.; Ferrari, I.V.; Marasso, S.L.; Bocchini, S.; Fontana, M.; Chiodoni, A.; Pirri, C.F.; Cocuzza, M. Layered Double Hydroxide-Based Gas Sensors for Voc Detection at Room Temperature. ACS Omega 2021, 6, 20205–20217. [Google Scholar] [CrossRef] [PubMed]
- Li, S.S.; Fang, J.H.; Li, L.; Zhu, M.; Zhang, F.; Zhang, B.Y.; Jiang, T.J.; Zhang, Y.X. An Ultra-Sensitive Electrochemical Sensor of Ni/Fe-LDH toward Nitrobenzene with the Assistance of Surface Functionalization Engineering. Talanta 2021, 225, 122087. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Min, M.; Liu, Y.; Tang, J.; Tang, W. Layered Assembly of NiMn-Layered Double Hydroxide on Graphene Oxide for Enhanced Non-Enzymatic Sugars and Hydrogen Peroxide Detection. Sens. Actuators B Chem. 2018, 260, 408–417. [Google Scholar] [CrossRef]
- Asif, M.; Haitao, W.; Shuang, D.; Aziz, A.; Zhang, G.; Xiao, F.; Liu, H. Metal Oxide Intercalated Layered Double Hydroxide Nanosphere: With Enhanced Electrocatalyic Activity towards H2O2 for Biological Applications. Sens. Actuators B Chem. 2017, 239, 243–252. [Google Scholar] [CrossRef]
- Tcheumi, H.L.; Kameni Wendji, A.P.; Tonle, I.K.; Ngameni, E. A Low-Cost Layered Double Hydroxide (LDH) Based Amperometric Sensor for the Detection of Isoproturon in Water Using Carbon Paste Modified Electrode. J. Anal. Methods Chem. 2020, 8068137. [Google Scholar] [CrossRef] [PubMed]
- Qiao, X.; Wei, M.; Tian, D.; Xia, F.; Chen, P.; Zhou, C. One-Step Electrosynthesis of Cadmium/Aluminum Layered Double Hydroxides Composite as Electrochemical Probe for Voltammetric Detection of Anthracene. J. Electroanal. Chem. 2018, 808, 35–40. [Google Scholar] [CrossRef]
- Zhang, P.; Li, L.; Zhao, Y.; Tian, Z.; Qin, Y.; Lu, J. 8-Anilino-1-Naphthalenesulfonate/Layered Double Hydroxide Ultrathin Films: Small Anion Assembly and Its Potential Application as a Fluorescent Biosensor. Langmuir 2016, 32, 9015–9022. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Li, Z.; Shi, W. A Colorimetric Chemosensor for F- Based on Alizarin Complexone and Layered Double Hydroxide Ultrafilms. Sens. Actuators B Chem. 2013, 188, 576–583. [Google Scholar] [CrossRef]
- Xie, J.X.; Chen, W.J.; Wu, X.X.; Wu, Y.Y.; Lin, H. Enhanced Luminol Chemiluminescence by Co-Fe LDH Nanoplates and Its Application in H2O2 and Glucose Detection. Anal. Methods 2017, 9, 974–979. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, Y.; Wu, J. Review of Non-Invasive Continuous Glucose Monitoring Based on Impedance Spectroscopy. Sens. Actuators A Phys. 2020, 311, 112103. [Google Scholar] [CrossRef]
- Tian, K.; Prestgard, M.; Tiwari, A. A Review of Recent Advances in Nonenzymatic Glucose Sensors. Mater. Sci. Eng. C 2014, 41, 100–118. [Google Scholar] [CrossRef]
- Sehit, E.; Altintas, Z. Significance of Nanomaterials in Electrochemical Glucose Sensors: An Updated Review (2016–2020). Biosens. Bioelectron. 2020, 159, 112165. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Sheng, Q.; Wang, Y.; Zheng, J. Dispersed Nickel Nanoparticles on Flower-like Layered Nickel-Cobalt Double Hydroxides for Non-Enzymic Amperometric Sensing of Glucose. Electroanalysis 2016, 28, 979–984. [Google Scholar] [CrossRef]
- Kong, X.; Xia, B.; Xiao, Y.; Chen, H.; Li, H.; Chen, W.; Wu, P.; Shen, Y.; Wu, J.; Li, S.; et al. Regulation of Cobalt-Nickel LDHs’ Structure and Components for Optimizing the Performance of an Electrochemical Sensor. ACS Appl. Nano Mater. 2019, 2, 6387–6396. [Google Scholar] [CrossRef]
- Moolayadukkam, S.; Thomas, S.; Sahoo, R.C.; Lee, C.H.; Lee, S.U.; Ramakrishna Matte, H.S.S. Role of Transition Metals in Layered Double Hydroxides for Differentiating the Oxygen Evolution and Nonenzymatic Glucose Sensing. ACS Appl. Mater. Interfaces 2020, 12, 6193–6204. [Google Scholar] [CrossRef]
- Fu, S.; Fan, G.; Yang, L.; Li, F. Non-Enzymatic Glucose Sensor Based on Au Nanoparticles Decorated Ternary Ni-Al Layered Double Hydroxide/Single-Walled Carbon Nanotubes/Graphene Nanocomposite. Electrochim. Acta 2015, 152, 146–154. [Google Scholar] [CrossRef]
- Shishegari, N.; Sabahi, A.; Manteghi, F.; Ghaffarinejad, A.; Tehrani, Z. Non-Enzymatic Sensor Based on Nitrogen-Doped Graphene Modified with Pd Nano-Particles and NiAl Layered Double Hydroxide for Glucose Determination in Blood. J. Electroanal. Chem. 2020, 871, 114285. [Google Scholar] [CrossRef]
- Wu, H.; Yan, L.; Fu, L.; Jin, L. Fabrication and Electrochemical Properties of Alizarin-Aminophenylboronic Acid Ensembled with Layered Double Hydroxide for Glucose Sensing Selectivity. Colloids Surfaces A Physicochem. Eng. Asp. 2019, 560, 92–97. [Google Scholar] [CrossRef]
- Cui, J.; Li, Z.; Liu, K.; Li, J.; Shao, M. A Bifunctional Nonenzymatic Flexible Glucose Microsensor Based on CoFe-Layered Double Hydroxide. Nanoscale Adv. 2019, 1, 948–952. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Zhang, L.; Zhang, X.; Liu, X.; Jian, J.; Kong, D.; Zeng, D.; Yuan, H.; Feng, S. Electrochemical Dopamine Sensor Based on Superionic Conducting Potassium Ferrite. Biosens. Bioelectron. 2020, 153, 112045. [Google Scholar] [CrossRef]
- Anuar, N.S.; Basirun, W.J.; Shalauddin, M.; Akhter, S. A Dopamine Electrochemical Sensor Based on a Platinum-Silver Graphene Nanocomposite Modified Electrode. RSC Adv. 2020, 10, 17336–17344. [Google Scholar] [CrossRef]
- Wang, S.; Guo, P.; Ma, G.; Wei, J.; Wang, Z.; Cui, L.; Sun, L.; Wang, A. Three-Dimensional Hierarchical Mesoporous Carbon for Regenerative Electrochemical Dopamine Sensor. Electrochim. Acta 2020, 360, 137016. [Google Scholar] [CrossRef]
- Asif, M.; Aziz, A.; Wang, Z.; Ashraf, G.; Wang, J.; Luo, H.; Chen, X.; Xiao, F.; Liu, H. Hierarchical CNTs@CuMn layered double hydroxide nanohybrid with enhanced electrochemical performance in H 2 S detection from live cells. Anal. Chem. 2019, 91, 3912–3920. [Google Scholar] [CrossRef] [PubMed]
- Azis, N.A.; Isa, I.M.; Hashim, N.; Ahmad, M.S.; Nur, S.; Abd Azis, N.; Md Isa, I.; Hashim, N.; Syahrizal Ahmad, M.; Nur Akmar Mohd Yazid, S.; et al. Synergistic Effect of Zinc/Aluminium-Layered Double Hydroxide-Clopyralid Carbon Nanotubes Paste Electrode in the Electrochemical Response of Dopamine, Acetaminophen, and Bisphenol A. Int. J. Electrochem. Sci. 2020, 15, 9088–9107. [Google Scholar] [CrossRef]
- Zhang, S.; Fu, Y.; Sheng, Q.; Zheng, J. Nickel-Cobalt Double Hydroxide Nanosheets Wrapped Amorphous Ni(OH)2 Nanoboxes: Development of Dopamine Sensor with Enhanced Electrochemical Properties. New J. Chem. 2017, 41, 13076–13084. [Google Scholar] [CrossRef]
- Liang, H.; Gandi, A.N.; Anjum, D.H.; Wang, X.; Schwingenschlögl, U.; Alshareef, H.N. Plasma-Assisted Synthesis of NiCoP for Efficient Overall Water Splitting. Nano Lett. 2016, 16, 7718–7725. [Google Scholar] [CrossRef] [PubMed]
- Thakur, N.; Chaturvedi, A.; Mandal, D.; Nagaiah, T.C. Ultrasensitive and Highly Selective Detection of Dopamine by a NiFeP Based Flexible Electrochemical Sensor. Chem. Commun. 2020, 56, 8448–8451. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Bai, L.; Guo, J.; Zhao, Y. A Three Dimensional Nanowall of Calcein/Layered Double Hydroxide as an Electrogenerated Chemiluminescence Sensor. RSC Adv. 2015, 5, 89056–89061. [Google Scholar] [CrossRef]
- Burek, B.O.; Bormann, S.; Hollmann, F.; Bloh, J.Z.; Holtmann, D. Hydrogen Peroxide Driven Biocatalysis. Green Chem. 2019, 21, 3232–3249. [Google Scholar] [CrossRef] [Green Version]
- Riaz, M.A.; Yuan, Z.; Mahmood, A.; Liu, F.; Sui, X.; Chen, J.; Huang, Q.; Liao, X.; Wei, L.; Chen, Y. Hierarchically Porous Carbon Nanofibers Embedded with Cobalt Nanoparticles for Efficient H2O2 Detection on Multiple Sensor Platforms. Sens. Actuators B Chem. 2020, 319, 128243. [Google Scholar] [CrossRef]
- You, T.; Qing, C.; Quanhui, L.; Guolin, Y.; Hongtao, G.; Gang, C.; Chengjun, D.; Tao, Y.; Chang, Q.; Liu, Q.; et al. Highly Sensitive Nonenzymatic H2O2 Sensor Based on NiFe-Layered Double Hydroxides Nanosheets Grown on Ni Foam. Surf. Interfaces 2018, 12, 102–107. [Google Scholar] [CrossRef]
- Tang, X.; Debliquy, M.; Lahem, D.; Yan, Y.; Raskin, J.P. A Review on Functionalized Graphene Sensors for Detection of Ammonia. Sensors 2021, 21, 1443. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Wang, L.; Wang, X. A High Performance Sensor Based on PANI/ZnTi-LDHs Nanocomposite for Trace NH3 Detection. Org. Electron. 2019, 66, 102–109. [Google Scholar] [CrossRef]
- He, L.; Zhang, W.; Zhang, X.; Bai, X.; Chen, J.; Ikram, M.; Zhang, G.; Shi, K. 3D Flower-like NiCo-LDH Composites for a High-Performance NO2 Gas Sensor at Room Temperature. Colloids Surfaces A Physicochem. Eng. Asp. 2020, 603, 125142. [Google Scholar] [CrossRef]
- Qin, Y.; Zhao, R.; Bai, C. Layered Double Hydroxide-Oriented Assembly by Negatively Charged Graphene Oxide for NO2 Sensing at Ppb Level. New J. Chem. 2020, 44, 16985–16994. [Google Scholar] [CrossRef]
- Chen, X.; Chen, X.; Lian, S.; Ma, Y.; Peng, A.; Tian, X.; Huang, Z. Electrochemiluminescence Sensor for Melamine Based on a Ru(Bpy)32+ -Doped Silica Nanoparticles/Carboxylic Acid Functionalized Multi-Walled Carbon Nanotubes/Nafion Composite Film Modified Electrode. Talanta 2016, 146, 844–850. [Google Scholar] [CrossRef] [PubMed]
- Zhe, T.; Li, R.; Wang, Q.; Shi, D.; Li, F.; Liu, Y.; Liang, S.; Sun, X.; Cao, Y.; Wang, L. In Situ Preparation of FeSe Nanorods-Functionalized Carbon Cloth for Efficient and Stable Electrochemical Detection of Nitrite. Sens. Actuators B Chem. 2020, 321, 128452. [Google Scholar] [CrossRef]
- Xiang, X.; Pan, F.; Du, Z.; Feng, X.; Gao, C.; Li, Y. MgAl-Layered Double Hydroxide Flower Arrays Grown on Carbon Paper for Efficient Electrochemical Sensing of Nitrite. J. Electroanal. Chem. 2019, 855, 113632. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, Y.; Xie, D.; Gu, Y.; Zhang, H.; Wang, G.; Zhang, Y.; Zhao, H.; Wong, P.K. NiFe-Layered Double Hydroxide Nanosheet Arrays Supported on Carbon Cloth for Highly Sensitive Detection of Nitrite. ACS Appl. Mater. Interfaces 2018, 10, 6541–6551. [Google Scholar] [CrossRef] [PubMed]
- Shamsayei, M.; Yamini, Y.; Asiabi, H. Evaluation of Reusable Organic-Inorganic Nafion/Layered Double Hydroxide Nanohybrids for Highly Efficient Uptake of Mercury Ions from Aqueous Solution. Appl. Clay Sci. 2018, 162, 534–542. [Google Scholar] [CrossRef]
- Chen, H.; Ji, X.; Zhang, S.; Shi, W.; Wei, M.; Evans, D.G.; Duan, X. A Ratiometric Fluorescence Chemosenser for Hg2+ Based on Primuline and Layered Double Hydroxide Ultrafilms. Sens. Actuators B Chem. 2013, 178, 155–162. [Google Scholar] [CrossRef]
- Wang, N.; Sun, J.; Fan, H.; Ai, S. Anion-Intercalated Layered Double Hydroxides Modified Test Strips for Detection of Heavy Metal Ions. Talanta 2016, 148, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Wani, A.A.; Khan, A.M.; Manea, Y.K.; Salem, M.A.S.; Shahadat, M. Selective Adsorption and Ultrafast Fluorescent Detection of Cr(VI) in Wastewater Using Neodymium Doped Polyaniline Supported Layered Double Hydroxide Nanocomposite. J. Hazard. Mater. 2021, 416, 125754. [Google Scholar] [CrossRef] [PubMed]
- Zhan, T.; Wang, X.; Li, X.; Song, Y.; Hou, W. Hemoglobin Immobilized in Exfoliated Co2Al LDH-Graphene Nanocomposite Film: Direct Electrochemistry and Electrocatalysis toward Trichloroacetic Acid. Sens. Actuators B Chem. 2016, 228, 101–108. [Google Scholar] [CrossRef]
- Wang, L.; Chen, X.; Liu, C.; Yang, W. Non-Enzymatic Acetylcholine Electrochemical Biosensor Based on Flower-like NiAl Layered Double Hydroxides Decorated with Carbon Dots. Sens. Actuators B Chem. 2016, 233, 199–205. [Google Scholar] [CrossRef]
- Zhang, C.; Liang, X.; Lu, Y.; Li, H.; Xu, X. Performance of CUAL-LDH/GR Nanocomposite-Based Electrochemical Sensor with Regard to Trace Glyphosate Detection in Water. Sensors 2020, 20, 4146. [Google Scholar] [CrossRef] [PubMed]
- Tian, R.; Li, M.; Teng, H.; Luo, H.; Yan, D.; Wei, M. Surface Enhanced Raman Scattering Based on Au Nanoparticles/Layered Double Hydroxide Ultrathin Films. J. Mater. Chem. C 2015, 3, 5167–5174. [Google Scholar] [CrossRef]
- Yadav, D.K.; Ganesan, V.; Gupta, R.; Yadav, M.; Rastogi, P.K. Sensitive Determination of Kojic Acid in Tomato Sauces Using Ni-Fe Layered Double Hydroxide Synthesized through Fe-MIL-88 Metal-Organic Framework Templated Route. J. Chem. Sci. 2020, 132, 1–8. [Google Scholar] [CrossRef]
- Kameni, A.P.W.; Tcheumi, H.L.; Tonle, I.K.; Ngameni, E. Sensitive Electrochemical Detection of Methyl Parathion in the Presence of Para-Nitrophenol on a Glassy Carbon Electrode Modified by a Functionalized NiAl-Layered Double Hydroxide. Comptes Rendus Chim. 2019, 22, 22–33. [Google Scholar] [CrossRef]
- Jin, L.; Guo, Z.; Wang, T.; Wei, M. Assembly of Layered Double Hydroxide/ANTS Ultrathin Film and Its Application as a Biosensing Material. Sens. Actuators B Chem. 2013, 177, 145–152. [Google Scholar] [CrossRef]
- Fujimura, T.; Akagashi, Y.; Aoyama, Y.H.; Sasai, R. Preparation of Transparent Film of Layered Double Hydroxide with Anionic Pyrene Derivatives and Its Luminous Toluene Detection Ability. Int. J. Photoenergy 2020, 8870930. [Google Scholar] [CrossRef]
- Guan, W.; Zhou, W.; Han, D.; Zhang, M.; Lu, C.; Lin, J.M. One-Step Enrichment and Chemiluminescence Detection of Sodium Dodecyl Benzene Sulfonate in River Water Using Mg-Al-Carbonate Layered Double Hydroxides. Talanta 2014, 120, 268–273. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, L.; Hu, L.; Huang, S.; Jin, Z.; Zhang, M.; Huang, X.; Lu, J.; Ruan, S.; Zeng, Y.J. Multifunctional Zn-Al Layered Double Hydroxides for Surface-Enhanced Raman Scattering and Surface-Enhanced Infrared Absorption. Dalt. Trans. 2019, 48, 426–434. [Google Scholar] [CrossRef] [PubMed]
- Murai, S.; Tokudome, Y.; Katsura, R.; Sakamoto, H.; Noguchi, K.; Takahashi, M.; Tanaka, K. Layered Double Hydroxide Nanosheets on Plasmonic Arrays of Al Nanocylinders for Optical Sensing. ACS Appl. Nano Mater. 2020, 3, 5838–5845. [Google Scholar] [CrossRef]
- Xiao, Y.-P.; Zhang, L.-M.; Guo, Y.; Song, Y.-F. (Pyrenetetrasulfonate/ZnS)n Ordered Ultrathin Films with ZnAl Layered Double Hydroxide as Precursor and Ethanol-Sensing Properties. Eur. J. Inorg. Chem. 2013, 2013, 3348–3351. [Google Scholar] [CrossRef]
LDH | Synthesis | Analysis Method | Linear Detection Range (μM) | LOD (nM) | Highlights | Ref. |
---|---|---|---|---|---|---|
CoNi | Hydrothermal | Chronoamperometry | 5–14,800 * | 1600 | Ni nanoparticles were extracted from the CoNi-LDHs to improve conductivity | [116] |
CoNi | Electrodeposition | Chronoamperometry | 20–7700 * | - | Direct synthesis of CoNi-LDHs on Cu(OH)2/GCE for higher conductivity | [48] |
CoNi | Hydrothermal | Chronoamperometry | 1–1500 | 680 | Structural optimization via tuning Co-to-Ni ratio and LDH growth duration | [47] |
CoNi | - | Chronoamperometry | 1–2000 | 3100 | Co-facilitated glucose oxidation, whereas Ni controlled morphology | [117] |
NiFe | Urea hydrolysis | Chronoamperometry | 0–3100 | - | Ni-to-Fe ratio did not significantly influence LDH morphology | [118] |
NiFe | Hydrothermal | Chronoamperometry | 2–800 | 590 | Fe content was crucial in yielding thinner, more uniform NiFe-LDHs | [46] |
NiAl | Co-precipitation | Chronoamperometry | 10–6100 | 1 | LDHs with Au nanoparticles and CNTs/rGO improved conductivity | [119] |
NiAl | Electrodeposition | Chronoamperometry | 0.5–10,000 | 234 | Pd improved OH− adsorption and NrGOs increased surface area | [120] |
CoAl | Hydrothermal | DPV | 0–1 | 4 | LDHs provided stability and high surface area for highly catalytic ARS-PBA | [121] |
CoFe | Electrodeposition | Colorimetry | 1–20 | 470 | Simultaneous electrochemical and optical detection | [122] |
LDH | Synthesis | Analysis Method | Linear Detection Range (μM) | LOD (nM) | Highlights | Ref. |
---|---|---|---|---|---|---|
ZnNiAl | Hydrothermal | Chronoamperometry | 0.001–1 | 13.5 | rGOs increased oxidation peak currents, separating the DA, UA, and AA peaks | [42] |
ZnAl | Co-precipitation | Chronoamperometry | 7–500 | 170 | MWCNTs | [127] |
NiCo | Hydrothermal | Chronoamperometry | 0.05–1080 | 17 | Ni(OH)2 nanoboxes synergized with the LDHs for improved electron mobility | [128] |
NiFeP | Hydrothermal | Chronoamperometry | 0.01–500 * | 0.57 | Phosphorization of NiFe-LDHs improved electron mobility | [130] |
MgAl | Solvothermal | Chemiluminesence | 0.5–101 | 350 | Vertical MgAl-LDHs had higher oxidation potential than horizontal LDHs | [131] |
LDH | Synthesis | Analysis Method | Linear Detection Range (μM) | LOD (nM) | Highlights | Ref. |
---|---|---|---|---|---|---|
CoMn | Co-precipitation | Chronoamperometry | 110–1200 | 86,000 | Pure LDH crystal phase achieved by tuning the Co-to-Mn ratio | [40] |
NiFe | Hydrothermal | Chronoamperometry | 0.5–840 | 500 | Direct synthesis of LDHs on Ni Foam increased conductivity and porosity | [134] |
NiFe | Ion Exchange | Colorimetry | 10–500 | 4400 | Exfoliation increased surface area for increased peroxidase-like activity | [50] |
CoNi | Hydrothermal | Colorimetry | 10–90 | 760 | Pt dopants were required for peroxidase-like LDH activity | [52] |
LDH | Analyte | Analysis Method | Linear Detection Range (μM) | LOD (nM) | Highlights | Ref. |
---|---|---|---|---|---|---|
ZnTi | Ammonia gas | Resistance change | 0.2–50 * | 200 + | Excellent host with high surface area for ammonia-reactive PANI | [136] |
ZnTi | NO2 gas | Resistance change | 0.2–10 * | 50 + | rGO content increased surface area and conductivity of LDHs | [138] |
MgAl | Melamine | Fluorimetry | 0.03–0.1 | 4 | Immobilization of Ag–CTA nanoparticles increased fluorescent response | [51] |
MgAl | Nitrite | CV | 3.7–177.4 | 30 | Carbon nanofibers provided a porous structure with uniform nucleation sites | [141] |
NiFe | Nitrite | Chronoamperometry | 5–1000 | 20 | LDH nanosheets were thinner and larger by optimizing the Ni-to-Fe ratio | [142] |
LDH | Analyte | Analysis Method | Linear Detection Range | LOD | Highlights | Ref. |
---|---|---|---|---|---|---|
ZnCr | Hg2+ | Extraction | 0.013–500 μg L−1 | 4 ng L−1 | Simultaneous Hg2+ extraction and detection with lamellar LDHs | [143] |
MgAl | Hg2+ | Fluorimetry | 2.5–100 μM | 0.00013 pM | Extremely low LOD using sensitive primuline dye | [144] |
MgAl | Fe3+, Cd2+, Pb2+ | Colorimetry | - | - | Multi-metal detection using same MgAl-LDHs with different anions | [145] |
MgAl | Al3+ | Fluorimetry | 0.2–120 μM | 23 nM | Simultaneous electrochemical and optical detection enabled by ARS guests | [57] |
CV | 10.1 nM | |||||
ZnAlNd | Cr6+ | Fluorimetry | 200–1000 ppb | 8 ppb | Cr6+ steals light from LDHs, resulting in lower fluorescent response from LDHs | [146] |
LDH | Analyte | Analysis Method | Linear Detection Range (μM) | LOD (nM) | Highlights | Ref. |
---|---|---|---|---|---|---|
CoAl | α-Naphthol | DPV | 0.3–150 * | 62 | Exfoliation improved growth of ZIF-67 on LDHs | [49] |
CoAl | Trichloroacetic acid | SWV | 2500–410,000 | 820 | Biocompatibility with hemoglobin | [147] |
NiAl | Acetylcholine | Chronoamperometry | 5–6885 | 1700 | Negatively charged CQDs repelled cationic interferants | [148] |
CuAl | Glyphosate | DPV | 0.00296–1.18 | 1 | Graphene increased LDH sensor conductivity | [149] |
NiFe | Kojic acid | Chronoamperometry | 1–4500 * | 730 | MOF-templating increased surface active sites | [151] |
NiAl | Methyl parathion | DPV | 0.5–3.5 | 22.8 | Intercalated hydrophobic BEHP to selectively detect MP | [152] |
ZnAl | Dextran-40 | Fluorimetry | 10–10,000 | 2700 | The number of ZnAl/ANTS bilayers was optimized | [153] |
MgAl | Tetracycline | Fluorimetry | 0.1–5 | 7.6 | LDHs are more stable hosts in alkaline environments | [53] |
MgAl | SDBS | Chemiluminesence | 0.1–10 | 80 | Increasing M3+ ratio improved adsorption of anionic IO4− | [155] |
ZnAl | Vitamin B6 | DPV | 0.2–200 | 86 | Catalytic NiCo2O4 increased surface area and selectivity | [158] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, A.; Varga, I.; Adhikari, A.; Patel, R. Recent Advances in Layered Double Hydroxide-Based Electrochemical and Optical Sensors. Nanomaterials 2021, 11, 2809. https://doi.org/10.3390/nano11112809
Kim A, Varga I, Adhikari A, Patel R. Recent Advances in Layered Double Hydroxide-Based Electrochemical and Optical Sensors. Nanomaterials. 2021; 11(11):2809. https://doi.org/10.3390/nano11112809
Chicago/Turabian StyleKim, Andrew, Imre Varga, Arindam Adhikari, and Rajkumar Patel. 2021. "Recent Advances in Layered Double Hydroxide-Based Electrochemical and Optical Sensors" Nanomaterials 11, no. 11: 2809. https://doi.org/10.3390/nano11112809
APA StyleKim, A., Varga, I., Adhikari, A., & Patel, R. (2021). Recent Advances in Layered Double Hydroxide-Based Electrochemical and Optical Sensors. Nanomaterials, 11(11), 2809. https://doi.org/10.3390/nano11112809