Natural Clay as a Low-Cost Adsorbent for Crystal Violet Dye Removal and Antimicrobial Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Instrumentation
2.2. Preparation of the Micro and Nanoclays
2.3. Adsorption Experimentation
2.4. Antimicrobial Activity
3. Results
3.1. Selectivity Investigation of Micro and Nanoclay Adsorbent
3.2. Characterization of the Micro and Nanoclay Adsorbents
3.2.1. FTIR Spectra Analysis
3.2.2. XRD Analysis
3.2.3. XRF Compositional Analysis
3.2.4. Morphological Image Analysis and Elemental Composition
3.3. Adsorption Performance of the Micro and Nanoclays
3.4. Adsorption Isotherm
3.5. Kinetics Adsorption
3.6. Adsorption Thermodynamics
3.7. Adsorption Mechanism
3.8. Comparison of Saudi Natural Micro and Nanoclay with Other Adsorbents
3.9. Antimicrobial Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hassani, A.; Khataee, A.; Karaca, S.; Karaca, M.; Kıranşan, M. Adsorption of two cationic textile dyes from water with modified nanoclay: A comparative study by using central composite design. J. Environ. Chem. Eng. 2015, 3, 2738–2749. [Google Scholar] [CrossRef]
- Hamza, W.; Dammak, N.; Hadjltaief, H.B.; Eloussaief, M.; Benzina, M. Sono-assisted adsorption of Cristal Violet dye onto Tunisian Smectite Clay: Characterization, kinetics and adsorption isotherms. Ecotoxicol. Environ. Saf. 2018, 163, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, S.; Mukherjee, A.; Das, S.; Maddela, N.R.; Iram, S.; Das, P. Study on isotherm, kinetics, and thermodynamics of adsorption of crystal violet dye by calcium oxide modified fly ash. Environ. Eng. Res. 2020, 26, 190372. [Google Scholar] [CrossRef]
- Kathiresan, G.; Vijayakumar, K.; Sundarrajan, A.P.; Kim, H.-S.; Adaikalam, K. Photocatalytic degradation efficiency of ZnO, GO and PVA nanoadsorbents for crystal violet, methylene blue and trypan blue dyes. Optik 2021, 238, 166671. [Google Scholar] [CrossRef]
- Vithalkar, S.H.; Jugade, R.M. Adsorptive removal of crystal violet from aqueous solution by cross-linked chitosan coated bentonite. Mater. Today Proc. 2020, 29, 1025–1032. [Google Scholar] [CrossRef]
- Miyah, Y.; Lahrichi, A.; Idrissi, M.; Boujraf, S.; Taouda, H.; Zerrouq, F. Assessment of adsorption kinetics for removal potential of Crystal Violet dye from aqueous solutions using Moroccan pyrophyllite. J. Assoc. Arab Univ. Basic Appl. Sci. 2017, 23, 20–28. [Google Scholar] [CrossRef] [Green Version]
- Chahinez, H.-O.; Abdelkader, O.; Leila, Y.; Tran, H.N. One-stage preparation of palm petiole-derived biochar: Characterization and application for adsorption of crystal violet dye in water. Environ. Technol. Innov. 2020, 19, 100872. [Google Scholar] [CrossRef]
- Ahmed, M.; Mashkoor, F.; Nasar, A. Development, characterization, and utilization of magnetized orange peel waste as a novel adsorbent for the confiscation of crystal violet dye from aqueous solution. Groundw. Sustain. Dev. 2020, 10, 100322. [Google Scholar] [CrossRef]
- Sacco, O.; Matarangolo, M.; Vaiano, V.; Libralato, G.; Guida, M.; Lofrano, G.; Carotenuto, M. Crystal violet and toxicity removal by adsorption and simultaneous photocatalysis in a continuous flow micro-reactor. Sci. Total Environ. 2018, 644, 430–438. [Google Scholar] [CrossRef]
- Türgay, O.; Ersöz, G.; Atalay, S.; Forss, J.; Welander, U. The treatment of azo dyes found in textile industry wastewater by anaerobic biological method and chemical oxidation. Sep. Purif. Technol. 2011, 79, 26–33. [Google Scholar] [CrossRef]
- Mostafa, A.A.-F.; Elshikh, M.S.; Al-Askar, A.A.; Hadibarata, T.; Yuniarto, A.; Syafiuddin, A. Decolorization and biotransformation pathway of textile dye by Cylindrocephalum aurelium. Bioprocess Biosyst. Eng. 2019, 42, 1483–1494. [Google Scholar] [CrossRef] [PubMed]
- Palanisamy, S.; Nachimuthu, P.; Awasthi, M.K.; Ravindran, B.; Chang, S.W.; Palanichamy, M.; Nguyen, D.D. Application of electrochemical treatment for the removal of triazine dye using aluminium electrodes. J. Water Supply Res. Technol. 2020, 69, 345–354. [Google Scholar] [CrossRef]
- Alqadami, A.A.; Naushad, M.; Abdalla, M.A.; Khan, M.R.; Alothman, Z.A. Adsorptive Removal of Toxic Dye Using Fe3O4–TSC Nanocomposite: Equilibrium, Kinetic, and Thermodynamic Studies. J. Chem. Eng. Data 2016, 61, 3806–3813. [Google Scholar] [CrossRef]
- Khan, M.A.; Otero, M.; Kazi, M.; Alqadami, A.A.; Wabaidur, S.M.; Siddiqui, M.R.; Alothman, Z.A.; Sumbul, S. Unary and binary adsorption studies of lead and malachite green onto a nanomagnetic copper ferrite/drumstick pod biomass composite. J. Hazard. Mater. 2019, 365, 759–770. [Google Scholar] [CrossRef]
- Aldawsari, A.M.; Alsohaimi, I.H.; Al-Kahtani, A.A.; Alqadami, A.A.; Abdalla, Z.E.A.; Saleh, E.A.M. Adsorptive performance of aminoterephthalic acid modified oxidized activated carbon for malachite green dye: Mechanism, kinetic and thermodynamic studies. Sep. Sci. Technol. 2021, 56, 835–846. [Google Scholar] [CrossRef]
- Alqadami, A.A.; Khan, M.A.; Siddiqui, M.R.; Alothman, Z.A.; Sumbul, S. A facile approach to develop industrial waste encapsulated cryogenic alginate beads to sequester toxic bivalent heavy metals. J. King Saud Univ. Sci. 2020, 32. [Google Scholar] [CrossRef]
- Sudamalla, P.; Saravanan, P.; Matheswaran, M. Optimization of operating parameters using response surface methodology for adsorption of crystal violet by activated carbon prepared from mango kernel. Environ. Res. 2012, 22, 1–7. [Google Scholar]
- Usmani, M.A.; Khan, I.; Ahmad, N.; Bhat, A.H.; Sharma, D.K.; Rather, J.A.; Hassan, S.I. Modification of Nanoclay Systems: An Approach to Explore Various Applications BT. In Nanoclay Reinforced Polymer Composites: Nanocomposites and Bionanocomposites; Jawaid, M., Qaiss, A., Bouhfid, R., Eds.; Springer: Singapore, 2016; pp. 57–83. ISBN 978-981-10-1953-1. [Google Scholar]
- Parisi, F. Adsorption and Separation of Crystal Violet, Cerium(III) and Lead(II) by Means of a Multi-Step Strategy Based on K10-Montmorillonite. Minerals 2020, 10, 466. [Google Scholar] [CrossRef]
- Parisi, F.; Lazzara, G.; Merli, M.; Milioto, S.; Princivalle, F.; Sciascia, L. Simultaneous Removal and Recovery of Metal Ions and Dyes from Wastewater through Montmorillonite Clay Mineral. Nanomaterials 2019, 9, 1699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eren, E.; Afsin, B. Investigation of a basic dye adsorption from aqueous solution onto raw and pre-treated bentonite surfaces. Dye. Pigment. 2008, 76, 220–225. [Google Scholar] [CrossRef]
- Monash, P.; Pugazhenthi, G. Removal of Crystal Violet Dye from Aqueous Solution Using Calcined and Uncalcined Mixed Clay Adsorbents. Sep. Sci. Technol. 2009, 45, 94–104. [Google Scholar] [CrossRef]
- Awasthi, A.; Jadhao, P.; Kumari, K. Clay nano-adsorbent: Structures, applications and mechanism for water treatment. SN Appl. Sci. 2019, 1, 1076. [Google Scholar] [CrossRef] [Green Version]
- Merino, D.; Mansilla, A.Y.; Casalongué, C.A.; Álvarez, V.A. Preparation, Characterization, and In Vitro Testing of Nanoclay Antimicrobial Activities and Elicitor Capacity. J. Agric. Food Chem. 2018, 66, 3101–3109. [Google Scholar] [CrossRef] [PubMed]
- Gulin-Sarfraz, T.; Kalantzopoulos, G.; Pettersen, M.K.; Åsli, A.W.; Tho, I.; Axelsson, L.; Sarfraz, J. Inorganic Nanocarriers for Encapsulation of Natural Antimicrobial Compounds for Potential Food Packaging Application: A Comparative Study. Nanomaterials 2021, 11, 379. [Google Scholar] [CrossRef] [PubMed]
- Soleimani, M.; Siahpoosh, Z.H. Ghezeljeh nanoclay as a new natural adsorbent for the removal of copper and mercury ions: Equilibrium, kinetics and thermodynamics studies. Chin. J. Chem. Eng. 2015, 23, 1819–1833. [Google Scholar] [CrossRef]
- Bauer, A.W.; Kirby, W.M.M.; Sherris, J.C.; Turck, M. Antibiotic Susceptibility Testing by a Standardized Single Disk Method. Am. J. Clin. Pathol. 1966, 45, 493–496. [Google Scholar] [CrossRef]
- Giannakas, A.; Tsagkalias, I.; Achilias, D.S.; Ladavos, A. A novel method for the preparation of inorganic and organo-modified montmorillonite essential oil hybrids. Appl. Clay Sci. 2017, 146, 362–370. [Google Scholar] [CrossRef]
- Kurczewska, J.; Cegłowski, M.; Schroeder, G. Alginate/PAMAM dendrimer—Halloysite beads for removal of cationic and anionic dyes. Int. J. Biol. Macromol. 2019, 123, 398–408. [Google Scholar] [CrossRef]
- Parveen, R.; Tarannum, Z.; Ali, S.; Fatima, S. Nanoclay based study on protein stability and aggregation and its implication in human health. Int. J. Biol. Macromol. 2021, 166, 385–400. [Google Scholar] [CrossRef]
- Chaari, I.; Fakhfakh, E.; Medhioub, M.; Jamoussi, F. Comparative study on adsorption of cationic and anionic dyes by smectite rich natural clays. J. Mol. Struct. 2019, 1179, 672–677. [Google Scholar] [CrossRef]
- Ma, Y.; Zhu, J.; He, H.; Yuan, P.; Shen, W.; Liu, D. Infrared investigation of organo-montmorillonites prepared from different surfactants. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2010, 76, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Mahvi, A.H.; Dalvand, A. Kinetic and equilibrium studies on the adsorption of Direct Red 23 dye from aqueous solution using montmorillonite nanoclay. Water Qual. Res. J. 2019, 55, 132–144. [Google Scholar] [CrossRef]
- Ravindra, R.T.; Kaneko, S.; Endo, T.; Lakshmi, R.S. Stimulated brillouin scattering in high-power photonic crystal fiber lasers in different pump schemes. J. Lasers Opt. Photonics 2017, 4. Available online: https://www.omicsonline.org/open-access/stimulated-brillouin-scattering-in-highpower-photonic-crystal-fiber-lasers-in-different-pump-schemes-2469-410X-1000170-96476.html (accessed on 20 August 2021). [CrossRef]
- Chinoune, K.; Bentaleb, K.; Bouberka, Z.; Nadim, A.; Maschke, U. Adsorption of reactive dyes from aqueous solution by dirty bentonite. Appl. Clay Sci. 2016, 123, 64–75. [Google Scholar] [CrossRef]
- Xue, W.; He, H.; Zhu, J.; Yuan, P. FTIR investigation of CTAB–Al–montmorillonite complexes. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2007, 67, 1030–1036. [Google Scholar] [CrossRef]
- Suwandi, A.C.; Indraswati, N.; Ismadji, S. Adsorption of N-methylated diaminotriphenilmethane dye (malachite green) on natural rarasaponin modified kaolin. Desalination Water Treat. 2012, 41, 342–355. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.-J.; Kim, T.-H.; Kim, H.-M.; Hong, I.-K.; Kim, E.-J.; Choi, A.-J.; Choi, H.-J.; Oh, J.-M. Nano-biohybrids of engineered nanoclays and natural extract for antibacterial agents. Appl. Clay Sci. 2016, 134, 19–25. [Google Scholar] [CrossRef]
- Gong, X.; Jiang, W.; Hu, S.; Yang, Z.; Liu, X.; Fan, Z. Comprehensive utilization of foundry dust: Coal powder and clay minerals separation by ultrasonic-assisted flotation. J. Hazard. Mater. 2021, 402, 124124. [Google Scholar] [CrossRef]
- Khajeh, M.; Ghaemi, A. Exploiting response surface methodology for experimental modeling and optimization of CO2 adsorption onto NaOH-modified nanoclay montmorillonite. J. Environ. Chem. Eng. 2020, 8, 103663. [Google Scholar] [CrossRef]
- Atilhan, M.; Atilhan, S.; Ullah, R.; Anaya, B.; Cagin, T.; Yavuz, C.T.; Aparicio, S. High-pressure methane, carbon dioxide, and nitrogen adsorption on amine-impregnated porous montmorillonite nanoclays. J. Chem. Eng. Data 2016, 61, 2749–2760. [Google Scholar] [CrossRef]
- Shirzad-Siboni, M.; Khataee, A.; Hassani, A.; Karaca, S. Preparation, characterization and application of a CTAB-modified nanoclay for the adsorption of an herbicide from aqueous solutions: Kinetic and equilibrium studies. Comptes Rendus Chim. 2015, 18, 204–214. [Google Scholar] [CrossRef]
- Dehmani, Y.; Sellaoui, L.; Alghamdi, Y.; Lainé, J.; Badawi, M.; Amhoud, A.; Bonilla-Petriciolet, A.; Lamhasni, T.; Abouarnadasse, S. Kinetic, thermodynamic and mechanism study of the adsorption of phenol on Moroccan clay. J. Mol. Liq. 2020, 312, 113383. [Google Scholar] [CrossRef]
- Dewi, R.; Agusnar, H.; Alfian, Z. Tamrin Characterization of technical kaolin using XRF, SEM, XRD, FTIR and its potentials as industrial raw materials. J. Phys. Conf. Ser. 2018, 1116, 042010. [Google Scholar] [CrossRef]
- Usman, M.; Siddiqui, N.A.; Mathew, M.; Zhang, S.; El-Ghali, M.A.K.; Ramkumar, M.; Jamil, M.; Zhang, Y. Linking the influence of diagenetic properties and clay texture on reservoir quality in sandstones from NW Borneo. Mar. Pet. Geol. 2020, 120, 104509. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, T.; He, T.; Chen, L. Removal of crystal violet by clay/PNIPAm nanocomposite hydrogels with various clay contents. Appl. Clay Sci. 2014, 90, 1–5. [Google Scholar] [CrossRef]
- Hassan, M.H.; Fayoumi, L.M.A.; Jamal, M.M. Kinetic study of the discoloration of triphenylmethane dyes in function of ph, salt effect. J. Univ. Chem. Technol. Metall. 2011, 46, 395–400. [Google Scholar]
- Gupta, V.K.; Agarwal, S.; Ahmad, R.; Mirza, A.; Mittal, J. Sequestration of toxic congo red dye from aqueous solution using ecofriendly guar gum/ activated carbon nanocomposite. Int. J. Biol. Macromol. 2020, 158, 1310–1318. [Google Scholar] [CrossRef] [PubMed]
- Sabna, V.; Thampi, S.G.; Chandrakaran, S. Adsorption of crystal violet onto functionalised multi-walled carbon nanotubes: Equilibrium and kinetic studies. Ecotoxicol. Environ. Saf. 2016, 134, 390–397. [Google Scholar] [CrossRef] [PubMed]
- Kannan, C.; Sundaram, T.; Palvannan, T. Environmentally stable adsorbent of tetrahedral silica and non-tetrahedral alumina for removal and recovery of malachite green dye from aqueous solution. J. Hazard. Mater. 2008, 157, 137–145. [Google Scholar] [CrossRef]
- Tharaneedhar, V.; Kumar, P.S.; Saravanan, A.; Ravikumar, C.; Jaikumar, V. Prediction and interpretation of adsorption parameters for the sequestration of methylene blue dye from aqueous solution using microwave assisted corncob activated carbon. Sustain. Mater. Technol. 2017, 11, 1–11. [Google Scholar] [CrossRef]
- Khan, M.A.; Wabaidur, S.M.; Siddiqui, M.R.; Alqadami, A.A.; Khan, A.H. Silico-manganese fumes waste encapsulated cryogenic alginate beads for aqueous environment de-colorization. J. Clean. Prod. 2020, 244. [Google Scholar] [CrossRef]
- Abu-El-Halawa, R.; Zabin, S.A.; Abu-Sittah, H.H. Investigation of Methylene Blue Dye Adsorption from Polluted Water Using Oleander Plant (Al Defla) Tissues as Sorbent. Am. J. Environ. Sci. 2016, 12. [Google Scholar] [CrossRef]
- Lagergren, S. About the theory of so-called adsorption of soluble substances. Handlingar 1898, 24, 1–39. [Google Scholar]
- Wingenfelder, U.; Hansen, C.; Furrer, G.; Schulin, R. Removal of Heavy Metals from Mine Waters by Natural Zeolites. Environ. Sci. Technol. 2005, 39, 4606–4613. [Google Scholar] [CrossRef]
- Alqadami, A.A.; Naushad, M.; ALOthman, Z.A.; Alsuhybani, M.; Algamdi, M. Excellent adsorptive performance of a new nanocomposite for removal of toxic Pb(II) from aqueous environment: Adsorption mechanism and modeling analysis. J. Hazard. Mater. 2020, 389, 121896. [Google Scholar] [CrossRef]
- Lima, E.C.; Hosseini-Bandegharaei, A.; Moreno-Piraján, J.C.; Anastopoulos, I. A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption. J. Mol. Liq. 2019, 273, 425–434. [Google Scholar] [CrossRef]
- Thue, P.S.; Adebayo, M.A.; Lima, E.C.; Sieliechi, J.M.; Machado, F.M.; Dotto, G.L.; Vaghetti, J.C.P.; Dias, S.L.P. Preparation, characterization and application of microwave-assisted activated carbons from wood chips for removal of phenol from aqueous solution. J. Mol. Liq. 2016, 223, 1067–1080. [Google Scholar] [CrossRef]
- Ashrafi, A.; Rahbar-Kelishami, A.; Shayesteh, H. Highly efficient simultaneous ultrasonic assisted adsorption of Pb (II) by Fe3O4@MnO2 core-shell magnetic nanoparticles: Synthesis and characterization, kinetic, equilibrium, and thermodynamic studies. J. Mol. Struct. 2017, 1147, 40–47. [Google Scholar] [CrossRef]
- Feng, G.; Ma, J.; Zhang, X.; Zhang, Q.; Xiao, Y.; Ma, Q.; Wang, S. Magnetic natural composite Fe3O4-chitosan@bentonite for removal of heavy metals from acid mine drainage. J. Colloid Interface Sci. 2019, 538, 132–141. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.-H.; Xue, K.; Ma, Q.-L.; Ma, T.; Ma, Y.-L.; Sun, Y.-G.; Ji, W.-X. Removal of hazardous crystal violet dye by low-cost P-type zeolite/carbon composite obtained from in situ conversion of coal gasification fine slag. Microporous Mesoporous Mater. 2021, 312, 110742. [Google Scholar] [CrossRef]
- Mukherjee, K.; Kedia, A.; Rao, K.J.; Dhir, S.; Paria, S. Adsorption enhancement of methylene blue dye at kaolinite clay–water interface influenced by electrolyte solutions. RSC Adv. 2015, 5, 30654–30659. [Google Scholar] [CrossRef]
- Anirudhan, T.S.; Ramachandran, M. Adsorptive removal of basic dyes from aqueous solutions by surfactant modified bentonite clay (organoclay): Kinetic and competitive adsorption isotherm. Process Saf. Environ. Prot. 2015, 95, 215–225. [Google Scholar] [CrossRef]
- Belkassa, K.; Khelifa, M.; Batonneau-Gener, I.; Marouf-Khelifa, K.; Khelifa, A. Understanding of the mechanism of crystal violet adsorption on modified halloysite: Hydrophobicity, performance, and interaction. J. Hazard. Mater. 2021, 415, 125656. [Google Scholar] [CrossRef]
- Preetha, B.K.; Vishalakshi, B. Microwave assisted synthesis of karaya gum based montmorillonite nanocomposite: Characterisation, swelling and dye adsorption studies. Int. J. Biol. Macromol. 2020, 154, 739–750. [Google Scholar] [CrossRef]
- Carretero, M.I.; Gomes, C.S.F.; Tateo, F. Chapter 5.5—Clays, Drugs, and Human Health. In Handbook of Clay Science; Bergaya, F., Theng, B.K.G., Lagaly, G., Eds.; Elsevier: Amsterdam, The Netherlands, 2013; Volume 5, pp. 711–764. ISBN 1572-4352. [Google Scholar]
- de Sousa, C.; Gomes, F. Healing and edible clays: A review of basic concepts, benefits and risks. Environ. Geochem. Health 2018, 40, 1739–1765. [Google Scholar] [CrossRef]
- Morrison, K.D.; Misra, R.; Williams, L.B. Unearthing the Antibacterial Mechanism of Medicinal Clay: A Geochemical Approach to Combating Antibiotic Resistance. Sci. Rep. 2016, 6, 19043. [Google Scholar] [CrossRef]
- Williams, L.B.; Metge, D.W.; Eberl, D.D.; Harvey, R.W.; Turner, A.G.; Prapaipong, P.; Poret-Peterson, A.T. What makes a natural clay antibacterial? Environ. Sci. Technol. 2011, 45, 3768–3773. [Google Scholar] [CrossRef] [Green Version]
- Morrison, K.D.; Underwood, J.C.; Metge, D.W.; Eberl, D.D.; Williams, L.B. Mineralogical variables that control the antibacterial effectiveness of a natural clay deposit. Environ. Geochem. Health 2014, 36, 613–631. [Google Scholar] [CrossRef]
Adsorbents | CV | MB | MG | |||
---|---|---|---|---|---|---|
Adsorption Capacity (mg/g ± SD) | Removal Efficiency (%) | Adsorption Capacity (mg/g ± SD) | Removal Efficiency (%) | Adsorption Capacity (mg/g ± SD) | Removal Efficiency (%) | |
NCQ1 | 11.92 ± 0.36 | 99.34 | 11.88 ± 0.36 | 99.02 | 11.79 ± 0.35 | 98.29 |
NCQ3 | 11.91 ± 0.35 | 99.25 | 11.85 ± 0.36 | 98.76 | 11.68 ± 0.35 | 97.34 |
NCQ4 | 11.84 ± 0.36 | 98.70 | 11.84 ± 0.36 | 98.68 | 11.61 ± 0.24 | 96.75 |
NCQ5 | 11.89 ± 0.35 | 99.15 | 11.96 ± 0.36 | 99.69 | 11.48 ± 0.35 | 95.67 |
NCR1 | 8.991 ± 0.27 | 74.93 | 11.14 ± 0.33 | 92.90 | 10.29 ± 0.31 | 85.79 |
NCY1 | 11.04 ± 0.33 | 92.04 | 11.61 ± 0.35 | 96.78 | 11.52 ± 0.34 | 96.06 |
Element | Weight, % ± SD | Element | Weight, % ± SD |
---|---|---|---|
SiO2 | 46.84 ± 0.50 | SrO | 0.0702 ± 0.0035 |
Al2O3 | 28.32 ± 0.20 | MnO | 0.0585 ± 0.0063 |
Fe2O3 | 13.59 ± 0.19 | V2O5 | 0.046 ± 0.010 |
K2O | 3.27 ± 0.14 | ZrO2 | 0.0288 ± 0.0017 |
CaO | 2.97 ± 0.08 | BaO | 0.0214 ± 0.0026 |
SO3 | 2.82 ± 0.09 | ZnO | 0.0114 ± 0.0006 |
MgO | 1.10 ± 0.13 | CuO | 0.0097 ± 0.0007 |
TiO2 | 0.70 ± 0.03 | As2O3 | 0.0076 ± 0.0018 |
Cl | 0.139 ± 0.010 |
Element | Weight, % ± SD | Element | Weight, % ± SD |
---|---|---|---|
SiO2 | 50.76 ± 0.50 | CuO | 0.101 ± 0.005 |
Al2O3 | 28.63 ± 0.20 | ZnO | 0.0958 ± 0.0048 |
Fe2O3 | 10.49 ± 0.17 | SrO | 0.0502 ± 0.0025 |
K2O | 3.21 ± 0.14 | V2O5 | 0.046 ± 0.011 |
MgO | 2.89 ± 0.14 | ZrO2 | 0.0284 ± 0.0014 |
CaO | 2.04 ± 0.07 | Cl | 0.0263 ± 0.0075 |
TiO2 | 0.826 ± 0.041 | PbO | 0.0147 ± 0.0016 |
SO3 | 0.614 ± 0.048 | BaO | 0.0138 ± 0.0022 |
MnO | 0.140 ± 0.007 | NiO | 0.006 ± 0.0008 |
Model | CV Dye Adsorption | |||||
---|---|---|---|---|---|---|
NCQ1 | NCQ3 | |||||
298 K | 308 K | 318 K | 298 K | 308 K | 318 K | |
Langmuir | ||||||
qm, mg/g | 206.73 | 189.71 | 179.48 | 203.66 | 165.60 | 152.54 |
KL (L/mg) | 0.0310 | 0.0226 | 0.0154 | 0.0278 | 0.0231 | 0.0152 |
RL | 0.6165 | 0.6883 | 0.7634 | 0.6421 | 0.6831 | 0.7664 |
R2 | 0.8813 | 0.9415 | 0.9191 | 0.9445 | 0.9082 | 0.8036 |
Freundlich | ||||||
KF, (mg/g) (L/mg)1/n | 40.093 | 27.358 | 22.997 | 35.813 | 28.183 | 19.622 |
n | 3.6025 | 3.1122 | 3.0591 | 3.4303 | 3.3429 | 3.0663 |
R2 | 0.9825 | 0.9822 | 0.9673 | 0.9739 | 0.9790 | 0.9586 |
Adsorbent | Co (mg/L) | qe,exp. (mg/g ± SD) | Pseudo-First-Order | Pseudo-Second-Order | ||||
---|---|---|---|---|---|---|---|---|
qe,cal. (mg/g ± SD) | K1 (1/min) | R2 | qe,cal. (mg/g ± SD) | K2 (g/mg-min) | R2 | |||
NCQ1 | 20 | 32.71 ± 0.39 | 32.17 ± 0.32 | 0.377 ± 0.035 | 0.994 | 32.96 ± 0.08 | 0.033 ± 0.084 | 0.9997 |
NCQ3 | 20 | 32.97 ± 0.25 | 32.92 ± 0.02 | 0.334 ± 0.026 | 0.993 | 33.29 ± 0.08 | 0.029 ± 0.001 | 0.9997 |
Temperature (K) | |||
---|---|---|---|
298 | 308 | 318 | |
NCQ1 | |||
KL (L mol−1) | 1.264 × 104 | 9.220 × 103 | 6.282 × 103 |
∆G° (kJ mol−1) | −23.40 | −23.37 | −23.12 |
∆H° (kJ mol−1) | −27.52 | ||
∆S° (J K−1 mol−1) | −13.70 | - | - |
R2 | 0.9945 | - | - |
NCQ3 | |||
KL (L mol−1) | 1.134 × 104 | 9.424 × 103 | 6.201 × 103 |
∆G° (kJ mol−1) | −23.13 | −23.43 | −23.08 |
∆H° (kJ mol−1) | −23.67 | ||
∆S° (J K−1 mol−1) | −1.487 | - | - |
R2 | 0.9443 | - | - |
Adsorbent | Conditions | qm (mg/g) | Ref. |
---|---|---|---|
Tunisian Smectite Clay | Co—12.5–100 mg/L; pH—8; dose—50 g/L: time—30 min | 86.54 mg/g | [2] |
Moroccan pyrophyllite | Co—5–20 mg/L; pH—6.5; T—293 K; dose—1g/L: time—20 min | 12.5 mg/g | [6] |
Kaolin | Co—10–100 mg/L; pH—7; T—295 K; dose—1 g/L: time—30 min | 47.27 | [20] |
Surfactant modified bentonite clay | Co—400 μmol/L; T—303K; pH—9; dose—0.1 g/L: time—240 min | 365.11 μmol/g | [63] |
Halloysite | Co—20–400 mg/L; pH—7; T—298K; dose—1 g/L: time—240 min | 194.5 | [64] |
KG-g-PMETAC/MMT | Co—100 mg/L; pH—7; T—298 K; dose—50 mg; time—5 h | 137.77 | [65] |
NCQ1 and NCQ3 | Co—20–500 mg/L; pH—7; T—298 K; dose—30 mg: time—120 min | 206.73 and 203.66 | This study |
Samples | Zone of Inhibition (Mean in mm ± SD) | |||
---|---|---|---|---|
Gram-Positive Bacterial Strains | Gram-Negative Bacterial Strains | |||
S. aureus | E. faecalis | K. pneumoniae | E. coli | |
NCQ1 | 32 ± 1.24 *** | 22 ± 1.12 ** | 35 ± 1.34 *** | 35 ± 1.32 *** |
NCQ3 | 0 | 0 | 0 | 10 ± 0.46 * |
NCQ4 | 0 | 0 | 0 | 0 |
NCQ5 | 10 ± 0.36 * | 10 ± 0.36 * | 26 ± 1.10 ** | 24 ± 1.08 ** |
NCR1 | 0 | 0 | 0 | 0 |
NCY1 | 0 | 0 | 0 | 0 |
NC | 0 | 0 | 0 | 0 |
P.C | 22 ± 1.02 ** | 25 ± 1.04 ** | 14 ± 0.54 * | 14 ± 0.56 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alorabi, A.Q.; Hassan, M.S.; Alam, M.M.; Zabin, S.A.; Alsenani, N.I.; Baghdadi, N.E. Natural Clay as a Low-Cost Adsorbent for Crystal Violet Dye Removal and Antimicrobial Activity. Nanomaterials 2021, 11, 2789. https://doi.org/10.3390/nano11112789
Alorabi AQ, Hassan MS, Alam MM, Zabin SA, Alsenani NI, Baghdadi NE. Natural Clay as a Low-Cost Adsorbent for Crystal Violet Dye Removal and Antimicrobial Activity. Nanomaterials. 2021; 11(11):2789. https://doi.org/10.3390/nano11112789
Chicago/Turabian StyleAlorabi, Ali Q., Mallick Shamshi Hassan, Mohammad Mahboob Alam, Sami A. Zabin, Nawaf I. Alsenani, and Neazar Essam Baghdadi. 2021. "Natural Clay as a Low-Cost Adsorbent for Crystal Violet Dye Removal and Antimicrobial Activity" Nanomaterials 11, no. 11: 2789. https://doi.org/10.3390/nano11112789
APA StyleAlorabi, A. Q., Hassan, M. S., Alam, M. M., Zabin, S. A., Alsenani, N. I., & Baghdadi, N. E. (2021). Natural Clay as a Low-Cost Adsorbent for Crystal Violet Dye Removal and Antimicrobial Activity. Nanomaterials, 11(11), 2789. https://doi.org/10.3390/nano11112789