Nest-Like MnO2 Nanowire/Hierarchical Porous Carbon Composite for High-Performance Supercapacitor from Oily Sludge
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of MPCs
2.3. Characterization
2.4. Electrochemical Measurements
3. Results and Discussion
3.1. Characterizations of MPC Samples
3.2. Capacitance Performance of MPCs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, L.L.; Zhao, X.S. Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 2009, 38, 2520–2531. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Liu, J.; Zou, J.; Chunder, A.; Chen, Y.; Zhai, L. Synthesis and electrochemical performance of multi-walled carbon nanotube/polyaniline/MnO2 ternary coaxial nanostructures for supercapacitors. J. Power Sources 2011, 196, 565–572. [Google Scholar] [CrossRef]
- Wang, S.Z.; Gai, L.G.; Jiang, H.H.; Guo, Z.Z.; Bai, N.N.; Zhou, J.H. Reduced graphene oxide grafted by the polymer of polybromopyrroles for nanocomposites with superior performance for supercapacitors. J. Mater. Chem. A 2015, 3, 21257–21268. [Google Scholar] [CrossRef]
- Xia, T.; Wang, Q.; Wu, W.; Ao, C.; Zheng, Z.; Lu, C.; Chen, Z.; Zhang, W. Fabrication and characterization of MnO2-Coated carbon fabrics from silk for shape-editable supercapacitors. J. Alloys Compd. 2021, 854, 157289. [Google Scholar] [CrossRef]
- Cheng, Y.; Lu, S.; Zhang, H.; Varanasi, C.V.; Liu, J. Synergistic effects from graphene and carbon nanotubes enable flexible and robust electrodes for high-performance supercapacitors. Nano Lett. 2012, 12, 4206–4211. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, L.; Zhang, J. A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 2012, 41, 797–828. [Google Scholar] [CrossRef] [Green Version]
- Dahal, B.; Mukhiya, T.; Ojha, G.P.; Chhetri, K.; Tiwari, A.P.; Muthurasu, A.; Lee, M.; Chae, S.-H.; Kim, T.; Chung, D.C.; et al. A multicore-shell architecture with a phase-selective (α+δ)MnO2 shell for an aqueous-KOH-based supercapacitor with high operating potential. Chem. Eng. J. 2020, 387, 124028. [Google Scholar] [CrossRef]
- Zhuang, R.; Dong, Y.; Li, D.; Liu, R.; Zhang, S.; Yu, Y.; Song, H.; Ma, J.; Liu, X.; Chen, X. Polyaniline-mediated coupling of Mn3O4 nanoparticles on activated carbon for high-performance asymmetric supercapacitors. J. Alloys Compd. 2021, 851, 156871. [Google Scholar] [CrossRef]
- Liu, X.B.; Wu, Z.P.; Yin, Y.H. Highly nitrogen-doped graphene anchored with Co3O4 nanoparticles as supercapacitor electrode with enhanced electrochemical performance. Synth. Met. 2017, 223, 145–152. [Google Scholar] [CrossRef]
- Song, Z.; Liu, W.; Wei, W.; Quan, C.; Sun, N.; Zhou, Q.; Liu, G.; Wen, X. Preparation and electrochemical properties of Fe2O3/reduced graphene oxide aerogel (Fe2O3/rGOA) composites for supercapacitors. J. Alloys Compd. 2016, 685, 355–363. [Google Scholar] [CrossRef]
- Liu, T.; Jiang, C.J.; Cheng, B.; You, W.; Yu, J.G. Hierarchical flower-like C/NiO composite hollow microspheres and its excellent supercapacitor performance. J. Power Sources 2017, 359, 371–378. [Google Scholar] [CrossRef]
- Wei, W.; Cui, X.; Chen, W.; Ivey, D.G. Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem. Soc. Rev. 2011, 40, 1697–1721. [Google Scholar] [CrossRef]
- Brousse, T.; Bélanger, D.; Long, J.W. To Be or Not To Be Pseudocapacitive? J. Electrochem. Soc. 2015, 162, A5185–A5189. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Kuzmenko, V.; Haque, M.; Di, M.; Smith, A.D.; Lundgren, P.; Enoksson, P. Explanation of anomalous rate capability enhancement by manganese oxide incorporation in carbon nanofiber electrodes for electrochemical capacitors. Electrochim. Acta 2020, 340, 135921. [Google Scholar] [CrossRef]
- Cheng, Q.; Tang, J.; Ma, J.; Zhang, H.; Shinya, N.; Qin, L.-C. Graphene and nanostructured MnO2 composite electrodes for supercapacitors. Carbon 2011, 49, 2917–2925. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, X.; Huang, Z.; Xu, T.; Zhang, Q. High-performance all-solid-state flexible supercapacitors based on manganese dioxide/carbon fibers. Carbon 2016, 107, 844–851. [Google Scholar] [CrossRef]
- Lei, Z.; Shi, F.; Lu, L. Incorporation of MnO2-coated carbon nanotubes between graphene sheets as supercapacitor electrode. ACS Appl. Mater. Interfaces 2012, 4, 1058–1064. [Google Scholar] [CrossRef]
- Deng, L.; Hao, Z.; Wang, J.; Zhu, G.; Kang, L.; Liu, Z.-H.; Yang, Z.; Wang, Z. Preparation and capacitance of graphene/multiwall carbon nanotubes/MnO2 hybrid material for high-performance asymmetrical electrochemical capacitor. Electrochim. Acta 2013, 89, 191–198. [Google Scholar] [CrossRef]
- Bi, T.; Fang, H.; Jiang, J.; He, X.; Zhen, X.; Yang, H.; Wei, Z.; Jia, Z. Enhance supercapacitive performance of MnO2/3D carbon nanotubes-graphene as a binder-free electrode. J. Alloys Compd. 2019, 787, 759–766. [Google Scholar] [CrossRef]
- Liu, Y.; He, D.; Duan, J.; Wang, Y.; Li, S. Synthesis of MnO2/graphene/carbon nanotube nanostructured ternary composite for supercapacitor electrodes with high rate capability. Mater. Chem. Phys. 2014, 147, 141–146. [Google Scholar] [CrossRef]
- Fan, Z.; Yan, J.; Wei, T.; Zhi, L.; Ning, G.; Li, T.; Wei, F. Asymmetric Supercapacitors Based on Graphene/MnO2 and Activated Carbon Nanofiber Electrodes with High Power and Energy Density. Adv. Funct. Mater. 2011, 21, 2366–2375. [Google Scholar] [CrossRef]
- Liu, Y.; Shi, K.; Zhitomirsky, I. Asymmetric supercapacitor, based on composite MnO2-graphene and N-doped activated carbon coated carbon nanotube electrodes. Electrochim. Acta 2017, 233, 142–150. [Google Scholar] [CrossRef]
- Le, Q.J.; Huang, M.; Wang, T.; Liu, X.Y.; Sun, L.; Guo, X.L.; Jiang, D.B.; Wang, J.; Dong, F.; Zhang, Y.X. Biotemplate derived three dimensional nitrogen doped graphene@MnO2 as bifunctional material for supercapacitor and oxygen reduction reaction catalyst. J. Colloid Interface Sci. 2019, 544, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Chen, H.; Chen, M.; Liu, N.; Li, Q. Graphene-patched CNT/MnO2 nanocomposite papers for the electrode of high-performance flexible asymmetric supercapacitors. ACS Appl. Mater. Interfaces 2013, 5, 3408–3416. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, P.; Zhang, H.; Zhang, D.; Sun, X.; Ma, Y. Rapid hydrothermal synthesis of hierarchical nanostructures assembled from ultrathin birnessite-type MnO2 nanosheets for supercapacitor applications. Electrochim. Acta 2013, 89, 523–529. [Google Scholar] [CrossRef]
- Shinde, P.A.; Lokhande, V.C.; Ji, T.; Lokhande, C.D. Facile synthesis of hierarchical mesoporous weirds-like morphological MnO2 thin films on carbon cloth for high performance supercapacitor application. J. Colloid Interface Sci. 2017, 498, 202–209. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, L.; Wu, H.B.; Lin, J.; Shen, Z.; Lou, X.W. High-performance flexible asymmetric supercapacitors based on a new graphene foam/carbon nanotube hybrid film. Energy Environ. Sci. 2014, 7, 3709–3719. [Google Scholar] [CrossRef]
- Nardecchia, S.; Carriazo, D.; Ferrer, M.L.; Gutierrez, M.C.; del Monte, F. Three dimensional macroporous architectures and aerogels built of carbon nanotubes and/or graphene: Synthesis and applications. Chem. Soc. Rev. 2013, 42, 794–830. [Google Scholar] [CrossRef]
- Liu, F.; Wang, Z.; Zhang, H.; Jin, L.; Chu, X.; Gu, B.; Huang, H.; Yang, W. Nitrogen, oxygen and sulfur co-doped hierarchical porous carbons toward high-performance supercapacitors by direct pyrolysis of kraft lignin. Carbon 2019, 149, 105–116. [Google Scholar] [CrossRef]
- Ping, Y.; Liu, Z.; Li, J.; Han, J.; Yang, Y.; Xiong, B.; Fang, P.; He, C. Boosting the performance of supercapacitors based hierarchically porous carbon from natural Juncus effuses by incorporation of MnO2. J. Alloys Compd. 2019, 805, 822–830. [Google Scholar] [CrossRef]
- Ramezani, M.; Fathi, M.; Mahboubi, F. Facile synthesis of ternary MnO2/graphene nanosheets/carbon nanotubes composites with high rate capability for supercapacitor applications. Electrochim. Acta 2015, 174, 345–355. [Google Scholar] [CrossRef]
- Li, W.; Xu, H.; Cui, M.; Zhao, J.; Liu, F.; Liu, T. Synthesis of sulfonated graphene/carbon nanotubes/manganese dioxide composite with high electrochemical properties. Ionics 2018, 25, 999–1006. [Google Scholar] [CrossRef]
- Guan, L.; Pan, L.; Peng, T.; Gao, C.; Zhao, W.; Yang, Z.; Hu, H.; Wu, M. Synthesis of Biomass-Derived Nitrogen-Doped Porous Carbon Nanosheests for High-Performance Supercapacitors. Acs Sustain. Chem. Eng. 2019, 7, 8405–8412. [Google Scholar] [CrossRef]
- Niu, L.; Shen, C.; Yan, L.; Zhang, J.; Lin, Y.; Gong, Y.; Li, C.; Sun, C.Q.; Xu, S. Waste bones derived nitrogen-doped carbon with high micropore ratio towards supercapacitor applications. J. Colloid Interface Sci. 2019, 547, 92–101. [Google Scholar] [CrossRef]
- Feng, H.; Hu, H.; Dong, H.; Xiao, Y.; Cai, Y.; Lei, B.; Liu, Y.; Zheng, M. Hierarchical structured carbon derived from bagasse wastes: A simple and efficient synthesis route and its improved electrochemical properties for high-performance supercapacitors. J. Power Sources 2016, 302, 164–173. [Google Scholar] [CrossRef]
- Kim, C.; Zhu, C.; Aoki, Y.; Habazaki, H. Heteroatom-doped porous carbon with tunable pore structure and high specific surface area for high performance supercapacitors. Electrochim. Acta 2019, 314, 173–187. [Google Scholar] [CrossRef]
- Liu, F.; Gao, Y.; Zhang, C.; Huang, H.; Yan, C.; Chu, X.; Xu, Z.; Wang, Z.; Zhang, H.; Xiao, X.; et al. Highly microporous carbon with nitrogen-doping derived from natural biowaste for high-performance flexible solid-state supercapacitor. J. Colloid Interface Sci. 2019, 548, 322–332. [Google Scholar] [CrossRef]
- Aguelmous, A.; El Fels, L.; Souabi, S.; Zamama, M.; Hafidi, M. The fate of total petroleum hydrocarbons during oily sludge composting: A critical review. Rev. Environ. Sci. Bio-Technol. 2019, 18, 473–493. [Google Scholar] [CrossRef]
- Li, X.; Liu, K.; Liu, Z.; Wang, Z.; Li, B.; Zhang, D. Hierarchical porous carbon from hazardous waste oily sludge for all-solid-state flexible supercapacitor. Electrochim. Acta 2017, 240, 43–52. [Google Scholar] [CrossRef]
- Kappenstein, C.; Pirault-Roy, L.; Guerin, M.; Wahdan, T.; Ali, A.A.; Al-Sagheer, F.A.; Zaki, M.I. Monopropellant decomposition catalysts. V. Thermal decomposition and reduction of permanganates as models for the preparation of supported MnOx catalysts. Appl. Catal. a-Gen. 2002, 234, 145–153. [Google Scholar] [CrossRef]
- Yan, J.; Fan, Z.; Wei, T.; Qian, W.; Zhang, M.; Wei, F. Fast and reversible surface redox reaction of graphene–MnO2 composites as supercapacitor electrodes. Carbon 2010, 48, 3825–3833. [Google Scholar] [CrossRef]
- Shen, H.; Kong, X.; Zhang, P.; Song, X.; Wang, H.; Zhang, Y. In-situ hydrothermal synthesis of δ-MnO2/soybean pod carbon and its high performance application on supercapacitor. J. Alloys Compd. 2021, 853, 157357. [Google Scholar] [CrossRef]
- Gao, Z.; Zhang, L.; Chang, J.; Wang, Z.; Wu, D.; Xu, F.; Guo, Y.; Jiang, K. Catalytic electrode-redox electrolyte supercapacitor system with enhanced capacitive performance. Chem. Eng. J. 2018, 335, 590–599. [Google Scholar] [CrossRef]
- Saleh, T.A.; Agarwal, S.; Gupta, V.K. Synthesis of MWCNT/MnO2 and their application for simultaneous oxidation of arsenite and sorption of arsenate. Appl. Catal. B Environ. 2011, 106, 46–53. [Google Scholar] [CrossRef]
- Wang, J.-W.; Chen, Y.; Chen, B.-Z. A Synthesis Method of MnO2/Activated Carbon Composite for Electrochemical Supercapacitors. J. Electrochem. Soc. 2015, 162, A1654–A1661. [Google Scholar] [CrossRef]
- Fischer, A.E.; Pettigrew, K.A.; Rolison, D.R.; Stroud, R.M.; Long, J.W. Incorporation of homogeneous, nanoscale MnO2 within ultraporous carbon structures via self-limiting electroless deposition: Implications for electrochemical capacitors. Nano Lett. 2007, 7, 281–286. [Google Scholar] [CrossRef]
- Ojha, G.P.; Pant, B.; Muthurasu, A.; Chae, S.-H.; Park, S.-J.; Kim, T.; Kim, H.-Y. Three-dimensionally assembled manganese oxide ultrathin nanowires: Prospective electrode material for asymmetric supercapacitors. Energy 2019, 188, 116066. [Google Scholar] [CrossRef]
- Ma, C.; Cao, E.; Li, J.; Fan, Q.; Wu, L.; Song, Y.; Shi, J. Synthesis of mesoporous ribbon-shaped graphitic carbon nanofibers with superior performance as efficient supercapacitor electrodes. Electrochim. Acta 2018, 292, 364–373. [Google Scholar] [CrossRef]
- Okhay, O.; Tkach, A. Graphene/Reduced Graphene Oxide-Carbon Nanotubes Composite Electrodes: From Capacitive to Battery-Type Behaviour. Nanomaterials 2021, 11, 5. [Google Scholar] [CrossRef]
- Gogotsi, Y.; Penner, R.M. Energy Storage in Nanomaterials—Capacitive, Pseudocapacitive, or Battery-like? ACS nano 2018, 12, 2081–2083. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Dong, X.; Zhang, Y.; Hu, J.; Liu, W.; Cui, X.; Hao, A. MnOx nanosheets anchored on a bio-derived porous carbon framework for high-performance asymmetric supercapacitors. Appl. Surf. Sci. 2020, 527, 146842. [Google Scholar] [CrossRef]
- Li, X.; Wang, Z.; Guo, L.; Han, D.; Li, B.; Gong, Z. Manganese oxide/hierarchical porous carbon nanocomposite from oily sludge for high-performance asymmetric supercapacitors. Electrochim. Acta 2018, 265, 71–77. [Google Scholar] [CrossRef]
- Li, M.; Yu, J.; Wang, X.; Yang, Z. 3D porous MnO2@carbon nanosheet synthesized from rambutan peel for high-performing supercapacitor electrodes materials. Appl. Surf. Sci. 2020, 530, 147230. [Google Scholar] [CrossRef]
- Zheng, X.; Liu, X.; Yang, X.; Wang, Y.; Liu, X.; Fu, A.; Guo, P.; Li, H. 3D interpenetrating networks of MnO2/Carbon-CNTs composites derived from ZIF-67 MOF and their application to supercapacitors. Colloids Surf. Physicochem. Eng. Aspects 2021, 623, 126686. [Google Scholar] [CrossRef]
- Tang, C.; Zhao, K.; Tang, Y.; Li, F.; Meng, Q. Forest-like carbon foam templated rGO/CNTs/MnO2 electrode for high-performance supercapacitor. Electrochim. Acta 2021, 375, 137960. [Google Scholar] [CrossRef]
- Feng, R.; Li, M.; Wang, Y.; Lin, J.; Zhu, K.; Wang, J.; Wang, C.; Chu, P.K. High-performance multi-dimensional nitrogen-doped N+MnO2@TiC/C electrodes for supercapacitors. Electrochim. Acta 2021, 370, 137716. [Google Scholar] [CrossRef]
- Gueon, D.; Moon, J.H. MnO2 Nanoflake-Shelled Carbon Nanotube Particles for High-Performance Supercapacitors. ACS Sustain. Chem. Eng. 2017, 5, 2445–2453. [Google Scholar] [CrossRef]
- Ren, C.; Yan, Y.; Sun, B.; Gu, B.; Chou, T.W. Wet-spinning assembly and in situ electrodeposition of carbon nanotube-based composite fibers for high energy density wire-shaped asymmetric supercapacitor. J. Colloid Interface Sci. 2020, 569, 298–306. [Google Scholar] [CrossRef]
- Sun, L.; Li, N.; Zhang, S.; Yu, X.; Liu, C.; Zhou, Y.; Han, S.; Wang, W.; Wang, Z. Nitrogen-containing porous carbon/alpha-MnO2 nanowires composite electrode towards supercapacitor applications. J. Alloys Compd. 2019, 789, 910–918. [Google Scholar] [CrossRef]
- Yang, M.; Kim, D.S.; Hong, S.B.; Sim, J.W.; Kim, J.; Kim, S.S.; Choi, B.G. MnO2 Nanowire/Biomass-Derived Carbon from Hemp Stem for High-Performance Supercapacitors. Langmuir 2017, 33, 5140–5147. [Google Scholar] [CrossRef]
- Zhao, Y.; Ran, W.; He, J.; Huang, Y.; Liu, Z.; Liu, W.; Tang, Y.; Zhang, L.; Gao, D.; Gao, F. High-performance asymmetric supercapacitors based on multilayer MnO2 /graphene oxide nanoflakes and hierarchical porous carbon with enhanced cycling stability. Small 2015, 11, 1310–1319. [Google Scholar] [CrossRef]
- Jiang, S.; Yang, B.; Lu, Y.; Xia, R.; Yu, T.; Gao, M. An aqueous symmetrical supercapacitor with high bulk pseudocapacitance induced by phase transformation of MnO2. J. Alloys Compd. 2021, 876, 160148. [Google Scholar] [CrossRef]
- Phattharasupakun, N.; Wutthiprom, J.; Chiochan, P.; Suktha, P.; Suksomboon, M.; Kalasina, S.; Sawangphruk, M. Turning conductive carbon nanospheres into nanosheets for high-performance supercapacitors of MnO2 nanorods. Chem. Commun. 2016, 52, 2585–2588. [Google Scholar] [CrossRef]
- Chavhan, M.P.; Sethi, S.R.; Ganguly, S. Vertically aligned MnO2 nanosheet electrode of controllable mass loading, counter to nanoparticulate carbon film electrode for use in supercapacitor. J. Energy Storage 2020, 32, 101851. [Google Scholar] [CrossRef]
Related ASC Devices | Current Collector | Potential Window (V) | Electrolyte | Specific Capacitance (F g−1) | Energy Density (W h kg−1) | Reference |
---|---|---|---|---|---|---|
MPC//HPC | Ni foam | (0–2) | 1 M Na2SO4 | 105.6 at 0.5 A g−1 | 58.67 at 498.8 W kg−1 | This work |
MnO2@R//porous carbon | Ni foam | (0–2) | 1 M Na2SO4 | 25.8 at 0.5 A g−1 | 9.2 at 1283.7 W kg−1 | [53] |
MnO2/CNTs//AC | Ni sheet | (0–1.6) | 2 M KOH | - | 11.95 at 398.3 W kg−1 | [54] |
MnO2/rGO/CNTs//AC | Carbon foam | (0–1.8) | 1 M Na2SO4 | 54.4 at 0.5 A g−1 | 41.6 at 513.7 W kg−1 | [55] |
MnO2@TiC/C//AC | - | (0–1.5) | 1 M Na2SO4 | 76.5 at 0.5 A g−1 | 23.9 at 540 W kg−1 | [56] |
MnO2/CNTs//AC | Al foil | (0–1.8) | 1 M Na2SO4 | 60 at 0.25 A g−1 | 27 at 225 W kg−1 | [57] |
MnO2/CNT//PPy/CNT | - | (0–1.8) | 1 M Na2SO4 | - | 4.82 at 110 W kg−1 | [58] |
MnO2/HNPC//HNPC | Ni foam | (0–1.8) | 2 M Ca(NO3)2 | 66.9 at 1 A g−1 | 30.1 at 900 W kg−1 | [59] |
MnO2/HC//HC | Ti foil | (0–2) | 1 M Na2SO4 | - | 33.3 at 7800 W kg−1 | [60] |
MnO2/GO//HPC | Ni foam | (0–2) | 1 M Na2SO4 | 84 at 0.1 A g−1 | 46.7 at 100 W kg−1 | [61] |
α-MnO2//α-MnO2 | Ni foam | (0–2) | 1 M KOH | 139.9 at 0.5 A g−1 | 38.9 at 870.3 W kg−1 | [62] |
MnO2/CN/PVDF// MnO2/CN/PVDF | Carbon fiber paper | (0–2) | 0.5 M Na2SO4 | - | 64.39 at 3870 W kg−1 | [63] |
MnO2//Carbon | Ni foam | (0–2) | 0.5 M K2SO4 | 115 at 1 mA cm−2 | 62.3 at 5200 W kg−1 | [64] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Han, D.; Gong, Z.; Wang, Z. Nest-Like MnO2 Nanowire/Hierarchical Porous Carbon Composite for High-Performance Supercapacitor from Oily Sludge. Nanomaterials 2021, 11, 2715. https://doi.org/10.3390/nano11102715
Li X, Han D, Gong Z, Wang Z. Nest-Like MnO2 Nanowire/Hierarchical Porous Carbon Composite for High-Performance Supercapacitor from Oily Sludge. Nanomaterials. 2021; 11(10):2715. https://doi.org/10.3390/nano11102715
Chicago/Turabian StyleLi, Xiaoyu, Dong Han, Zhiqiang Gong, and Zhenbo Wang. 2021. "Nest-Like MnO2 Nanowire/Hierarchical Porous Carbon Composite for High-Performance Supercapacitor from Oily Sludge" Nanomaterials 11, no. 10: 2715. https://doi.org/10.3390/nano11102715
APA StyleLi, X., Han, D., Gong, Z., & Wang, Z. (2021). Nest-Like MnO2 Nanowire/Hierarchical Porous Carbon Composite for High-Performance Supercapacitor from Oily Sludge. Nanomaterials, 11(10), 2715. https://doi.org/10.3390/nano11102715